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1. Basic definitions and notations

Let a homogeneous Markov process with rewards {X,,? = 0} (see [5], [6])
describing the evolution of a system in state space [ = {1, ..., r} be defined by exit
intensities (u(1), ..., u(r)), 0 < u(j) < o0, j=1,...,r, and by a matrix P =
= || pGi, ) I5,j=1, p@i,i) =0, of transition probabilities in the moment of exit.

Let us denote by M = | u(i,j) ||},;=, the matrix of transition intensities of the
process, where
u(i, j) = u(i) pi,j) ~ for i+ j, (i, i) = —p(i) = =Y u(i, j).
J¥*i

The development of the process can be influenced by an action called replacement.
According to [5] we mean under a replacement of type (i, +) the instantaneous
shift of the trajectory from state i into state j. The information of the evolution
of the process up to the m-th state change is given by the sequence of states visited

Py igseeesim =17,
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by the corresponding sojourn times

tostiseeesbm—t1>
and by the sequence
50a51,---a 6!7!—1’

where 6,, = 0 in case of i,, = i,,,, without interference and §,, = 1 in case of i,, >
= I,4+ is replacement.
We use in accordance with [5] the notation

mm = [i09 10360;i19t1’51; "';im—-la tm—l,ém—l;im]a

or equivalently
wm = [0.1’(i0»i1); GZa(ila + 12)5 7 o‘n9("m—2’im—-1ﬁ +lm)]a

where 6, = 0, 0,, 75, ... are the moments in which the trajectory is discontinuous,
(i, i;) denotes the transition iy — i;, (i, +i,) denotes the replacement i, —
=iy, eey (iyoa,im—y, +i,) denotes the transition 7,,_, = i, and simultaneously
in the same moment the replacement i,,_; — i,,.

Let us denote the complete history of the process (elementary event)

o = [ig, to, 895 i1,11,85...]
or

o = [0y, (g, i1); 03, (i, +i2);...]

Under a replacement policy (see [5]) we mean a sequence of functions F =
= {"F(tjw)}, k=1,...,r; m=0,1,2,... where "F,(t/w,) is a probability that
the maximal sojourn time in #,, will be less than ¢ and the eventual replacement will
be into k # i,. Let us write

"F(t/ @) =kg'an(t/w"')’ it can be "F(o0o/w,,) < 1.

The distribution of the probability of the initial state p(1), p(2), ..., p(r) is arbitrary,
but firmly chosen.

Assumption 1. Consider such replacement policies only, where with probability 1

a) there exists only a finite number of replacements in every finite interval,

b) there are neither two or more replacements in the same moment.
There is assigned to nearly every w the trajectory {Y,, ¢ = 0} not left continuous at
the time of the transition and not right continuous at the time of replacement.
In what follows we denote by

Yr =Y, ,t>0;Y5 =Y ¥} =Y., t20;
B, = ca({Y, = j},je I, s€<0,t); events of zero probability),
B =3,

s>t

D is a set of couples (i, +j) meaning admissible replacements, D; = {j: (i, +j) e D},
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r(i,j) the reward from the transition (i, j), we set r(i, i) = 0; v(i, j) the reward from
the replacement (i, +j), we set v(i; i) = 0; we do not consider the continuous com-
ponent of the reward (the reward from the persistence in the state).

A stationary replacement policy f is given by a function f(j) defined on ‘a subset
I, = I and taking on values in I such that f(j) € D; for j € I;, f(j) # j. The replace-
ment policy f'is the prescription to realize instantaneously the replacement j — f(j)
whenever there a transition into state j € I; occurs. No replacements occur in states
JtI.

Let R, be a reward from the process up to the time ¢, in accordance with the
previous definitions

N
R =Y [nY,. Y,)+wY,, Yl oySt<ogiq.
n=0

If the state space of the process under a stationary replacement policy f contains
one recurrent class only, then there exists (independently of the initial distribution)
the mean reward per a time unit (see [6])

lim % E(R) = O,

=

and this mean reward @ is uniquely determined by the system of equations

v(.l,f(])) + W(f(_])) - W(]) = 05 jEIf5
> kU, K) [1G, k) + wk) —w(D] —© =0, jélp, o

k%)
uniquely determining the numbers w(j),j = 1, ..., r; up to the additive constant

(see [17]).
2. Markov replacement processes as point processes

We can study Markov replacement processes by means of the theory of point
processes (see [3]). Let us consider the so called marked point process, where the
events with marks 4,, 4,, ..., 4,, ... occur in the moments ¢,, 6,,..., G,,... We
identify the marks with numbers / = 1, ..., ¢ and investigate the occurrence of the ¢
events in all: “there occurred the event with mark /”. Let us denote by {N,, t = 0} =
= {(*N,, ..., "N, t = 0} the counting processes of the events, .?’f—’ = ga(N,,s €
€<0,t)), ¥ = {#¥, t = 0} the nondecreasing system of g-algebras, {4,, t = 0} =
= {(*4,,...,94,), t 2 0} the compensator (integral of the intensity) of the point
process considered with respect to #~.

It is known from the theory of the point processes that {M, = N, — 4,,¢ = 0}
is a martingale with respect to #~, We can consider the marked point process as
a process with rewards. If ' is a reward from the event with mark /, r = Cr,...,),

qa
then the total reward in the time <0, ¢) equals to rN, = Y 'r'N,.
1=1
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We now show the continuity between the processes with replacements and the
point processes. Let us consider the marked point process with marks / ~ (i, k),
I ~ (i, +k),1 ~ (i,k, +k") and with rewards ©®r = r@i, k), “*Or = (i, k),
Gkt — (i, k) + vk, k).

Let us define the vector ¢ = ('v, ..., %) this way @Yo = w(k) — w(i), @ *Pv =
= wlk) — w(i), @+ = w(k') — w(i), where the numbers w(l), ..., w(r) are the
solution of the system of equations (1).

Let F be the so called policy of destination in the process with replacements and
let it be such a stationary replacement policy f that under it exists one recurrent
class only. The compensator of destination ‘4, with respect to #~ has the form
04 =0 foriel orkely,

t
Gy = (j; DY) + f;(.)x{j)(Y:)] u(i, kyds  for i¢I,, and simultaneous-

lyke¢l,, k +#1i

(. +07 = 0, because the marks (i, +k) do not exist if the stationary replacement
policy is applied,

@k 4 =0 for iel, or k¢l or k' # f(k),

t
Ry (j; [xs(YS) + le(‘) 2 (Y)1u(, kyds  for i¢I, and atthesame
Jef~1(

time k € I, and at the same time k' = f(k), k # i, k' # k.
Using the equations of (1), then with some modification

r+o)d =Y 5 {3 [rG, k) + w(k) = w(D] 1, K} {xo(YS) + ,Z.,(.,"U}(Y:)} ds+

igl, 0 k#i
+3
iEls

Ot ~

{kf; [v(k, £(R)) + w(f (k) — w(k)] u(i, B)} {x(5(Y) + Z x{,-}(Yf )} ds =

=0y J b+ ¥ xn(Y}ds = @
igIe O .
We now determine the compensators ', in case of the process with replacements
being controlled by the replacement policy F, given by the sequence of functions
{"Ft/®,)}. Under this replacement policy we investigate again the occurrence of
the events of type: ““it has the event with mark / occurred”, where | ~ (i, k), [ ~
~ (i, +k), | ~ (i, k, +k’). Let g, be the moment of the last discontinuity of the
trajectory in the time <0,s) and let the last change (transmon or replacement)
in the moment o be the m-th change.
Let us assume that there exists the intensity of arrival !Q; of the arrival of the

t

event with mark /,i.e. ‘4, = [ 'Q, ds. We determine 'Q, under the following assump-
0

tions:

a) by the last change in the moment o, the system has passed into the state i,
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b) no change has occurred during the time (gy, s). A
Let (/) denote the moment of the occurrence of the event with mark / and 4, ,
be the event, which means that assumptions a), b) are fulfilled.

Then

Gl =Alix;1 —i—P(s <1, k] £s+ D). [PELG ] >9)] ! =
= [—-(%—P(T[(i, k] > s):l [P, )]t =
B [_Tf? T(l — ™F([u — 0,] 0n,)) #(i, k) e O x

X{l _ m;+1F(0+/wm1, u—og; 0; k} du] [(1 _ m;F([S — as]_/wm‘)) e“l‘(“)(!"dl)]—l =
= WG R) (1 = RO 0,5 — 0,05 ),

because following [5], if p(i) < co, there occurs W 41 = (Wp,, 4, 0;Kk), i, =i

with the probability u(i, k) e *P (1 — ™F(t/w,)) dt, uet —dt,t) and the

probability that the replacement does not occur in the state k in the moment s — o, -

is equal to (1 — ™*'F(0*/w,, ,s — o,, 0; k)).
Likewise, we have

GHhg = [ —dis P(<[(i, +k)] > s)]. [P, )] ' =

B d

Tl ds
d

S
|5 s = o |01 = R = 27007

4 §

e—u(i)(u—os) d""Fk(u _ Us/wms)jl [P(Aza., ;))]- 1 _

It

because
wm5+l = [wm,7 u, 1; k]s ims =i
occurs with the probability
- e MO g™ E (Hw,),  ueltt+ di),

(see [5]).
Finally

@k, = ["Fds' P([(i, k, +K)] > s)] [P(4i,, )] 7! =
= [ 0= = 0 o) i 0

xm,+1F,‘:(0+/a)ms, u — o, 0; k) du] . [P(AE%,»)]—I =

= ”(i’ k) ms+1Fk’(0+/wm,9_s — O, 0; k),

because the probability of the replacement k — k' occurring in the moment s — o,
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(when the transition i — k realized), is equal to ™*'F.(0*/w,,,s — o, 0; k).
(see [5]). Thus
t
“04, = [ yo(YS) pG, k) [1 = ™" F0* [wy,, s — 0,, 0; k)] ds,
0
t
. 1
GHOY = [ pa(YS d™F(s — 0,/0,,),
t (J;X{ }( ) 1 — "F([s — as]—/wm,) i [©0,s,)

t
kK4, = g Xy (Y ui, )™ Fo(0* o, s — 0y, 0; k) ds.

We calculate
(r+o)4, =Y 3 [r(, k) + wk) — w(i)]“94, +

- iclk#i

+ 3 ¥ [v(, k) + w(k) — w(i)] P4, +
iel k#i
+ ¥ Y Y[l k) + vk, k) + wk) — w@i)]@R 4, =
iel k#ik'#k

= Z; kgi[r(i, k)+w(k) —w(i)] g 2y (YHu, k)(1 —;Z_é‘,k""*” 'F(0* |y, , s—0,, 0;k) ds+
d™Fy(s — 6,/0m,)

(1 - m'F([s - as] —/wm.))
+ Z SN [y k) + vk, k) + w(k') — w(i) + w(k) — w(k)] x

iel k#ik'#k

t
 § 1Y) 1y k)™ (0% [y, s — 0,05 k) ds =
0

+ ¥ ¥ G, k) + wk) — w@i)] g X (Y

iel k#i

(YD) [0() + 01ds + Y. ¥ [v(i, k) + w(k) — w(i)] “ V4, +

iel k#i

+3 Y Y [k, k) + wk) — wk)] @54, =

icl k#ik'#k

= igo(Y,) ds + 0t + Y Y[, k) + w(k) — w(i)] “ 94, +
0

ielk#i

+ 33 Y [k, k) + w(k') — w(k)] ¢R ¥4, 3)

iel k¥ti k'#k

Oty w0

=2
iel

using the following notation
o@) = ¥ uli, k) [r(i, k) + w(k) — w(i)] — O, iel
k#i

In [2] there was defined an auxiliary random process for the study of the processes
with replacements T -

t N ’
M,=R,— Ot + w(Y;") — w(Y,) — fo(¥)ds — ¥ [W(Y,,, Y.) + w(¥.) — w(¥,)],
0 0

ne
t20,0y St <0Oyyqs

showing that {M,, t = 0} is a martingale with respect to {8,", t = 0} under an

arbitrary replacement policy F. By means of the vectors r, v may be expressed the
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reward from the process with replacements up to the time ¢
q
R, =Y 'PN, =N, @)
S 5§
and the difference v
N q
w(Y[) = w(Yo) = ¥ [w(Y,,) — w(¥,;) + w(Y¥s) = w(Y,)] =Y "'N, = N,
»=0 =1

UN§I<UN+1. (5)
Let us define a random process

M=+ )M, =@+ 0N~ 4).
Applying relations (2) —(5) we can write |
=N, — Ot + oN, — (r + v) (4, — 4,) =
=R, — 01+ w(¥;") — w(Yo) — H’(Ys) ds — 3, ¥ [V, k) + w(k) — w(i)] “ 04, —

iel k#i

-X 2 2 [V(k,k)+ w(k') — w(k)] @* **¥)4, =

iel k#ik'#k
=M, + Z [W(Y,,, Yo) + w(Ys) —w(Y,)] — Z Z [v(i, k) + w(k) — w(i)] x
x (% ”)Nx'- “ OM)-Y Y Z [V(k k) +w(k')— W(k)] (GRION, — GEREOMY =

ielkdik'#
=M, + Z Z [V(l, k) + w(k) — w(i)] CRLo) ¥ aprs
ielk#i
* Z Z Z [v(k k) + w(k’) — w(k)] Rahid )M Oy St<Oynyq- 6)

ielk#i k'
Definition. The replacement policy F will be called the replacement policy with
a bounded intensity if under this policy for alll = 1,...,q

t
'4, = ['Q,ds, 1 20,
(1]

and if there exists a constant Q < oo such that 'Q, £ O F-almost sure, t 2 0.

Lemma 1. If F is a replacement policy with the bounded intensity, then for any
l=1,...,q

© - k
E(N, "Ny Y k’@pﬂ)—e“"““”, p=12.5858 ()
xk=0 :
Proof: the statement is obvious because the constant @, whose existence is
guaranteed by the assumption, may be taken to be the intensity of the Poisson

process. O
In what follows we denote the sum on the right hand side of (7) by the symbol

C(pa Q’ t - S)‘
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Lemma 2. Under an arbitrary replacement policy F with bounded intensity

lim 2 = 0 F-almost sure. ®)

t—+ o0
Proof: We start from relation (6) making use of the fact that under every replace-
ment policy F (see [2])
lim M, =0 F-almost sure.

t—

Thus it suffices to prove for all / ~ (i, +k),! ~ (i, k, +k')

1
lim -Aﬁ— =0 F-almost sure.

t— o
Let I be arbitrary.
'M,
a) We first prove that lim — =0 F-almost sure. ©)]

Since ‘M, = 'N, — !4, = 0 then
n—1
an = Z (Mk+1 - le),
k=0

and since {!M,,n = 1,2,...} is a martingale, it suffices for the validity of (9) to
prove that (see [4],’ page 404 D)

Z n+1) ——EM,,; —'M,)* < ©. - (10)

Indeed, since

E<1Mn+1 - ’Mn)z = E[(an+1 - an) - (lAn"-l - lAn)]z = 2E(1Nn+l - an)Z +
n+1

+2E[ [ 'Q,ds]* £2[C(2, 0, 1) + 0°],

the series (10) is convergent.
l

b) We now prove that lim M, =0  F-almost sure.

t—* o0

Let n <t <n + 1, then

1 !
M, 1 ! i |'M, |
i< = — |
t | = n,,;lil,?n M, =M, + n >’ (1
with respect to (9) it suffices to prove that
lim [—L sup |'M, —'M, I:I =0  F-almost sure. 12)
o\ Mnge<n+1

Itis
t
I'M, —'M,| < |'N,—'N,| +|['Q,ds| £'Nyyy —'N, + Q.
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By Lemma 1 the series

Z _1_2.E('N"+1 - an)z

E]
]
-
=

is convergent. Thus

1
Z 'T(’Nn-l‘l - ’Nn)z

n
is finite F-almost sure. Hence

lim i('N,,H —-!N)=0 F-almost sure.
This completes the proof of (12). O
Theorem 1. Let {4,, t = 0} be a compensator of the process under the replacement

policy F with a bounded intensity and let {3_ ¢» 1 = 0} be a compensator of the process
with replacements under the stationary policy of destination f. If for alll =1, ..., q

lim -%—('A, - ';4,) =0 F-almost sure (13)

t—> 00
(F-in probability)
then
. R,
lim—=0 F-almost sure
t— o
(F-in probability).
Proof: In the foregoing we derived

m, =N, — Ot + oN, — (r + v) (4, — 4) =
q ~
=R, — Ot + w(¥,") — w(Yy) — Y. (r + 'v) (4, - '4).
1=1

By Lemma 2 we get

lim 1:—'— =0 F-almost sure.
t—> o0
Since _ .
min {w(k) — w(j)} = w(Y;") — w(Y,) < max {w(k) — w(j)} (14)
k,jel k,jel
then

lim w(Y;") — w(Y,) _

t—+ o0 t

0 F-almost sure.

The statement of the theorem follows thus by immediate applying the assumption
of (13). O

Let us denote by D, the whole sojourn time in states I, in the interval <0, ),
and by O, the whole number of replacements different from i — £(i) in <0, t).
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Theorem 2. Let F be a replacement policy with a bounded intensity and f a stationary
policy of destination. Let for any l = 1, ..., q hold

lim 7(’A 4,)=0  F-in probability, 15)
and let o
lim -1—;— 0,=0  F-in probability, (16)
then o

R, — Ot
NG
has asymptotically normal distribution N(0, {) for t = oo, where { is determined by
the following equations

wy(f(D)) = wy(i) = 0, ielg,
v() + é‘ﬂ(i, k) [wak) — wa()] = L =0, i¢ 1, amn

involving auxiliary constants w,(1), ..., w,(r), and where
V(i) = 3 u(i k) [r(i k) + wik) = wQd)T, i¢ 1
Proof: Assumption (15) with expression
m, =R, — Ot + w(¥;") — w(¥o) — (r + v) (4, — 4)
and relation (14) yield

lim [—R'—_@—‘ - i":] —0  F-in probability. (18)

t—+o \/‘t- \/t

Hereafter we use the relation (see the derivation of (6))

m,=M, + IXV', [W(Y,,, Yo) + w¥}) — w(Y, )] —
=2 26 )+ wil) - W(')] @ 04— Z Z Z [v(k, k) +w(k)—w(k)] “%+¥4,,

tel ki
ONSt<Onyq- « (19)
In paper [2] (Theorem 3, parts II. and IV. of the proof) it was proved that under
an arbitrary replacement policy F assuming (16) and

lim ———_— =0  F-in probability

t— o \/t

then

—= (20)

g
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¥

has asymptotically normal distribution N(0, {) for ¢t —» oo, where { is determined
by the equations of (17).
The assumption required is fulfilled. Indeed, since

T (GRyY, + Z (ks “‘)A.) = IX{ (Y5 )(Z HGi, ky) ds =

k#i

and since for i e I,

T (“Pd,+ 3 4 0E) = o,
k#i ¥
(15) results in

tim 2% = lim L 2 j xn(YS)ds = F in probability.

t*oo\/_ t-= \/t iely O

If we denote by O] the whole number of such replacements i-j under the
policy F in the interval <0, t), for which v(z‘, 7) + w(j) — w(@@) # 0, then clearly

[mm {vGi, j) + w(j) — w@i)}] Of < Z [(Y,,, Y.) + w(¥q) — w(Y, )] <
=< [max {v(G, j) + w(j) - w(:)}] o’ OySt<0Oyyq-

Because of Of < 0,, then by (16)

lim 7 Z [W(Y,,, Y)) + w(Y]) —w(Y,)] =0  Fin probability. (21)

2= 0

From now on we shall utilize the validity of

Y Y[, k) + wk) —w@i] P4, + Y Y T [k, k) + w(k) — w(k)] x

iel ks#i iel ki k' £k
x(zk +k)A‘ = 0’

because " *M4, = 0 and @**¥)4, & 0 only in case of i ¢ I, and at the same time
k € I, and at the same time k&’ = f(k), but at that time v(k, k") + w(k’) — w(k) = 0.
Assumption (15) yields

tim — (¥ ¥ [%0, k) + w(k) — w(i)] (¢ *94, — &) +

t+o0 /b ielk#i

+ Y 3 Y [k k') + wk') - w(k)] (¢8R4, — G '”")Z,)} =0

del ki k' £k
F-in probability,
and thus ¢
lim — { 2 Z [vG, k) + w(k) — w(i)] @ P4, +
1=
+3 Y Y [k, k) + w(k') — W(k)] G+ 4% o F-in probability. (22)
iel kik'#k
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Relations (19) —(22) show that
my

7
has asymptotically normal distribution N(0, {) for t — oo, where { is determined by
the equations of (17).
This assertion together with (18) proves the Theorem 2. O

Remark. The assumption of (16) in Theorem 2 can be left out. Paper [2] shows
that to prove the assertion of (20) it suffices only to obey the two following assump-
tions .

0,

lim— =0 F-in probability, (23)
t— 00

. D, . -

lim — = F-in probability, (2]
t— o0

(see relation (19) in [2]). Both these assumptions follow from (15) of Theorem 2.
a) We verify the validity of (23) as follows: let / ~ (i, +k) denote the replace-

ments in the policy F different from i — f(i) and let L denote the set of all such

replacements. For all / e L then "4, = 0 and it follows from (15) for this /

1
lim—% =0  F-in probability.
t— o

Using (11) from the proof of Lemma 2 we see that for all /e L

'N,
lim—X =0  Fin probability

t— oo

"

and thus also

lim2 = im L YN, =0 F-in probability.

t—> o t— o0 leL

b) The validity of (24) can be verified analogy with that of the assumption

\

:—}—:D, — 0 in the proof of Theorem 2.
t
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HEKROTOPBIE IPEJEJBbHBIE KAYECTBA JIOXOJA
N3 NPOITECCA MAPKOBA C BOCCTAHOBJIEHNAMH

Pesiome

K HCCIeNOBaHHIO NPOLECCOB C BOCCTAHOBICHMSAMH NPHMEHEHA TEOPHs TOYEYHBIX IIPOLIECCOB
{(3]). PaccMOTpEHBI MEYCHbIE TOYCYHbIE IPOLECCHL C JOXOHaMH, METKHM [/ = 1, ..., ¢ TakHe 94T0
I ~ (i, k) nepexox i— k, I~ (i, +k) Boccranosnenwe i->k, I ~ (i, k, +k") nepexon i — k
¥ B TOT € CaMblifi MOMEHT BOCCTaHOBJIEHHE k — k’. Jlajiee pacCMOTpeH KOMIIEHCATOp (MHTerpan
o muTencueroCTH) {4, ¢ = 0} = {(*4,, ..., %4,), t = 0} mpomecca KOra MPOLECC YIPABIEH TAKOk
‘CTAal[HOHAPHOM cTpaTeruet f pu KOTOPOM CYHIECTBYET TOJBLKO €MUHCTBEHHBIX KJIacC BO3BPATHBIX
cocTosHMit H xomueHcaTop {4,, ¢ = 0} mpouecca ¢ BoccTaHOBIEHHAMH ¢ obineit crparerset F.
‘Onpenenesa CTpaTerus BOCCTAHOBIEHUS C OTPAHHYEHHOR MHTEHCHBHOCTBIO.

Ilycts R, moxon H3 mpouecca B TeueHHe HHTepBana <0, 7> u @ cpenHHRt JOXOX 3a CAHHHIYY Bpe-
MeHH. Teopema 1 OpHBOAUT ZOCTATOMHOE YCIOBHE I TOTO, YTOOBL

.1
lim—R, = 0.
t-ow I
R, — 6Bt
TCOPCMa 2 YCTAHABJIMBACT YCIIOBHA NMPH KOTOPBIX HMEET ————— HOPA f —> oo aCHMIOTOTHYCCKOC

Ji

pacopenencune N(0, {), xkge { HeKkOTOpas KOHCTAHTA.

NEKTERE LIMITNI VLASTNOSTI VYNOSU
Z MARKOVOVA PROCESU S OBNOVAMI

Souhrn

Ke studiu procesi s obnovami je uZita teorie bodovych procest (viz [3]). UvaZuji se zna¢kované
bodové procesy s vynosy, znacky !/ =1,..., g takové, Ze / ~ (i, k) je ptechod i >k, I ~ (i, +k)
obnova i — k, I ~ (i, k, +k’) ptechod i = k a v témZe okamZiku obnova k — k’. Dile se vySetiuje
kompensator (integral z intensity) {E,, t =0} ={(*4,...,94,), t = O} procesu, je-li process obno-
vami fizen takovou cilovou staciondrni strategii f, pfi niZ existuje pouze jedna tfida rekurentnich
stavll a kompensator {4,, t = 0} procesu s obnovami s obecnou strategii obnovy F. Je definovana
strategie obnovy s ohranienou intensitou.

Necht R, je vynos z procesu za dobu <0, ¢> a O primérny vynos za jednotku ¢asu (viz [6]). Véta 1
formuluje postacujici podminky k tomu, aby

' R, — Ot . o .
Véta 2 uvadi podminky, za nich# mi — \/ﬁ pro ¢ — o asymptoticky rozdéleni N(0, {), kde ¢ je
t

jist4 konstanta. .
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