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1979 — ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS 
FACULTAS RERUM NATURALIUM — TOM 61 

Katedra algebry a geometrie přírodovědecké fakulty Univerzity Palackého v Olomouci 
Vedoucí katedry: prof RNDr. Ladislav Sedláček, CSc. 

ON BANACH *-ALGEBRAS WITHOUT THE U N I T 

D I N A STfiRBOVA 
(Received April 15, 1978) 

The present paper is to show that a Banach *-algebra A without the unit element is hermitian 
if and only if the fundamental V. Pt&k's inequality | x \„ ^ p(*) for each xs A holds. 

1. Introduction 

V. Ptak in [3] characterized fully the hermitian Banach algebras containing the 
unit element endowed by a not necessarily continuous involution, by spectral proper
ties of its elements. He showed at the same time the important role of the function 
p(x) = v | x*x \a, the square root of the spectral radius of x*x. In [3] are listed 
fourteen conditions, all equivalent to the fact of algebra being hermitian. The most 
interesting of these is the "fundamental inequality" 

I * I, £ P(.x) (1) 

playing the basic role in the theory of hermitian algebras and their connections with 
the theory of C*-algebras. 

The aim of the present paper is to show that (1) characterizes hermitian Banach 
algebras also in such a case, when the existence of the unit element is not assumed. 

2. Preliminaries 

Let A be an algebra over the complex field. A is said to be a topological algebra 
if it is at the same time a topological space with respect to which the algebraic opera
tions in A are continuous. An involution on A is a map x -> x* of A onto itself 
such that for each complex number X and each x, ye A the following holds: 

(i) (x*)* = x, 

(ii) (x + y)* = x* + y*, 

(iii) (Ax)* = Ax*, 

(iv) (xy)* = y*x*. 
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A *-algebra (or algebra with involution) is an algebra endowed by an involution. 
A star algebra which is also normed (respectively complete with respect to the norm) 
is called normed (respectively Banach) *-algebra. Let A be a *-algebra. An element 
u e A is said to be unitary if u*u = uu* = e, where e denotes the unit element of A. 
An element a e A is said to be normal if a*a = aa*. An element h e A is said to be 
selfadjoint if h* = h. The sets of all unitary, selfadjoint, normal elements of A will 
be denoted respectively by U(A), H(A), N(A). It holds obviously U(A) c N(A) 
and H(A) c N(A). For any set S c A let's denote S* = {x*, xe S}. If S = S*, 
we say S is selfadjoint. If the elements of S u S* are pairwise commutative, we 
say S is normal. The set of all regular elements of A will be denoted by R(A). The 
spectrum of an element x e A will be denoted by <r(x). If it is necessary to specify the 
algebra with respect to which the spectrum is taken, we use the notation <r(x, A). 
The spectral radius of the element x e A is denoted by | x \a and we recall its de
finition. 

I x \a = sup {I A | : X e tr(x)} 

In the *-algebra A we define the spectral norm of each element xe A as follows: 
p(x) = (| x*x | f f)

1 /2 . The involution is called hermitian if the spectrum <r(x) is real 
for each xe H(A). The *-algebra A is called hermitian if its involution is hermitian. 

We suppose the reader to be familiar with elementary properties of all notions 
introduced. Further there are supposed knowledges on Gelfand representation theory 
of commutative Banach algebras. These can be found e.g. in [4]. The set of all 
multiplicative functionals of A is denoted by J/(A). Now, we recall some known 
but necessary facts. 

2.1. Proposition: The following conditions are equivalent: 

(i) A is a commutative hermitian Banach algebra. 

(ii) For each f e Jt(A) and for each x e A it holds f(x*) = f(x). 

P roof : See [2]. 
For the possibility of using the Gelfand representation theory in some reduced 

extent, of course, also in the non-commutative case the following is useful: 

2.2. Proposition: Let A be a Banach *-algebra possessing the unit element e. 
Then every normal set N c A is contained in a closed maximal commutative ^sub-
algebra C of A so that for each xe C it holds: <r(x, A) = <r(x, C). 

Proof : See [3]. 

2.3. Note: Recall now that throughout this paper the continuity of the studied 
involution is not assumed. 

Let's now concentrate our attention on algebras not necessarily containing the 
unit element. 
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3. On Banach *-algebras not necessarily possessing the unit 

Some results valid for algebras with the unit element can be extended to algebras 
without it by using the concept of quasi-inverse or by the adjunction of a unit. 

3.1. Definition: The unitization of a normed algebra A over the complex field C, 
denoted by A1, is the normed algebra consisting of the set A x C with addition, 
scalar multiplication and product defined for all x, y e A, a, p e C by 

(x, a) + (y, p) = (x + y, a + j8) 

p(x, a) = (fix, ocp) 

(x, a) (y, p) = (xy + ay + px, ocp) 

and with the norm defined by 

|| (x, a) || = || x || + | a | 

It is easy to verify that A1 is a normed algebra with the unit element (0,1) that 
|| (0,1) || = 1 and that the mapping a -> (a, 0) is an isometric isomorfism of A onto 
a subalgebra of A1. It is also obvious that A1 is complete whenever A is complete. 

3.2. Definition: If the normed algebra A is endowed by the involution *, we define 
a new involution on A1 as follows: 

(x, a)* = (x*, a) 

3.3. Definition: Given elements x, ye A, the quasi-product of x, y is the element 
x o ye A defined by 

xoy = x + y — xy 

3.4. Definition: Let x be an element of the algebra A. Elements y, z e A are respect
ively left and right quasi-inverses if 

v o x = 0, xoz = 0 

A quasi-inverse of an element x e A that is both a left quasi-inverse and a right 
quasi-inverse of x. An element that has a quasi-inverse is said to be quasi-invertible 
(or quasi-regular), ail other elements are said to be quasi-singular. The set of all 
quasi-invertible elements of A is denoted by a-Inv(A) and the set of all quasi-singular 
elements of A is denoted by #-Sing(A). 

3.5. Proposition: (i) An element xeA has the quasi-inverse y if and only if 
(0, 1) - (x, 0) has the inverse (0, 1) - (y, 0) in A1. 

(ii) If A has a unit element e, an element xeA has the quasi-inverse y if and only 
if e — x has the inverse e — y. 

Proof : See [1]. 
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Let's recall now the definition of spectra in the case when the algebra A is not 
endowed by the unit element. 

3.6. Definition: If the algebra A does not possess the unit, we define the spectrum 
of the element x e A a s follows 

CT(X, A) = {0} u {A e C\{0} : (1/A). x e q-Sing(A)} 

3.6. Proposition: Let A be without the unit element, and let A1 be the unitization 
of A. Then o(x, A) = c((x, 0), A1) for each x e A. 

Proof: The proof is a straightforward consequence of 3.5. and can be also found 
in[l] . 

3.7. Note: Let A be an algebra without the unit. Then it is easily seen for each 
x e A that \ x\a = \(x, 0) \a, where the first is taken in A and the second term is 
taken with respect to A1. 

3.8. Note: By polynomial identity for spectra it immediately follows for each 
element a from the algebra A and for each complex A: 

a(a, A) = a(a) + A 

3.9. Lemma: Let A be an algebra with involution *, which does not possess the 
unit element. Then the following holds: 

(i) An element x e A is selfadjoint if and only if (x, A) is selfadjoint in A1 for each 
real number A. 

(ii) An element x e A is normal if and only if (x, A) is normal in A1 for each 
complex A. 

Proof: The statements are obvious. 

3.10. Proposition: Let A be an algebra with involution *, which does not possess 
the unit element. Then the following conditions are equivalent for each element 
ue A: 

(i) There exists a complex A such that | A | = 1 and Au o Au* = 0 = Au* o Au. 
(ii) There exists a complex number A such that | A | = 1 and it holds that (u, —A) 

is a unitary element of the unitization A1. 

Proof: The condition from (i) is equivalent by the definition to the following one 

AAuu* — Au — Au* = 0 = Xlu^u — Au — Au* (1) 

It is easily seen the equivalence of (1) and the following 

(u, -A) (u*, -A) = (uu* - Au - Au*, XI) = (0, 1) = (u*, -A) (u, -A) 
Q.E.D. 
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3.11. Definition: Let A be a *-algebra which does not possess the unit element. 
The element ue A is said to be quasi-unitary if there exists a complex number X 
such that | X | = 1 and it holds Xu o lu* = Au* o Xu = 0. The set of all quasi-
unitary elements of A is denoted by U€(A). 

3.12. Proposition: Let A be a *-algebra which does not possess the unit element. 
Let A1 be the unitization of A. Then the following conditions are equivalent: 

(i) There exists a positive number K such that for each quasi-unitary element 
u e Ug(A) holds | <r(u, A) | < K. 

(ii) There exists a positive number K' such that for each unitary element (u, X) e 
6 U(AX) holds | <x((u, X\ A1) | < K'. 

P roof : (i)->(ii). 
Let (u, X) e U(AX). By 3.10. it follows that \X\ = 1 and u(-A) o u*(-2) = 0. 

This yields u e U^(A) and we have the inequality 

I <r(u, A) | < K (1) 
Now, 3.8. and (1) yield 

| cr((u, X), A1) | K + 1 = K' (2) 

( i i ) - ( i ) . 

Conversely, for each u e U^(A) there exists a complex X,\X\ = 1 so that Xu o Au* = 
= 0. It immediately follows that (u, —X) is a unitary element from A1 which means 
that 

|tr((u, -A), A1) | < K ' (3) 

Again, by 3.8. and (3), it follows that | tr(u, A) | < K' + 1. Q.E.D. 

4. The fundamental inequality in Banach 
*-algebras without the unit . 

Now, we are able to formulate the main result of this paper. 

4.1. Theorem: Let A be a Banach *-algebra without the unit element. The follow
ing conditions are equivalent: 

(i) A is hermitian. 
(ii) Spectra of all quasi-unitary elements of A are contained on the unit circle of C. 

(iii) The unitization A1 is hermitian. 

(iv) It holds | x |<- = p(x) for each normal element x e N(A). 

(v) It holds | x \a ^ p(x) for each x e A. 

Proof : The proof is divided in several steps as follows: 

(0~(>ii) 
( iWv)- ( iv ) - ( i i ) -* ( i ) 

(O^(iii): 
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Let's suppose that A is hermitian; and let (a, X) e H(AX). By definition we obtain 
a = a* and X = X. From the fact of A being hermitian it follows that a(a, A) is 
real. By note 3.8. we have 

a((a, X), A1) = a((a, 0), A1) + a((0, X), A1) = a(a, A) + X 

and so we proved that the spectrum of (a, X) is real. 
Suppose conversely that the unitization A1 is hermitian. By definition 3.1. A is 

identified by a subalgebra of A1. If the element h e A is selfadjoint, then, by defini
tion 3.2. also (h, 0) is a selfadjoint element of A1. By proposition 3.6. we get 

a(h, A) = a((h, 0), A1) 

and it immediately follows that the spectrum of h is real. Q.E.D. 

(i) -+ (v): 

Let A be supposed to be hermitian. By the preceding part of our proof we see 
that also A1 is hermitian and by theorem 5.1. of V. Ptak's paper [3] it follows that 
for each element (a, X) e A1 the fundamental inequality | (a, X) \a ^ p(a, X) holds. 
By proposition 3.6. wre get the following inequality: 

\a\a = \(a,0)\a^p(a,0)=p(a) 

and so we proved the desired implication. 
Q.E.D. 

(v) - (iv): 

For an arbitrary given normal element a e N(A) the equality p(a) = | a \a follows 
by simple use of Gelfand representation for the maximal commutative *-subalgebra C 
of A1, containing the normal set {(a, 0), (0, 1)}. See 2.2. and recall the wellknown 
fact of spectral radius being submultiplicative on commutative Banach algebras 
with the unit. The last can be found in [4]. 

Q.E.D. 
( i v ) - ( i i ) : 

Now, let u e U€(A). Then there exists a complex A, | A \ = 1 so that Xu o Xu* = 
= 0 = Xu* o Xu. By the definition we see that 

uu* — Xu — Xu* = 0 = u*u — Xu — Xu* (1) 

(1) immediately implies 

u*u = Xu + Xu* = uu* (2) 

By (2) we see that u is a normal element of A. Further we obtain by (iv) and by (2) 

| uu* I = | XXuu* \a = \Xu + lu* | , = | u \l<, 2 | u \a (3) 
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where the inequality follows by seeing the subadditivity of spectral radius on commut
ative Banach algebra; in our case on maximal commutative *-subalgebra of A1 which 
contains the normal element (u, 0). (See proposition 2.2.) Now, by (3), it is obvious 
that 

\u\lS2\u\a 

and so 
I u \a S 2 

Q.E.D. 

(ii)->(i): 

Now, let Ug(A) be supposed equibounded which means that there exists a positiveK 
such that 

| r/U(A1) | < K and | <rU,(A) | < K (4) 

Let h e H(A). We can suppose without any loss of generality that | a(h) | rg 1. Now 
we take the maximal closed commutative *-subalgebra C of A1 containing the set 
{(A, 0), (0, 1)}. By 5.1. in V. Ptak's paper [3] we see that | o-(U(Ax)) | = 1. By Ford's 
lemma, (see [1]), we get the existence of the selfadjoint element k' e C such that 
h2 = k' o k' and [ o(k\ A1) | ^ 1. It immediately follows by definition 3.3. that 
there exists a selfadjoint k e C so that e = h2 + k2. (Here we do not distinguish 
between h and (h, 0) and e denotes the unit element (0, 1) of A1.) Now, we put 
u = h + ik which means u* = h ~ ik and we obtain the equation 

uu* = h2 + k2 = u*u = e (5) 

(5) says that there is u e U(A^ which implies that the spectrum | a(u) | = 1. Again, 
we use the Gelfand reprezentation of C and for each multiplicative functional 
fe J((C) get: 

f(u) =f(h) + if(k) 

f(u*)=f(h)-/f(k) U 

Since f(u) e <J(U) and f(u*) e o(u*) we see that 

| / ( M ) | = | / ( M * ) | = 1 (7) 

Because off being multiplicative, it follows from (6), (7) 

f(u*u) = f(k2 + k2) = 1 

Now, by elementary properties of complex numbers it follows thatf(h) is real. As 
fis an arbitrary multiplicative functional from .//(C) we see that o(h) is real, and A 
si he hermitian. 

Q.E.D. 
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Souhrn 

O BANACHOVÝCH ^-ALGEBRÁCH BEZ J E D N O T K Y 

D I N A ŠTĚRBOVÁ 

V práci se dokazuje, že Banachova algebra s invoiucí, která nemá jednotkový 
prvek, je hermiteovská tehdy a jen tehdy, jestliže je pro každý její prvek x splněna 
nerovnost 

\x\aíP(x) = (\xx\ay>2 ( 0 

kde | \a značí spektrální poloměr v uvažované algebře. V provedených úvahách se 
nepředpokládá spojitost involuce. Dále je ukázáno, že splnění podmínky (1) pro 
každý prvek x z uvažované algebry je ekvivalentní s podmínkou stejné omezenosti 
spekter všech quasiunitárních prvků algebry. Pojem quasiunitárnosti vhodně nahra
zuje unitárnost v algebře bez jednotkového prvku. Dosažené výsledky představují 
zobecnění výsledků V. Ptáka [3], který dokázal, že (1) charakterizuje hermiteovské 
Banachovy algebry s jednotkovým prvkem. 

PeiwMe 

O BAHAXOBWX *-AJirEEPAX BE3 EflHHHIJBI 

A H H A fflTEPBOBA 

B HacToameH paGoTe JTOKa3WBaeTCií cjie^yiomee npefljioaceHHe: nojibHoe HopMH-
poBaiiHoe KOJILO c HHBOjnouiieH 6e3 ejxHHHHHoro ajieMeina HBJIHCTCH BnojibHe 
CHMMeTpHHeCKHM TOT^a H TOJIbKO TOLHa eCJIH flJIil Kâ CAOrO 3JieMeHTa X H3 KOJH^a 
BBinojiHHeTC.a (jtyH/jaMeHTajibHoe HepaBeHCTBO B. IlTaKa: 

I x \aú p(x) (1) 

FIpH 3TOM He npeAnonaraeTCH HenpepbiBHoCTb HHBOJIK>U;HH. 3TOT pesyjibTaT 
HBJíHeTCíl o6o6meHHeM pe3yjibTaTa B. ITraKa (3), r,ae GMJIO aBTopoM ,noKa3aHO 
TO >Ke caMoe AJTJI KOJH^, y KOToptix cymecTBOBaHHe e;iHHHm>i npe/rnojTaraeTOi. 
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