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1981 — ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS 
FACULTAS RERUM NATURALIUM — TOM 69 

Katedra algebry a geometrie přírodovědecké fakulty Univerzity Palackého v Olomouci 
Vedoucí katedry: prof RNDr. Ladislav Sedláček, CSc. 

NATURAL PLANAR TERNARY RINGS 

D A L I B O R K L U C K Y 
(Received April 21st, 1980) 

This paper is one of results of research directed on the Faculty of natural sciences of Palacky's 
University by Vaclav Havel. 

The systematical study of non — embedable projective planes formed the theory 
of projective planes in a special branch of mathematics. This theory has its algebraiza-
tion namely the theory of planar ternary rings. Transformation one of the theories 
into to other one is realized by so called coordinatization (i.e. by introduction of 
a coordinate system and of the structure of planar ternary ring onto the coordinate 
domain). In this way we can assign to every projective plane P with a distinguished 
flag (V, n) a certain planar ternary ring (S,t). We may rightly expect, that the 
properties of (S, t) will be depended onto the plane P as well as onto the coordinatiza­
tion. By a fixed coordinatization the corespendence between properties of P and 
of (S, t) will be one to one. 

In the article, we are dealing with a coordinatization of a given projective plane P 
by a natural planar ternary ring (S,t). Such coordinatization is the most general 
with the following property: For any a, b e S the equation x — a as well as the equa­
tion y = b expresses (a) a line, if x, y are considered as point— coordinates, (b) a pencil 
of lines, if x, y are considered as line-coordinates. Our purpose is to deduce the 
necessary and sufficient conditions for (S, t) so, that P may be (a) a vertical transitive 
plane (i.e. a (V, n) —transitive plane), (b) a translation plane (i.e. a n—transitive 
plane), (c) a desarguesian plane, (d) a pappian plane. 

The results found will be a generalization of results of [1] for Hall planar ternary 
rings and of [2], [3], [4] for planar ternary rings with zero. On the other hand, there 
exist the generalizations of some results of ours, especially by O. Sorrace in [5] and 
by J. Klouda in [6]. 

The mentioned necessary and sufficient conditions may be obtained in two different 
ways. The first of them employs inner properties of the plane P and by using of 
coordinatization transforms them into properties of (S,t). The known results for 
Hall planar ternary rings follow from the obtained ones as special cases. The second 
way uses the known results for Hall planar ternary rings and by using of isotopy 
transforms them again into properties of (S,t). We will apply the first way. 
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1. A X I O M S O F N A T U R A L P L A N A R T E R N A R Y R I N G S 

A N D T H E I R I M M E D I A T E C O N S E Q U E N C E S 

We define a planar ternary ring (abbreviation: PTR) as an ordered pair (S,t), 
where S is a set with card S ^ 2 and t : S3 -> S is a ternary operation satisfying 
following axioms: 

A 1. V a, b, c e S 3 ! x e S : t(a, b, x) = c. 
A 2. V a, b, c, d e S, a ?- c 3 ! x e S : t(x, a, b) = t(x, c, d). 
A3. V a,b, c, deS, a ^ c 3 ! (x, y) e S2 : t(a, x, v) = c A t(e, x, y) = d. 

If, in addition, it holds: 
A 4. There exist elements oL, oReS (so called left —quasizero and right — quasi zero) 

such that 

t(tfL, yo» z*) = z ==> V j e S : t(OL, y, z*) = z, 

t (x 0 , OK, z*) = z => V x G S : t(x, OR, z*) = z, 

then (S,t) wil/ be called natural PTR (abb. NPTR). 
If we replace A 4 by the axiom: 

A*4: There exists an element 0 e S (so called zero) such that 

V x, y, z e S : t(0, y, z) = t(x , 0, z) = z, 

we get the definition of PTR with zero (abb.: ZPTR). 
A ZPTR (S,t) will be called Hall PTR (abb.: HPTR), if it is fulfilled: 

A*5: There exists an element 1 e S (so called unity) such that 

V x, y e S : t(1, v, 0 = y, t(x, I, 0) = x. 

Let (S,t) be a NPTR. For any z e S , let us denote by z* the element satisfying 

t(OL,OR,z*) = z.1) 

We introduce in S the binary operation multiplication . by virtue of 

a . b = t(O, b, OL), O, b e S. 
It is easy to prove: 

(a) V a e S : a . oR = oL . a = oL, 
(b) V b e S, V a G S \ {OL} 3 ! x G S : a . x = b. Such element x will be denoted by 

x = a \b. 
(c) V b G S, V a e S \ {O }̂ 3 ! x G S : y . a = b. Such element y will be denoted by 

y = b/a. 
For every a ^ oL put ea = a \a2), furthermore put e0jL = O^. Now, we can introduce 
further binary operation addition + defining 

a -f b = t(a, ea, b) O, b G S. 

*) If (S, t) is a ZPTR (especially HPTR), then z* = z V z e S. 
2) If (S, t) is a HPTR, then V a e S \ {0}: ea = 1. 
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It is easily seen, that 
(d) V a e S: a + oL = oL + a = a. 
(e) V a, b e S, 3! x e S: a + x = b. 

We say, that (S, t) is a linear N P T R, if V a, b, c e S: t(a, b, c*) = a . b + c. 

2. C O O R D I N A T I Z A T I O N O F A P R O J E C T I V E P L A N E 

BY A N A T U R A L P L A N A R T E R N A R Y R I N G 

Let P = (0, ££) be a projective plane, where & is the set of points and S£ is the 
set of lines considered as subsets of 0. An ordered tripple (P, V, n), where (V, m) is 
a flag of P will be called the projective plane with flag and it will be denoted P(V, n). 
We will shortly speak about the plane P(V, n). 

Now, put 

st = 0 \ n, a = se \ ?, 
where V denotes the set of all lines o P containing V (a pencil of lines). We will 
use the "affine" terminology in the following sense: The points of st will be called 
proper points, the points of n improper. The lines different from n will be called 
proper lines, n is the improper line. For every proper line p put pa = p n jaf and 
for every improper point N put Na ~ N \ {n}. The set pfl will be called the affine 
line or exactly the affine restriction of p\ the set Nfl will be called the direction or the 
affine restriction of the pencil N. 

The lines o^ Va (and also their affine restrictions) will be called vertical lines, the 
lines of !3 (as well as their affine restrictions) will be called cross lines. The directions 
different from ¥a are cross directions, Va is the vertical direction. 

As it is known 

card stf = card 38 = m2, where m = ord P. 

Let S be a set with card S = m. An ordered double (n, X) of bijections 

n : S2 -> s/9 X : S2 ~> M 

will be called coordinate system for P(V, n) (cf. [7]), S is the coordinate domain 
of (TT, A). 

We introduce four mappings 

pi : J ^ -> S, p 2 : j / -> S, pl : 08 -> S, f>2 : ^ -> S 

by virtue of 

Pi((*, yf) = ^, *>2((^ y)71) = y, P\Q<> ^)A) = u, p2((u, vf) = v. 

The coordinate system (71, A) will be called halfcartesian (cf. [7]), if following two 
conditions are fulfilled: 
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(i) Let X, Y be arbitrary two points of s4. Then X, Y lie on the same vertical 
line if and only if pt(X) = pt(Y). 

(ii) Let a, b be arbitrary two lines of £8. Then, a, b have a common improper 
point (we say that a, b are parallel lines) if and only if pl(a) = ^ ( b ) . 

Suppose, that the coordinate system (n, X) is halfcartesian. Then, for every tripple 
(x, u, w) e S3 there exists the unique element y such, that (x, y)n e (u, w)x. Therefore, 
we may introduce a ternary operation t : S3 —> S by virtue of 

y = t(x, u, w) o (x, y)n e (u, w)x. 

In this case, we can prove without difficulties, that (S, t) is a PTR. We say, that 
(S,t) is a PTR associated to coordinate system (n, X) for P(V, n) or that (S, t) is 
a PTR associated to plane P(V, n). 

A halfcartesian coordinate system (n, X) will be called the natural coordinate 
system, if it holds: 

(ui) There exists a direction Ha (so-called horizontal direction) different from Va 

and having following property: Let X, Y be arbitrary two points of s4. Then X, Y 
lie on the same line of Ha if and only if p2(X) — p2(Y). 

(iv) There exists a vertical affine line va (so called vertical axis) with following 
property: Let a, b be arbitrary two lines of 3%. Then a, b have a common point on va 

if and only if p2(a) = f>2(b). 
We can construct a natural coordinate system for P(V, n) in following way 

(cf.j [8]): Let us choose an improper point H # V and a vertical line v; let S be an 
arbitrary set with card S = ord P. Finally, let us choose four bijections: 

n : S -> n \ {V}, X : S - Va, n' : S -> ya, X' : S -> Ra. 

Now, we are able to define bijections n : S2 -> s$, X : S2 -> @l by 

(x, yf = xx n / ' ; (u, w)x = ( u \ n (w*')fl 

It is easy seen, that (n, X) is a natural coordinate system for P(V, n). We remain to the 
reader the proof of the following assertion: 

Let (n,X) be a halfcartesian coordinate system for P(V, n), (S,t) the PTR as­
sociated to (n, X). Then (n, X) is natural if and only if (S,t) is natural. In this case 
va = {(oL, y)n\ye S} and Ra = {(oR, w)x \weS}. 

For next, let us suppose, that in given projective plane P(V, n) a natural coordinate 
system (n, X) is introduced and that (S,t) is the NPTR associated to (n, X). Further 
let us assume, that Ra denotes the horizontal direction, va the vertical axis and 0 
the point (oL, oL)n (so-called origin of coordinate system (n, X)). 

Finally, let us denote for every point C and every line c by U(C, c) the set as well 
as the group of central collineations with the centre C and the axis c. We will say, 
that P(V, n) is (C, c)-transitive if for any line leC the group U(C, c) operates 
transitively on the set / except the point C and the common point of c and /. P(V, m) is 
said to be c-transitive, if it is (C, c)-transitive for any C e c. The central collineation 

50 



with improper axis n is called homothety. If the centre C of a homothety h is a proper 
point, then h is said to be a dilatation, if Cis an improper point, then h is said to be 
a translation. In the last case the direction Ca is called the direction of translation h. 

It is well-known, that P(V, n) is (C, c)-transitive if and only if there exists any line 
1 e € such, that U(C, c) operates transitively on / except the point C and the common 
point of c and /. Furthermore, P(V, n) is c-transitive if and only if there exist two 
different points Ct, C2 on c such, that P(V, n) is (C t , c)-transitive and (C2, ^-transit­
ive. 

3. V E R T I C A L L Y T R A N S I T I V E P L A N E S 

The plane P(V, n) is said to be vertically transitive, if it is (V, n)-transitive. It 
follows from the end of previous part, that P(V, n) is vertically transitive if and only 
if for any point Ae\a there exists a translation F : 0 H> A. 

Proposition 1. 
The following conditions are equivalent: 
(a) P(V, n) is vertically transitive 
(b) V a e S the mapping fa\stf->srf given by 

(x,y)n-»(x,y + a)n (1) 

is the restriction of a translation Fa e U(V, n) tO jtf. In the case, the grupoid (S, + ) 
is antiisomorphic to U(V, n) and consequently (S, + ) is a group. 

Proof : I. (a) => (b). Let Fa e U(V, n) be a translation with 0 -» (OL, a)n. Consider 
a point X = (x,y)K. If y = oL, then obviously Fa(X) = (x, a)n = fa(X). Suppose 
that y ^ oL. Put Y = (y,y)n. From p2(X) = p2(Y) it follows, that p2(Fa(X)) = 
= p2(Fa(y))- It satisfies to prove, that p2(Fa(Y)) = y + a. Put q = (ey, OL)A, then 
Ye q, Fa(Y)eFa(q) and Fa(q) = (ey, a*)\ Therefore p2(Fa(Y)) = t(y, ey, a*) = 
= y + a. 

II. (b) => (a) is obvious. 
III. Let one of the equivalent conditions (a), (b) is fulfilled. Define a bijection 

(p : S -> U(V, n) by cp(a) = Fa. The restriction of Fa onto stf may be expressed by (1). 
Let a, b e S. Then Fa+b(0) = (oL, a + b)n = Fb((oL, a)n) = Fb(Fa(0)) = (Fb. Fa) (0). 
Hence Fa+b = Fb. Fa and cp is an antiisomorphism. 

Theorem 1. 

The plane P(V, n) is vertically transitive if and only if the following two conditions 
are fulfilled: 
(A) (S, + ) is a group 
(B) (S,t) is a linear NPTR. 

Proof: I. Suppose that P(V, n) is vertically transitive. 
The (A) follows from proposition 1. Let a, b, c be elements of S and let Fc be 

the translation with Fc(0) = (OL, c)K. We have (a, a.bfe (b, OJ)A => Fc((a, a . bf) e 
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e (b. c*)x. By the proposition 1 Fc ((a, a . b)n) = (a, a . b + c)n, therefore 
a . b + c = t(a, b, c*). 

II. Let (A) and (B) are valid. Denote by fa the mapping (1). It satisfies to prove, 
that the map of arbitrary cross affine line under fa is a line parallel with its original. 
Consider a cross line (b, c*)\ Then: (x, y)n e (b, c*)A <=> y = t(x, b, c*) o y = 
= x.b + coy + a = x.b + (c + a)oy + a = t(x, b, (c + a)*) <-> (x, y + a)n e 
e (b, (c + a)*)x. This means, that the map of (b, c*)k is the lim (b, (c + a)*)x. 

R e m a r k : If (S,t) is a HPTR, then we may rewritten the condition (B) in the 
form: 

V a, b, c e S: t(a, b, c) = a . b + c. 

4. T R A N S L A T I O N P L A N E S 

The plane P(V, n) is called a translation plane, if h is n-transitive. It follows from 
considerations at the end of the part 2., that P(V, n) is a translation plane if and only 
if, it is (V, n)-and (H, n)-transitive. Hence, a vertically transitive plane P(V, n) is 
a translation plane if and only if it is (H, n)-transith!e. 

Proposition 2. 
Let P(V, n) be a (V, n)-transitive plane. Let there exist a translation Fb e 17(11, n) 

such, that 
Fb(Q) = (b,oLy. beS (2) 

If Fb : (a, oL)n h> (c, oL)n, (a, c e S), then 

V m e S : a . m + b .m = c . m. (3) 

Proof: (3) is fulfilled for m = oR. Suppose m =£ oR and put X = (a, oL)n, Y = (c, 
oL)\ Q = = (b, oL)n, X' = (a,a. m)\ By assumption Q = Fb(Q), Y = Fb(X). If we 
construct the point F := Fb(Y), we obtain p2(Y') = a.m and pt(Y') = pt(Y) = c. 
Put / = OX', then p\l) = m and /' := Fb(l) = QY' is parallel to l=> p\V) = m. 
Let /' = (m, q*)k, then oL = b . m + q and a . m = c . m + q, hence (3). 

Proposition 3. 
Let P(V, n) bc a vertically transitive plane and let (S, t) have the following property: 

(C) Let a, b, c be arbitrary elements of S 

Q(a, b,c) := {m e S | a . m + b . m = c . m] => 

=> Q(a, b, c) = {oR} V Q(a, b, c) = S. 

Then for arbitrary me S \ {oR} the mapping 

fb:(x,yy^(xf,yY 
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such that 
x . m + b . m = x'. m b e S (5) 

is the restriction of a translation Fb onto s4, with Fb : 0 h» (0, b)7*. 
Proof : Evidentiy, it is satisfy to prove, that for any cross affine iinepa = (u, w*)A 

its map under fb is a iine p^ parallei to pa. Let (x', y)n = fb((x, y)n). Then x . m + 
+ b . m = x'. m and with respect to the condition (C) also 

x . u + b . u = x'. u. 

Now, (x, y)n e (u, w*)A <̂> y = x . u + w o y = x'. u + ( - ( b . u) + w) <=> (x', y)n e 
€ (u, ( - ( b . u) + w)*)A. Hence p^ = (u, ( - ( b . u) + w)*)a. 

Combining the propositions 2. and 3., we obtain without troubles: 

Theorem 2. 
The vertically transitive plane P(V, n) is a translation plane if and only if (S, t) 

satisfies to the condition (C). 
R e m a r k : If (S,t) is a HPTR fulfilling (A), (B), (C), then 1 e Q(a, b, a + b). 

Hence for any m e S : a . m + b . m = (a + b) . m. 

5. D E S A R G U E S I A N P L A N E S 

The plane P(V, n) will be called a desarguesian plane, if it is (C, n)-transitive, for 
every proper point C. It is known, that if P(V, n) is a translation plane, that it is 
desarguesian if and only if there exists a proper point C such, that P(V, n) is (C, n)-
transitive. 

Proposition 4. 
Let P(V, n) be the desarguesian plane. Then (S, t) has the following property: 

(D) Let a, b, c be arbitrary elements of S, 

R(a, b, c) := {m € $ \ m . a + m . b = m . c} => 

=> R(a, b, c) = {oL} V R(a, b, c) = S. 

Proof : Suppose, that m0 e R(a, b, c), m0 # oL. We may assume a ^ oR, b ^ oR. 
Consider an arbitrary element meS, m =£ oL and the dilatation Ke 1/(0, n), 
K: (m0, OJ71 H> (m, OJ71. Let p0,p be the parallel lines, ^(po) = f>x(p) = : a such 
thatp0 9 (m0, OL)*,p 9 (m, OL)rt. Hence:p0 = (a, (~(m0 . a))*)A,p = (a, (~(m.a))*)A. 
Put a0 = (c, ( - ( m 0 . a))*)A, q = (c, ( - ( m . a))*)A. It is easy seen that K(q0) = q. 
Let Y0 e q0, Ye q, p^(Y0) = m0 , pi(Y) = m. It is obvious, that K(Y0) = Y, hence 
Yo> Ylie on the same line (r, O*)A through 0. It follows from it 

m0 . c - (m0 . a) = m0 . r (5) 

m . c — (m . a) = m . r. (6) 

As m0 e R(a, b3 c), it follows from (5), that r = b. The relation (6) gives the proved 
assertion. 
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Lemma. 
Let (S,t) satisfy the conditions (A) —(D). Then for arbitrary a, b, c e S, c ^ OL 

a.(c \(-b)) = -(a.(c \ b » (7) 
is true. 

Proof: Put k = c \ ( — b), s = c \b=> c . k + c . s = oL. The condition (D) 
gives a . k + a . s = OL, which implies (7). 

Proposition 5. 
Let P(V, n) be the desarguesian plane. Let Ke U(Q, n) be the dilatation with 

K : (u, oL)n h> (u, oL)n, (w, oL)n
 H> (W, oL)n, u, u, w, weS \ {OL}. 

Then for any meS 
w \ (u . m) = w \ (u . m) (8) 

is valid. 
Proof: (8) is true, if m = oR. Assume, that meS \ {oR}. Put k = w \ (u. m\ 

it is to prove 
w . k = u . m. (9) 

Consider two cross parallel lines p,p such that px(p) = pi(p) — m, p^(u,oL)n
9 

p € (u, oL)n. Then p = (m, ( — (u. rn))*);", P = (m> (~(w • ^))*)A- Further, consider 
the lines q = (k,(-(u. m))*)\ the q = (k, (-(u . m))*)A. As K(p) = p, it follows by 
definition of q and q, that K(q) = q. Now, w . k = u . m =-> (w, oL)n e q => (w, oL)n e 
eq=>(9). 

Proposition 6. 
Let P(V, n) be the desarguesian plane. Then (S,t) has following property: 

(E) Let u, u, w, w be arbitrary elements ofS different of oL, 

L(w, u, w,u) = {meS \ w \(u . m) = w \ (u . m)} => 

=> L(w, u, w, u) = {oR} V L(w, u, w, u) = S. 

Proposition 6 follows immediately from proposition 5. 
For the further investigation we introduce two functions f g : S -> S by following 

way: We choose elements u,u,m0eS such that u,u^oL, m0 ^ oR and define 

f(x) = (u . m0)/(x \ (u . m0)) if x ^ oL,f(oL) = oL 

g(x) = u . (u/x). 

It is easy seen, thatf, g are bijections. 

Proposition 7. 
Let P(V, n) be the translation plane and let (S,t) satisfy to the conditions (A) —(E). 

Then the mapping 
k:(x,yy^(f(x),g(y)y 

is the restriction of a dilatation K e U(0, n) OntO s$ with K : (u, oL)n i-> (u? oL)n. 
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Proof : Essentially it is to prove, that the map of arbitrary cross affine line pa 

is the line pa parallel to pa. Let x e S \ {OL}. By definition off 

x \ (u . rn0) = f(x) \ (u • mo) 0 ° ) 

is true. It implies, that m0eL(w, u, w, u), hence by (E): L(w, u, w, u) = S. Let y e S 
and let us put 

m = u\(-y)9 b = x\(u. m). (11) 

As m eL(x, u,f(x), u), (11) and lemma imply 

g(y)=-(f(x).b). 
Furthermore (11) implies 

y= -(x.b). 

Let p = (r, O*)A, p = (r, g(q)*)x. We will prove, that k(pa) = pa. 
A. First assume, that q = O* =>p = p and 0 ep. Let (x, y)n # 0. Then (x, y)n e 

epaoy = x.roX.r + x.b = oL <=>f(x). r + f(x) .b = oLo g(y) = f(x) . r o 
ok((x,yy)epa. 

B. Assume, that q is an arbitrary element of S. If x = OL, then f(x) = OL and 
k((x,y)K) = (oL,g(y))K. Furthermore:(oL ,yy epoy = qog(y) = g(q)ok((oL,y)K)e 
ep. 

Let x # OL, then f(x) T-= OL. Put c = x \ (-q) => x . c = —q=>(x, -q)n e 
e (c, off. It follows from the part A that k((x, —q)n) e (c, OL)A =>f(x). c = —g(q). 
Now we have: (x,y)nepoy = x.r + qox.r + x.b = x. Oof(x). r + f(x). b = 
= f(x) . c of(x) . r + g(q) = g(y) o k((x, y)n) epa. 

Combining the propositions 4., 6., 7., we get: 

Theorem 3. 
The translation plane P(V, n) is desarguesian if and only if (S, t) satisfies to the 

conditions (D) and (E). 
R e m a r k : Let (S,t) be a HPTR fulfilling (A)-(E) . Let a, b e S \ {0}. As 

1 eL(a, a . b,\, b) then arbitrary c e S belongs to L(a, a . b, I, b). It implies a \ 
\((a . b). c) = I \(b . c) => a . (b . c) = (a . b) . c. The last relation is evidently true 

also for a = 0 or b = 0. 
As 1 e R(a, b,a + b), it follows from (D) that for any c 

c.(a + b) = c.a + c.b 
is true. 

6. P A P P I A N P L A N E S 

The plane P(V, n) will be called pappian if it is desarguesian and for any proper 
poin C the group U(C, n) is Abelian. It is known, that the desarguesian plane P(V, n) 
is pappian if and only if, there exists a point C es/ such that U(C, n) is Abelian. 
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Theorem 4. 

The desarguesian plane P(V, n) is pappian if and only if (S, t) has the following 

property: 

(F) V a, b, c e S, c 7- OL, ^ : . 7 . ( c \ (b . c)) = b . (c \ (a . c)). (12) 

Proof : (13) is true, if a = OLorb = OL. Assume that a 7-= OLandb ^ OL. Consider 

two dilatations Kt, K2 e 17(0, n) such that Kx : (c, oL)K H> (b, oL)n, K2 : (c, OJ71 h> 

^> (a, OLf. 

Put Z = (OL, c, c)\ It follows from proposition 1: 

p2{(K2 . Jf.) (Z)) = a. (c \ (b . c)) 

p2((jr.. /r2) (Z)) = b. (c \ (a. c)). 

As ^^(^ . Ki) (Z) = ^^(ir! . Kz) (Z)) = oL, then P(V, n) is pappian if and only 

ifVa.AeS \ {oL}, V c e S \{oL,oR}: 

p 2((jr 2.ir 1)(Z)) = p 2((jr 1.ir 2)(Z)) 

=> (12). 

Remark: Let (S,t) be HPTR fulfilling (A)-(E). Putting in (12) c = 1, we obtain 

a . b — b . a for any a, b e S. 
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S O U H R N 

P Ř I R O Z E N É PLANÁRNÍ T E R N Á R N I OKRUHY 

D A L I B O R K L U C K Ý 

V článku se studuje projektivní rovina P s privilegovanou vlajkou (V, n) v níž je 
zavedena soustava souřadnic tak, že odpovídající souřadnicový obor má strukturu 
přirozeného planárního ternárního okruhu, tj. planární ternárního okruhu s levou 
a pravou kvasinulou. Jsou nalezeny nutné a postačující podmínky pro tento ternární 
okruh, aby rovina P byla (a) (V, n)-transitivní, (b) n-transitivní,(c) desarguessovská, 
(d) pappovská. Tím jsou zobecn ny výsledky obsažené v lit. [2] a [3]. 

P E З Ю M E 

E C T E C T B E H H Ы E T E P H A P H Ы E КOЛЫДA 

Д A Л И Б O P K Л У Ц И 

B cтaтьe paccмoтpивaeтcя пpoeктивнaя плocкocть P вмecтe c выдeлëнным 
флaгoм (V, n) в кoтopoй onpeдeлeнa cыcтeмa кoopдинaт тaкaя, чтo cooтвeтcтвyю-
щaя oблacть кoopдйнaт являeтcя тepнapным кoльцoм (S, t) oблaдaющим лeвым 
и пpaвым квaзинyлeм — тa нaзывaeмым ecтecтвeнным тepнapным кoлыioм. 
B cтaтьe вывeдeны нeoбxoдимыe и дocтaтoчныe ycлoвия, кoтopыe дoльжны быть 
иcпoлнeны ecтecтвeнным тepнapным oльцoм (S, t) для тoгo, чтo бы P являлacь 
(a) (V, n) — тpaнcитивнoй, (б) n — тpaнcитивнoй, (в) Дeзapгoвoй, (r) Пaппoвoй 
плoc ocтью. Teмжe caмым oбoбщeны peзyльтaты из [2] и [3]. 
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