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1971 — ACTA UNIVERSITATIS P A L A C K Í A N A E O L O M U C E N S I S 
FACULTAS R E R U M N Á T U R A L I U M — TOM 33 

Katedra algebry a geometrie přírodovědecké fakulty 
Vedoucí katedry: Doc. RNDr. Josef Šimek 

THE APPLICATION OF PLUECKER'S LINE-GEOMETRY 
TO THE STUDY OF POLAR P R O P E R T I E S OF QUADRICS 

JOSEF SROVNAL 
(Received August 2nd, 1969) 

The polar properties of quadrics in the three-dimensional space may be studied in 
the usual way by making use of methods of either analytic or synthetic geometry. 
The main purpose of the present article is to suggest an approach to this problem 
from the viewpoint of Pluecker's line-geometry. 

The subject of our considerations will merely be the regular quadrics in the real 
projective space P3 extended to imaginary elements. Any quadric Q2 in this space 
may be viewed as ruled and all lines of the spaceP3(i) may be mapped on the points 
of the fourdtmensional quadric Q4 in the five-dimensional space Ps(i). It is thus 
possible to use this way in our study of some polar properties of quadrics by means of 
Pluecker's coordinates of the lines. 

If an equation of quadric 
4 

E a'ljxtxj = 0 
i,J = l 

is given, where a'V} = a'^ii,} = I, 2, 3, 4) are real numbers not simultaneously equal 
to zero, then it is always possible to carry this equation by a convenient real transfor
mation into the canonical form 

!««*? = 0. (1) 

Inasmuch as merely regular quadrics are considered, it holds alla22a33a44 4= 0 
and to the arbitrary line r of the space p3° defined by different points A — (at, a2, 
a3, a4), B — (bt, b2, b3, b4) there exists one and only one conjugate polar r' with 
respect to the quadric (1), which may be determined as the intersection of polar 
planes a, /? of points A, B. The equations of these polars are 

£ xJlA) = 0, i ^ - ( f i ) = 0, 

wheref&A) = aria^fi(B) = al(£, are adjoint linear forms to the quadratic form (I) 

in points A, B. 
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The Pluecker's point-coordinates ri} of the line r are the two-rowed determinants 

i a-, a 

bj 

constructed of elements of the matrix 

' И ľ ľ '*;• '••-'•='.2,3,4. 

(aía2a3a4\ 
\bxb2b3b4) 

in a given order r t 2 , r t 3 , ri4<r34,r42, r 2 3 , which we will denote by r{, (i = 1,2, ..., 6) 
according to the scheme: 

rз = rl4, 
Г6 = Г 2 3 -

Similarly may be determined the plane coordinates Qt(i = 1, 2, ..., 6) of the conjugate 

polar r ' by means of minors of the matrix 

\(A) f2(A) f3(A) f4(A)\ 

\(B) f2(B) f3(B) / 4 ( B ) / , 

whose elements are coefficients at variables in equations of the polar planes a, /?. 

it holds again 

Qi = Q12, Qi = Q\3, Q'z = Q\^ 

Q\ - 0 3 4 , QS = C?42^ Qb = 0 2 3 , 

where 

, \fi(A) fj(A)\ . . 
Qu = L / r i N i 1 *I ' ^I = [ ' 2 » 3 ' 4 -

ІЯ-9) , P | 
Hence it follows 

Introducing instead of the polar coordinates gj(/ = 1, 2, ..., 6) of the line r' its point-

coordinates r'is then we obtain from the known proportion 

r't : r2 : r 3 : r4 : r 5 : r6' = o'4 : Q'5 : g6 : Q\ : e 2

 : 03, 

the relation 

rl : r2 : r3 : ri '• r5 • r6 = «3 3-*44r4 : «44«22r5 : «22«33r6 '• «1 l«22rl '• Q\ l°33r2 *• «1 1 «44r3 • 

(2) 

If r is an arbitrary line whose Pluckefs point-coordinates are rt, then the coordinate 

of its conjugate polar r' with respect to the quadric ]T aitxf = 0 are determined by 

means of the proportion (2). 



Let us now observe more closely the conjugate polars r, r' from the viewpoint of 
their mutual position. Three cases are to be distinguished here: 1) Lines r, r' coincide 
with a single generating line of a quadric; 2) lines r, r' are crossed, and intersect them
selves in the point of a quadric; 3) lines r, r' are skew. 
When required the line r to be self-polar then for the coordinates of lines r, r' it must 
hold 

r, = kr'i k +- 0, /' = 1, 2, . . . ,6. 

By applying the proportion (2), these relations can be written in the form 

r, = ka33a44r4, r2 = ka44a22r5, 

r3 = ka22a33r6, r4 = kaxxa22rA, (3) 

r5 = kaua33r2, r6 = kalxa44r3. 

Since the numbers rt cannot vanish simultaneously, it follows e.g. from the first and 
fourth relation (provided rt + 0) that 

** = L-
« l l « 2 2 « 3 3 «44 

With respect to the assumption regarding the rank of the quadric (1) the denominator 
of the fraction on the right side is non-zero; we see also that k = 0 is not possible. 
By extraction we obtain 

(4) 
\ana22a33a44 

Hence it follows: 
4 

If the quadric ]T aHxf — 0 includes the real self-polar lines then it holds that 
i = i 

By real transformation of type x-t = Xtx'(, the equation of the quadric (1) may be 
carried into one and only one of the following forms: 

x] + x\ + x\ + x\ = 0, (5a) 

x\ + x\ + x\ - x\ = 0, (5b) 

x\ + x\ - x\ - x\ = 0. (5c) 

The quadric (5a) actually satisfies the condition aiXa22a33a44 > 0, but it contains 
no real lines as this condition is not sufficient. After a modification of the equation 
(5a) to the form 

x\ + x\ = -(x2
4 + x\), 

this equation may be satisfied so that we put 

xx — ix3 = k(x4 + ix2), or xt — ix3 = — X(x4 — ix2), 

X(xx + ix3) = -x4 = ix2, X(xx + ix3) = x4 + ix2, 
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where A is an arbitrary parameter. In either case the pairs of equations represent 
different planes determining one line m, n of a quadric respectively. If the Pluecker's 
plane coordinates of these lines are expressed and carried over to point coordinates, 
then we obtain 

mx =. fiA = ( - 1 + A2) i, nt = v4 = (1 - A2) i, 

m2 = /*5 = 2Xi, n2 = v5 = — 2Ai, 

m3 = «6 = 1 + A2 n3 = v6 = A2 + 1, 

m4 = /i, = ( - 1 + A2) i, «4 = v t = ( - 1 + A2) /, 

m5 = n2 = 2?J, ns = v2 = 2A/, 

»'6 = /-3 = -^ + >< «6 = v3 = - 1 - A2. 

It becomes apparent now that the lines m, « are not real. Either of the lines m, « 

belongs to another regulus and it holds 

m, = m 4 , J??2 = m 5 , m3 = m6 ; //j = — « 4 , «2
 = ~ w 5 ^ "3 = ~~}h-

The quadric (5b) includes no real lines, because it is a n a 2 2 a 3 3 a 4 4 < 0, however 
it does include the imaginary lines, which can easily be verified in the above mentioned 

way. 

The quadric (5c) satisfying the condition axxa22aZ2>a^ > 0 contains the real 
self-polar lines. It is easy to find that for the Plueckefs coordinates of these lines 

it holds 

m, = fi4 — 1 + A2. «i = v4 = 1 + A2, 

m2 = fi5 = ~2X, n2 = v5 = 2A, 

m3 = / ( 6 = - A 2 + 1, w3 = v6 = A2 - 1, 

m4 = /tL = 1 + A2, «4 = Vj = — 1 — A2, 

m5 = ji2 = 2A, M5 = v2 = 2A, 

m6 = /i3 = - 1 + A2. «6 = v3 = - 1 + A2. 

It may also be seen from these relations that it holds 

m1 =- m 4 , m2 = —m5, m3 = —m6; « t = — w4, /?2 = « 5 , n3 = « 6 . 

These results can be derived from the relation (3) and (4) where for the quadric (5c) 
is k = + 1. 

All our further reasonings might now concern whichever of quadrics (5a), (5b), (5c). 
However we shall carry out only one reasoning regarding the quadric (5c) including 
the real generating lines. Thus, according to the foregoing, the Pluecker's coordinates 
are arbitrary lines m of the regulus 1R 

m = {mt, m2, m 3 , mx, — m2, — m3), 

and likewise for the line n of the regulus 2R it holds 

n = (nltn2,n3, ~n1,n2,n3). 
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Should these sextuple of numbers define Jines, then the points of space Ps(i) corre
sponding to them must lie on quadric <24. In other words, the condition of inci
dence*) is to be satisfied for either of lines m, n: 

(p(m, m) = m\ — m\ — ml — 0 

cp(n, n) = n\ - n\ — n2 = 0. 

These relations can be satisfied for the real mh nt, (i = 1,2, 3) just so, that mx + 0, 
nx + 0. Geometrically this requirement implies tJiat the lines m, n do not intersect 
the edge Oi02 of the coordinate tetrahedron, i.e. the edge Ox02 does not intersect 
the quadric Q2 in the real points. 

It is easy to see that two different lines of the same regulus do not intersect. If these 
lines are denoted by m, n it holds for them 

(p(m,n) = 2(mxnx - m2n2 - m3n2). 

With respect to the assumption mx + 0, », + 0 we can put m, = ri1. When it is 

required the Jines m, n to be incindent, then it must hold <p(m, n) = 0 and at the same 

time (p(m, n) = 0, (p(n, n) = 0. Combining these relations yields 

- ( m . - nx)
2 + (m2 - n2)

2 + (m3 - n3)
2 - 0, 

and with respect to the equality mx = nx it follows also m2 = n2, m3 = n3, i.e. the 
lines m, n coincide. Thus, two lines of the same regulus are incident if and only if 
they are identical. Being different, they have no point in common. 

On the other hand, however, each two lines of distinct reguli intersect because of 
m G 1R, n e 2R. is <p(m, n) = 0, as immediately follows by direct calculation. 

Let us now turn our attention to conjugate polars r, r ' being incident, yet not 
coinciding with the only generating line of a quadric. It is then ip(r, r') = 0 and from 
relations (3) and (4) we can again provide the coordinates of line r' in case the 
coordinates of line r are given: 

r = ( r i , r 2 , r 3 , r 4 , r 5 , r 6 ) , 

r ' = (r4 , - r 5 , -r6,rx, -r2, - r 3 ) . 

If Q is the tangent plane of a quadric defined by lines r, r ' with a contact point R in 
the intersection of lines r, r', then an arbitrary tangent of the quadric lying in the 
tangent plane Q may be expressed as line of a linear bundle whose base lines are r, r" 

and the vertex the point R. For any such tangent it holds: 

/ = Xxr + k2r'. (6) 

The line t' which is polar conjugate to the line t belongs to this bundle as well, as 

*) The condition of incidence of two arbitrary lines p, q in Pluecker's coordinates pif q{ (i~ 1, 
2, ..., 6) will be denoted by symbol (p(p, q) =; 0, where yip, q) — pxq± + p2qs + p3q6 + p4qx + 
+ Psl2 + P6<l3-
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follows from the rank of matrix constructed of the coordinates of lines t', r, r' which 
equals to 2. Let us now determine the coordinates of generating lines of a quadric 
which the tangent plane Q is passing through. Should the line t be the generating 
line of a quadric then for its coordinates it must hold t, = tA, t2 = —t5, r3 = —16 

or /, = —t4, t2 = t5, t3 = t6, according to which regulus the line t belongs. Replac
ing the coordinates of lines t by the coordinates of conjugate polars r,r' from (6), 
where we besides express the coordinates of lines r' by means of the coordinates of 
line r, we derive for the ratio of numbers lx : X2 the relation 

. lih 
where the value 1 of this ratio determines the line of the regulus *R, and the value — I 

determines the line of the regulus 2 R . Thus, for lines m e *R, n e 2 R there hold 

the relations 

m = r + r' n = r — r', 

where r, r' are the arbitrary conjugate quadrics and m, n are the generating lines 

wherein the tangent plane, determined by the polars r, r', intersects the quadric. 

Before treating the skew conjugate polars, let us observe one property of conjugate 

polars. If r, r', s, s' are two pairs of conjugate polars then it holds 

(p(r, s) = cp(r', s'), 

(p(r, s') = cp(r', s), 

as results from the direct calculation. If now one pair of conjugate polars, e.g. the 
pair s, s' coicides with the self-polar line m of the quadric then it holds <p(r, m) = 
= cp(r', m) for m e 1R and (p(r,m) = -~(p(r',m) for me2R. Herefrom the following 
corollary may be derived: 

/ / the polar r intersects an arbitrary generating line of a quadric then the conjugate 

polar r' intersects this line as well. 

If now r, r' are skew conjugate polars and the line r intersects the quadric in 
points M, N and the line r' in points M', N', then no two of these points coincide 
(because it would contradict the requirement for skewness of both polars) and there 
are generating lines of the quadric passing pairwise through each of these points. 
Each of these lines belongs to another regulus. These generating lines determine on 
the quadric the distorted quadrangle with vertices M, M', N, N', whose segments are 
the conjugate polars r, r'. Thus, each pair of conjugate polars determines in a one-to-
one way the corresponding distorted quadrangle. The generating lines determining 
the sides of this quadrangle are established from the given conjugate polars r, r' by 
solving the system of equations 

(p(r, m) = 0, cp(r, n) — 0, 

cp(m, m) = 0, q>(n, n) = 0, 
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where me lR,ne 2R. Any of these systems consists of one linear and of one quadratic 
equation in coordinates of lines m, n, the solution of which yields four number triples 
determining the generating lines sought. Conversely too, if an arbitrary distorted 
quadrangle on a quadric is given, determined by lines m, n, p, q, then the correspond
ing conjugate polars will be fixed by solving the system 

q>(r, m) — 0, 

<p(r, n) — 0, 

q>(r, p) = 0, 

<p(r, q) - 0, 

q>(r, r) - 0. 

The first four equations are linear in r,(/ = 1,2, . . . , 6), the last is a quadratic one. 
Since rt are homogeneous coordinates, then by solving this system we arrive to an 
unique determination of two values regarding the ratio of coordinates rt. It is just the 
coordinate of the line r and its conjugate polars r' which are determined by the 
generating lines m, n, p, q, of the quadric. 

Let me conclude this section with some remarks of how the foregoing may be used 
to prove some theorems of conjugate polars. If r, r', s, s' are two pairs of conjugate 
polars, and these four lines are hyperboloidic (i.e. in a hyperholoidic position, where 
infinitely many of their transversals exist), then we may express an arbitrary one of 
them, e.g. the line r, as a linear combination of those remained, i.e. it holds 

r = Xxr + X2s + X3s'. 

It can be shown that choosing Xt = 1 it holds X2 = —X3. 

Suppose now that the conjugate polars r. r' and two lines m, n of the regulus lR 

intersect the line c which does not belong to the regulus 2R. Then it holds that 

(p(r, c) = 0, 

(p(r', c) ~ 0, 

(p(m, c) — 0, 

(p(n, c) = 0. 

Summarizing the first two relations and joining this sum to the remaining two rela

tions, then after a modification and introduction of ct + c4 — fil9 c5 — c2 — p.2, 

c6 — c3 = fi3 we obtain 

(rt + r4) nt + (r2 - r5) n2 + (r3 - r6) p3 = 0, 

m1fil + m2\i2 + m3p.3 - 0, (7) 

«i,«i + n2fi2 + n3n3 - 0. 

Since at least one of the numbers Hi, \i2, n3 must be different from zero (for if ,u2 = 

= li2 ss jU3 — 0 the line would belong to c of the regulus 2R, which contradicts our 
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assumption), the relations (7) may be satisfied only so that it holds 

"̂5 r3 - r6 

= 0; 

consequently the matrix constructed of the coordinates of the lines r, r\ m, n has 
rank 3, Thus the lines r, r', m, n are linearly dependent and hence hyperboloidic. 
From the properties of conjugate polars then follows that any of their transversals 
intersects them in the quadruple of points which are separated harmonically. This 
result may be summed up in the theorem: 

If two conjugate polars and-two generating tines belonging to the same regulus of 

a quadric intersect one and the same line not belonging to another regulus, then the four 

first lines are hyperboloidic and are forming the harmonic division. 

This theorem immediately proves the second theorem: 

Given an arbitrary polar tetrahedron of a quadric, then the generating lines of the 

same regulus intersecting one edge of this tetrahedron (and thus the opposite edge as 

well) are hyperboloidic with the second and the third pair of the opposite edges of the 

tetrahedron and they are separated with these pairs harmonically. 

Let us now consider two pairs of conjugate polars r, r', s, s' being hyperboloidic. 
The pair r, r' determines the generating lines m, m e lR and /7 , / / e 2R and similary 
the pair s, s' determines the lines /;, //' e ! R,q. q' G2R constructing the skew quadran
gles on the quadric. ft holds 

<p(r, in) = 0, (p(s, n) = 0, 

(p(r, nf) = 0, (p(s, n') = 0, 

<p(r, p) = 0, cp(s, q) = 0, 

(pir.p) = 0, q>(s,q') = 0. 

Expressing these relations in the coordinates and putting 

r = )Hr' + X2s + X3s'\ 

where for simplicity we choose At — I and take into consideration the relation 

X2 = —A3, it may be written 

r = r' + X2(s — s'). 

Replacing by means of this equation the coordinates of the lines s, s' by coordinates 
of the lines r, r' in relations 

cp(s, n) = 0, 

(p(s, n') = 0, 

and multiplying these by the coefiicient A2 + 0 and joining to them the relations 

cp(r, m) = 0, 

(p(r, m') = 0, 
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then on the ground of the hyperboloidic position of lines m, m', n, ft', it can be derived 
that these lines coincide with the only pair of skew lines each of which belongs to the 
regulus *R. 

Conversely, if the conjugate polar r, r', s, s' intersect two different generating 
lines m, m' belonging to the same regulus of a quadric, then it holds that 

ę(r, m ! = 0, 
ę(r, irì) = {), 

(p(s, m) = o. 
ę(s, m') = 0. 

From the first and third equation it follows mx : m2 : m3 = kt : k2 : k3, from the 
second and fourth equation m\ : m'2 '• m3 = kx : k2 : k3, where 

fcj 

+ r4l 
kъ 

| rl + r4 
I Sj + S4 

r5 ~ r2 

J 5 ~" ^2 

If at least one of the determinants kx, k2, k3 is different from zero then the lines m, 
m' coincide, which contradicts the assumption. Thus it must be kx = k2 = k3 = 0, 
whence it follows that the rank of the matrix constructed of the coordinates of lines 
r, r', s, s' is equal to 3. This shows that these lines are linearly dependent i.e. hyper
boloidic. The foregoing results are expressed in the following theorem: 

Two pairs of polar lines are hyperboloidic if and only if two different generating 
lines of the same regulus of a quadric intersect. 
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Resumé 

UŽITÍ PŘÍMKOVÉ G E O M E T R I E KE S T U D I U 
P O L Á R N Í C H VLASTNOSTÍ KVADRIK 

JOSEF SROVNAL 

Tato práce pojednává o polárních vlastnostech kvadrik s použitím přímkové geo
metrie. Autor vychází ze známých výsledků odvozených v trojrozměrném projek
tivním prostoru, rozšířeném o imaginární prvky. Úvahy, které jsou v práci obsaženy, 
se týkají pouze regulárních kvadrik. 



Zavedeme-li imaginárni body, můžeme považovat každou kvadriku za přímkovou 
a protože lze každé přímce přiřadit jedno-jednoznačně uspořádanou šestici čísel, 
možno touto cestou studovat polární vlastnosti kvadrik pomocí Pluckerových 
souřadnic přímek. 

Předmětem úvah jsou přímky polárně sdružené vzhledem ke kvadrice, klasifiko
vané z hlediska jejich vzájemné polohy (polární přímky splývající, různobežné a mimo-
běžné). 

V závěru je uvedeno, jak lze metodou přímkové geometrie dokázat některé věty 
o sdružených polárách. 

Zusammenfassung 

DIE A N W E N D U N G DER L I N I E N G E O M E T R I E 
IM S T U D I U M DER P O L A R E I G E N S C H A F T E N 

VON Q U A D R I K E N 

JOSEF SROVNAL 

Diese Arbeit betrachtet einige Polareigenschaften von Quadriken bei Anwendung 
der Plückerschen Liniengeometrie. Dabei geht der Autbor von den bekannten, im 
dreidimensionalen um imaginäre Elemente erweiterten Projektivraum abgeleiteten 
Resultaten aus. Die in der Arbeit enthaltenen Betrachtungen finden ihre Anwendung 
nur auf reguläre Quadriken. 

Durch Einführung der imaginären Punkte kann man jede Quadrik als eine Regel-
quadrik ansehen und in diesem Sinne mit Hilfe der Plückerschen Linienkoordinaten 
die Polareingenschaften von Quadriken studieren, da man jeder Linie eine einein
deutig angeordnete Sechserreihe von Zahlen zuordnen kann. 

Die besagten Betrachtungen umfassen zur Quadrik polarkonjugierte Linien in 
bezug auf ihre gegenseitige Lage (zusammenfallende, sich schneidende und wind
schiefe Polarlinien). 

Abschliessend wird es gezeigt, wie einige Sätze von konjugierten Polaren mittels 
der Liniengeometrie sich beweisen lassen. 
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