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This paper is one of results of research directed on the Faculty of natural sciences of Palacky’s
University by Vaclav Havel.

The systematical study of non—embedable projective planes formed the theory
of projective planes in a special branch of mathematics. This theory has its algebraiza-
tion namely the theory of planar ternary rings. Transformation one of the theories
into to other one is realized by so callcd coordinatization (i.e. by introduction of
a coordinate system and of the structure ¢i planar ternary ring onto the coordinate
domain). In this way we can assign to cvery projective plane P with a distinguished
flag (V, n) a certain planar ternary ring (S,t). We may rightly expect, that the
properties of (S, t) wiil be depended onto the plane P as well as onto the coordinatiza-
tion. By a fixed coordinatization the corespcndence between properties of P and
of (S,t) will be one to one.

In the article, we are dealing with a coordinatization of a given projective plane P
by a natural planar ternary ring (S,t). Such coordinatization is the most general
with the following property: For any a, b € S the equation x = a as well as the equa-
tion y = bexpresses (a)aline, if x, y are considered as point —coordinates, (b) a pencil
of lines, if x, y are considered as line-coordinates. Our purpose is to deduce the
necessary and sufficient conditions for (S, t) so, that P may be (a) a vertical transitive
plane (i.e. a (V, n)—transitive plane), (b) a translation plane (i.e. a n—transitive
plane), (c) a desarguesian plane, (d) a pappian plane.

The results found will be a generalization of results of [1] for Hall planar ternary
rings and of [2], [3], [4] for planar ternary rings with zero. On the other hand, there
exist the generalizations of some results of ours, especially by O. Sorrace in [5] and
by J. Klouda in [6].

The mentioned necessary and sufficient conditions may be obtained in two different
ways. The first of them employs inner properties of the plane P and by using of
coordinatization transforms them into properties of (S,t). The known results for
Hall planar ternary rings follow from the obtained ones as special cases. The second
way uses the known results for Hall planar ternary rings and by using of isotopy
transforms them again into properties of (S,t). We will apply the first way.
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1. AXIOMS OF NATURAL PLANAR TERNARY RINGS
AND THEIR IMMEDIATE CONSEQUENCES

We define a planar ternary ring (abbreviation: PTR) as an ordered pair (S,t),
where S is a set with card $ = 2 and ¢t : 8% — S is a ternary operation satisfying
following axioms:

Al VYa,b,ceS3!xe8 :t{a, b, x) =c.

A2.Vab,c,deS,a#c3I!xe8 :t(x,a,b) =tlx,cd).

A3.Va,b,c,deS,a#cI!(x,))eS? :t(a, x,y) = cAtlc, x,y) = d.

If, in addition, it holds:

A 4. There exist elements o, og € S (so called left — quasizero and right — quasizero)

such that
t(op, y0,2¥) =z=>VyeS8S  tlo,, y, z¥) = z,

t(xg, 0g, z2¥) = z=>V¥xe8 1 tx, og, 2¥) = z,

then (S, t) will be called natural PTR (abb. NPTR).
If we replace A 4 by the axiom:
A*4: There exists an element 0 € S (so called zero) such that

Vx,9,z€8:t0,y,2) =t(x,0,z2) =z,

we get the definition of PTR with zero (abb.: ZPTR).
A ZPTR (S, t) will be called Hall PTR (abb.: HPTR), if it is fulfilled:
A*5: There exists an element 1 € S (so called wnity) such that

Vx,yeS:t(l,y,0) =y, tx,1,0)=nx
Let (S,t) bc a NPTR. For any z€ S, let us denote by z* the element satisfying
t(o, og, 2*) = z.")
We introduce in S the binary operation multiplication . by virtue of
a.b=t(ab,o}), abes.
It is easy to prove:
(@) VaeS:a.op =0,.a = o,
(b)y VbeS,VaeS \{o} 3! xeS 1 a.x = b. Such element x will be denoted by
x=a\b.
() VbeS,VaeS \{og} 3! x€eS :y.a=b. Such element y will be denoted by
y = bla.
Foreverya # o, pute, = a \ a?), furthermore put ¢,, = og. Now, we can introduce
further binary operation addition + defining
a+b=t(a,e,b) a,beS.

1) If (S, t) is a ZPTR (especially HPTR), then z* = zV z€ S.
2)If (S, t)is a HPTR, thenVae$ \ {0}: ¢, = 1.
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It is easily seen, that
(d)VaeS:a+ o0, =0, +a=a
(&) Va,be$,3!xeS:a+ x =b.
We say, that (8, t)is a linear NP TR, ifVa,b,ceS:tla,b,c*)=a.b+ c.

2. COORDINATIZATION OF A PROJECTIVE PLANE
BY A NATURAL PLANAR TERNARY RING

Let P = (2, &) be a projective plane, where 2 is the set of points and .2 is the
set of lines considered as subsets of . An ordered tripple (P, V, n), where (V, n) is
a flag of P will be called the projective plane with flag and it will be denoted P(V, n).
We will shortly speak about the plane P(V, n).

Now, put

o =P \n, B=%L\V,

where ¥ denotes the set of all lines o P containing V (a pencil of lines). We will
use the “affine” terminology in the following sense: The points of o will be called
proper points, the points of n improper. The lines different from n wiil be called
proper lines, m is the improper line. For every proper line p put p, = p n of and
for every improper point N put N, = N \ {n}. The set p, will be called the affine
line or exactly the affine restriction of p; the set N, will be called the direction or the
affine restriction of the pencil N.

The lines of ¥, (and also their affine restrictions) will be called vertical lines, the
lines of & (as well as their affine restrictions) will be called cross lines. The directions
different from ¥, are cross directions, V, is the vertical direction.

As it is known

card of = card & = m?, where m = ord P.
Let S be a set with card 8 = m. An ordered double (%, A) of bijections
8% = o, 1:8* >R

will be called coordinate system for P(V,m) (cf. [7]), S is the coordinate domain
of (z, A).
We introduce four mappings

Pl >SS, pyd S, pl:B->S, p:B->S
by virtue of
P ) =x, b ) =y P o)) =u, P, 0)) =0

The coordinate system (n, 4) will be called halfcartesian (cf. [7]), if following two
conditions are fulfilled:
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(i) Let X, Y be arbitrary two points of /. Then X, Y lie on the same vertical
line if and only if p,(X) = p,(Y).

(ii) Let a, b be arbitrary two lines of #. Then, a, b have a common improper
point (we say that a, b are parallel lines) if and only if pl(a) = p'(b).

Suppose, that the coordinate system (r, 4) is halfcartesian. Then, for every tripple
(x, u, w) € S there exists the unique element y such, that (x, y)" € (v, w)*. Therefore,
we may introduce a ternary operation t : $* — S by virtue of

y = tlx, u, w) < (x, " e (u, w)

In this case, we can prove without difficulties, that (S,t) is a PTR. We say, that
(S,t) is a PTR associated to coordinate system (z, A) for P(V, n) or that (S,t) is
a PTR associated to plane P(V, n).

A halfcartesian coordinate system (m, A) will be called the ratural coordinate
system, if it holds:

(ii1) There exists a direction M, (so-called horizontal direction) different from V,
and having following property: Let X, Y be arbitrary two points of &/. Then X, Y
lie on the same line of H, if and only if p,(X) = p,(Y).

(iv) There exists a vertical affine line v, (so called vertical axis) with following
property: Let a, b be arbitrary two lines of 4. Then a, b have a common point on v,
if and only if p%(a) = p2(b).

We can construct a natural coordinate system for P(V,n) in following way
(cf.{ [8]): Let us choose an improper point H 5 V and a vertical line v; let S be an
arbitrary set with card § = ord P. Finally, let us choose four bijections:

#:8S->n\{V}, 1:8-V, x:8S->v, NV:S-H,.
Now, we are able to define bijections 7 : $? — o7, 1 : 8% —» & by
()" = X0 ) = @, 0 (),
Itis easy seen, that (x, 1) is a natural coordinate system for P(V, n). We remain to the
reader the proof of the following assertion:

Let (n, ) be a halfcartesian coordinate system for P(V, r), (8,t) the PTR as-
sociated to (m, 2). Then (z, 2) is natural if and only if (8, t) is natural. In this case
Vo = {(OLa y)u ' yEe S} and Ra = {(oka W)l | we S}‘

For next, let us suppose, that in given projective plane P(V, n) a natural coordinate
system (7, A) is introduced and that (S, t) is the NPTR asscciated to (n, ). Further
let us assume, that H, denotes the horizontal direction, v, the vertical axis and 0
the point (or, o)™ (so-called origin of coordinate system (=, 1)).

Finally, let us denote for every point C and every line ¢ by U(C, c) the set as well
as the group of central collineations with the centre C and the axis ¢. We will say,
that P(V, n) is (C, ¢)-transitive if for any line /e C the group U(C, ¢) operates
transitively on the set / except the point C and the common point of ¢ and /. P(V, n) is
said to be c-transitive, if it is (C, ¢)-transitive for any C e c¢. The central collineation
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with improper axis n is called homothety. If the centre C of a homothety 4 is a proper
point, then & is said to be a dilatation, if Cis an improper point, then his said to be
a translation. In the last case the direction C, is called the direction of translation A.

It is well-known, that P(V, n) is (C, c)-transitive if and only if there exists any line
Il € C such, that U(C, c) operates transitively on / except the point C and the common
point of ¢ and /. Furthermore, P(V, n) is c-transitive if and only if there exist two
different points C;, C, on ¢ such, that P(V, n) is (C,, ¢)-transitive and (C,, c¢)-transit-
ive.

3. VERTICALLY TRANSITIVE PLANES

The plane P(V, n) is said to be vertically transitive, if it is (V, m)-transitive. It
follows from the end of previous part, that P(V, n) is vertically transitive if and only
if for any point 4 v, there exists a translation ¥ ;: 0 > 4.

Proposition 1.
The following conditions are equivalent:
(a) P(V,n) is vertically transitive
(b) Yae$ the mapping f, : o/ — of given by

. ()" = (x5 y + a)F 1)

is the restriction of a translation F,€ U(V,n) to o/. In the case, the grupoid (S, +)
is antiisomorphic to U(V, n) and consequently (S, +) is a group.

Proof: L. (a) = (b). Let F, e U(V, n) be a translation with 0 — (o, , @)". Consider
a point X = (x, y)". If y = o, then obviously F,(X) = (x, a)" = £,(X). Suppose
that y # o,. Put ¥ = (y, y)". From p,(X) = p,(Y) it follows, that p,(F(X)) =
= p,(F,(Y)). It satisfies to prove, that p,(F)(Y)) = y + a. Put g = (e,, 03)*, then
Yegq, F(Y)eF,(q) and F,(q) = (e,, a*)*. Therefore p,(F(Y)) =t(y, e, a*) =
=Yy -+ a

1L. (b) = (a) is obvious.

IIL Let one of the equivalent conditions (a), (b) is fulfilied. Define a bijection
¢ :8 > U(V,n) by ¢(a) = F,. The restriction of F, onto o/ may be expressed by (1).
Let a,b€S. Then F,,,(0) = (o, a + b)" = F((or, a)") = F(F,(0)) = (F, . F,) (0).
Hence F,,, = F,. F, and ¢ is an antiisomorphism.

Theorem 1.

The plane P(V, w) is vertically transitive if and only if the following two conditions
are fulfilled:
(A) (S, +) is a group
(B) (S,t) is a linear NPTR.

Proof: I. Suppose that P(V, n) is vertically transitive.

The (A) follows from proposition 1. Let a, b, ¢ be elements of S and let F, be
the translation with F(0) = (o, ¢)". We have (a, a.b)" e (b, 0})* = F.((a,a.b)") €
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€ (b, ¢c®)*. By the proposition 1 F, ((a,a. b)) = (a, a.b + c)", therefore
a.b+ c=tab,c*.

IL. Let (A) and (B) are valid. Denote by f, the mapping (1). It satisfies to prove,
that the map of arbitrary cross affine line under £ is a line parallel with its original.
Consider a cross line (b, c*)*. Then: (x, )" e (b, c*)* <y = t(x, b, c¥) <> y =
=x.bt+tceyta=x.b+{ct+ta)<y+a=txb(c+a*)=(x,y+a) e
€ (b, (c + a)*)*. This means, that the map of (b, ¢*)* is the line (&, (c + a)*)*

Remark: If (5,t) is a HPTR, then we may rewritten the conditicn (B) in the
form:

Va, b,ceS: tla,b,c)=a.b + c.

4. TRANSLATION PLANES

The plane P(V, n) is called a translation plane, if it is n-transitive. It foliows from
considerations at the end of the part 2., that P(V, n) is a translation plane if and only
if, it is (V, n)-and (H, n)-transitive. Hence, a vertically transitive plane P(V,n) is
a translation plane if and only if it is (H, m)-transitive.

Proposition 2. .
Let P(V, 1) be a (V, n)-transitive plane. Let there exist a translation F, € U(H, n)
such, that

F,(0) = (b, o). bes )

If Fy :(a, o))" = (c, 0))" (a, ceS), then
VmeS:a.m+b.m=c.m. 3)
Proof: (3) is fulfilled for m = og. Suppos: m # og and put X = (a, o))", ¥ = (¢,
o) 0 = = (b,0,)", X' = (a, a.m)". By assumption Q = F,(0), ¥ = Fy(X). If we
construct the point Y’ := F,(Y), we obtain p,(¥') = a. mand p,(Y") = p(Y) = c.

Put / = OX/, then p'(/) = m and I’ := F,(I) = QY'is parallel to /= p'(I') = m.
Let I’ = (m, ¢*)’, then o, = b.m + g and a.m = c.m + g, hence (3).

Proposition 3.
Let P(V, n) be a vertically transitive plane and let (S, t) have the following property:
(C) Let a, b, ¢ be arbitrary elements of S

Q(a,b,¢) :={meS|la.m+b.m=c.mj=
= Qa, b,c) = {og} VQa,b,c) = S.

Then for arbitrary me S \ {og} the mapping
Sy (60" (X5 0)°
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such that
x.m+b.m=x".m beS 4)

is the restriction of a translation F, onto o, with F, : 0 —» (0, b)".

Proof: Evidently, it is satisfy to prove, that for any cross affine line p, = (u, w*)*
its map under f; is a line p, parallel to p,. Let (x', )" = fi((x, »)™). Then x.m +
+ b.m = x'.m and with respect to the condition (C) also

X.u+b.u=x".u

Now, (x, W'e,wHesy=x.ut+wey=x.u+(—-0b.u+ws,) e
€ (u, (—(b.u) + w)*)* Hence p, = (u, (—(b . u) + w)*),.

Combining the propositions 2. and 3., we obtain without troubles:
Theorem 2.

The vertically transitive plane P(V,n) is a translation plane if and only if (S,t)
satisfies to the condition (C).

Remark: If (S,t) is a HPTR fulfilling (A), (B), (C), then 1€ Q(a, b, a + b).
Hence for any meS :a.m + b.m = (a + b). m.

5. DESARGUESIAN PLANES

The plane P(V, n) will be called a desarguesian plane, if it is (C, n)-transitive, for
every proper point C. It is known, that if P(V, n) is a translation plane, that it is
desarguesian if and only if there exists a proper point C such, that P(V, n) is (C, n)-
transitive.

Proposition 4.
Let P(V,n) be the desarguesian plane. Then (S,t) has the following property:
(D) Let a, b, ¢ be arbitrary elements of S,

R(a,b,c):={meS|m.a+m.b=m.c}=
= R(a,b,c) = {o.} V R(a, b, ¢c) = S.

Proof: Suppose, that m, € R(a, b, ¢), my # o,. We may assume a # og, b # og.
Consider an arbitrary element me S, m # o, and the dilatation Ke U(0, n),
K : (mg, 0)" = (m, 0y)". Let py, p be the parallel lines, p*(p,) = p'(p) =: a such
that p, 2 (my, o)™, p 3 (m, o,)". Hence: p, = (a, (—(mq . @))*)*, p = (a, (—(m.a))*)*
Put go = (c, (=(my . @)*)*, q = (¢, (—(m . a))*)*. It is easy seen that K(g,) = q.
Let Y, € qy, Yegq, p,(Yy) = mg, p,(Y) = m. It is obvious, that K(Y,) = ¥, hence
Yo, Y lie on the same line (r, 0})* through 0. It follows from it

mo.c— (mg.a)=mg.r ©)]
m.c—(m.a)=m.r. ©)

As m, € R(a, b, ¢), it follows from (5), that r = b. The relation (6) gives the proved
assertion.

53



Lemma.
Let (S, t) satisfy the conditions (A)— (D). Then for arbitrary a, b, c€ S, ¢ + o
a.(c\(=b)=—(a.(c \b) (7
is true.
Proof: Put k=c¢ \(=bd), s=c \b=>c.k + c.s = o,. The condition (D)
givesa.k + a.s = o, which implies (7).

Proposition 5.
Let P(V, n) be the desarguesian plane. Let K € U(0, n) be the dilatation with

K :(u,0)" = (@1, 0p)%, w, o))" = (W, 0p)%, u, i, w,weS \{o}.

Then for any me S
w\{u.my=w \(@.m) ®)
is valid.
Proof: (8) is true, if m = og. Assume, that me S \ {og}. Put k = w \ (u.m),
it is to prove
w.k=1u.m. ®
Consider two cross parallel lines p, 5 such that p'(p) = p'(F) = m, p2(u, o),
pe @ o))" Then p = (m, (—(u.m)*”, p = (m, (—(@.m)*}*. Further, consider
the lines g = (k, (—(u . m))*)*, the § = (k, (= (@ . m))*)*. As K(p) = p, it follows by
definition of ¢ and g, that K(¢) = §. Now, w. k = u.m= (w, 0)" € g= (i#, 0,)" €
eg=(9).
Proposition 6.
Let P(V, n) be the desarguesian plane. Then (8, t) has following property:
(E) Let u, i1, w, w be arbitrary elements of 8 different of oy,

Liw,u,w, i) ={meS|w \(@.m)=w \(@@.m}=
= L(w, u, W, 1) = {og} V L(w, u, W, 1) = S.
Proposition 6 follows immediately from proposition 5.
For the further investigation we introduce two functions f, g : S — S by following
way: We choose elements u, i1, my € S such that u, @ # o, my # og and dcfine
fx) = @.mo)l(x \(u.mg))  ifx # oL, flo) = oL
g(x) = . (u/x).
It is easy seen, that f, g are bijections.
Proposition 7.
Let P(V, n) be the translation plane and let (S,t) satisfy to the conditions (A)—(E).
Then the mapping
k: (x, )" = (f(x), g0)"

is the restriction of a dilatation K e U(0, n) onto o/ with K : (u, 0,)" v (I, 0)".
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Proof: Essentially it is to prove, that the map of arbitrary cross affine line p,
is the line p, parallel to p,. Let x € S\ {0.}. By definition of f

X\ (u.mg) = f(x)\ (@@ . mp) (10)

is true. It implies, that mg € L(w, u, W, it), hence by (E): L(w, u, w, 1) = S. Let ye S
and let us put
m=u\(-y), b=x\(.m. (1)

As me L(x, u, f(x), @), (11) and lemma imply
g = —(fx). D).

Furthermore (11) implies
y= —(x.b).

Let p = (r, g% p = (r, g(q)*)*. We will prove, that k(p,) = P,.

A. First assume, that ¢ = o} = p = p and 0 e p. Let (x, »)" # 0. Then (x, y)" €
eEp,ey=x.rex.r+x.b=o,<f(x).r+f(x).b=0,g0) =fx).re
< k((x, »)") € p,.

B. Assume, that g is an arbitrary element of S. If x = o, then f(x) = o and
k(x, )") = (oL, g(y))". Furthermore: (0., )" € p >y = ¢ = g() = g(q) = k((o., y)")e
€p.

Let x # oy, then f(x) #o,. Put c=x \(—@)=>x.c= —g=(x, —q)°€
e (c, o,)" It follows from the part A that k((x, —g)) € (¢, o) = f(x) . ¢ = —g(q).
Now we have: (x,)epsy=x.r+qgex.r+x.b=x.ceflx).r+ f{x).b=
=f(x). c=>f(x).r + glg) = g(») = k((x, »)") € P,

Combining the propositions 4., 6., 7., we get:

Theorem 3.

The translation plane P(V, n) is desarguesian if and only if (8,t) satisfies to the
conditions (D) and (E).

Remark: Let (8,t) be a HPTR fulfilling (A)—(E). Let a,beS | {0}. As
leL(a,a.b,1,b) then arbitrary ce S belongs to L(a,a.b, 1,b). It implies a \
\(@.b).c)=1\(b.c)=a.(.c)=(a.b).c. Thelastrelationisevidently true
alsofora=0o0r b =0.

As 1 e R(a, b, a + b), it follows from (D) that for any ¢

c.la+b)=c.a+c.b
is true.

6. PAPPIAN PLANES

The plane P(V, n) will be called pappian if it is desarguesian and for any proper
poin C the group U(C, n) is Abelian. It is known, that the desarguesian plane P(V, n)
is pappian if and only if, there exists a point C € o/ such that U(C, n) is Abelian.
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Theorem 4.

The desarguesian plane P(V,n) is pappian if and only if (8,€) has the following
property:
(F)Va,b,ceS,c #op,0p:a.(c\(b.c)=0b.(c \(a.0). (12)

Proof:(13)istrue,ifa = o, orb = o;. Assume thata # opand b s o,. Consider
two dilatations K, K, € U0, n) such that K; :(c, 0,)" = (b, 01)", K, :(c, 0p)"
= (a, o))"

Put Z = (o, ¢, ¢)". It follows from proposition 1:

Pa(K; . Ky) (2) = a. (¢ \(b.c)
Po((Ky . K3) (2) = b . (c \(a.0).

As p (K, . K)) (Z) = p,((K, . K,)(Z)) = or, then P(V,n) is pappian if and only
ifVa,beS \{o.}, VceS \{og, og}:

p((K; . Ky) 2) = Pz((Kx - K3) (2)
= (12).
Remark: Let (8, t) be HPTR fulfilling (A)—(E). Putting in (12) ¢ = 1, we obtain
a.b=>b.aforanya,beS.
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SOUHRN

PRIROZENE PLANARNI TERNARNI OKRUHY

DALIBOR KLUCKY

V ¢&lanku se studuje projektivni rovina P s privilegovanou vlajkou (V, n) v niZ je
zavedena soustava soufadnic tak, Ze odpovidajici soufadnicovy obor md strukturu
pfirozeného planarniho terndrniho okruhu, tj. plandrni ternarniho okruhu s levou
a pravou kvasinulou. Jsou nalezeny nutné a postacujici podminky pro tento ternarni
okruh, aby rovina P byla (a) (V, n)-transitivni, (b) n-transitivni, (¢) desarguessovska,
(d) pappovskd. Tim jsou zobecnény vysledky obsaZené v lit. [2] a [3].

PE3IOME

ECTECTBEHHBIE TEPHAPHBIE KOJIBLTA
OAJTHABOP KJIVLIKHA

B crtaTthe pacCMOTpPHBAETCS MPOEKTHBHASI TUIOCKOCTh P BMecTe € BBIIEIEHHBIM
¢aarom (V, n) B KOTOPOIt onpesiesieHa chiIcTeMa KOOPIUHAT TaKas, YTO COOTBETCTBYIO-
wiast 06J1aCTh KOOPAUHAT SABJISETCS TEPHAPHBIM KONBIIOM (S, t) 06J1agaroniuM JEeBbIM
M TPaBbIM KBa3WHYJEM — TaK Ha3bIBAEMBIM €CTECTBEHHBIM TE€PHAPHBIM KOJBIIOM.
B craTbe BbIBeAECHbI HEOOXOIUMBIE M JOCTATOYHBIE YCIOBUS, KOTOPBIE AOJIbXHbI OBITh
UCIIOJTHEHbI €CTECTBEHHBIM TePHAPHBIM KOJIbIIoM (S, t) ajst Toro, yto 6s1 P sBisIach
(a) (V, n) — TpancutuBHOM, (6) n — TpaHCUTHBHOM, (B) e3aprosoit, (r) [Tanmosoit
miockocTelo. Temske cambiM 00001eHbI pe3ynbTaTel 13 [2] 1 [3].
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