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Let A be an ordered set, X = A. Then weput L(X) = {a€ 4;a < xforall x € X},
UX)=1{bed; x<b for all xeX}. If x{,...,x,e4, then we shall write
L(xy, ..., x,) and U(x,, ..., x,) instead of L({x, ..., x,}) and U({x,, ..., x,}),
respectively. An ordered set A is called lower directed if L(x,y) ¢ @ for each x,
y € A. Let us remind that a closure operator on an ordered set 4 is any mapping
¢ : A — A4 such that for each x, ye 4 it is

L x £ (%), 2. po(x) = ¢(x),3. x S y = o(x) £ o(»).

Macnab, in [1], introduces the notion of a modal operator on a A-semilattice L
as a mapping ¢ : L —» L such that for each x, y € L it is

1 x £ @(x), 2. pp(x) = @(x), 3. o(x A p) = @(x) A @(3).

In this paper, that notion is generalized for an arbitrary ordered set and there
are studied its properties.

Definition. If 4 is an ordered set, then a mapping ¢ : 4 — A4 is called a modal
operator on A if for each x, ye A it is

(1 x £ o(x);

() po(x) = o(x);

(3) Ulp(L(x, ) = UL(p(x), o(»)))-

Note. a) The identity is a modal operator for any ordered set. b) If a lower
directed set 4 contains the greatest element 1, then the mapping ¢ such that
¢(x) = 1 for each x € 4 is a modal operator on 4.

Theorem 1. Any modal operator is a closure operator.
Proof. Let x,ye A, x < y. Then



o(y) € UL(p(x), 9()) = Ulp(L(x,y))) = Ulp(L(x))) =
= Ulp(L(x, x))) = U(L(p(x), o(x))) = U(p(x)),
hence @(x) < ¢(»).

Note. Let us show that there exist closure operators which are not modal
operators. We can consider the ordered set A specified by the diagram in Figure 1.
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Fig. 1

We denote by ¢ a mapping such that
p() =9l@) =1, @) =od) =b,  o¢l)=rc
It is clear that ¢ is a closure operator on 4. But it is
Ulp(L(c, d))) = Ulp(2)) = U(2) = 4,
U(L{p(c), 9(d))) = U(L(c, b)) = U(c) = {c, a, b, 1},
that means ¢ is not a modal operator.

But it holds the following assertion.

Theorem 2. A closure operator on an ordered set A is a modal operator on A
if and only if
M) Vx,yed;  Ug(L(x, ) = UL(p(x), p(»))-
Proof. Let ¢ be a closure operator on 4, x, y, ze A. If ¢(z) € p(L(x, ), then

¢(2) € L(o(x), ¢(»)), and thus o(L(x, ¥)) € L(e(x), ¢(»)). Hence U(L(o(x), 9(»))) =
€ Ulp(L(x, »))), therefore ¢ is a modal operator.

Mote. If ¢ satisfies conditions (1) and (2) from the definition of a modal operator,
then the condition (*) can be satisfied without ¢ being a closure operator.
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Let us consider the ordered set 4 = {0, a, 1}, where 0 < @ < 1, and the mapping
¢ : A — A such that

P(0) = (1) =1, oa) = a.
Then it is 0 = a, but ¢(0) £ ¢(a). But at the same time
Ulp(LO, a))) = {1},  U(L(p(0), p(@)) = {a, 1};
Ulp(LO, 1)) = {1},  UL(p0), p(1))) = {1};
Ulp(L(a, 1)) = {1},  UL(p(a), p(1))) = {a, 1};
Up(L(0))) = {1}, UL(e(0)) = {1};
Ulp(L(a))) = {1}, U(L(9(a)) = {a, 1};
Ulp(L(1))) = {1}, U(L(p(1))) = {1}.
Theorem 3. If (4, =<, A) is a semilattice, then ¢ : A - A is a modal operator on
(4, £) if and only if it is a modal operator on (A4, A).

Proof. a) Let ¢ be a modal operator on (4, A) and z€ 4. Then L(x, y) =
= L(x A y) and hence z € U(¢(L(x, y))) if and only if z = ¢(v) for each v < x A .
This is, by Theorem 1, equivalent with z = ¢(x A ) = @(x) A ¢(p) and that holds
if and only if ze U(o(x) A ¢(»)) = Ulo(x), ¢(»)).

b) Let us suppose that ¢ is a modal operator on (4, £). Asx Ay < x,y, it is,
by Theorem 1, ¢(x A ) £ @(x) A (). Let z € 4 be such element that p(x A y) £
< z. Then

ze UL(p(x A y) = UlL(e(x Ay, x A p))) = U(e(L(x Ay, x A y))) =
= U(p(L(x, y))) = UL(e(x), () = Ule(x) A 9(»))),
hence z 2 @(x) A @(y). Therefore p(x A ¥) = @(x) A ().

Note. In [2] it is introduced the notion of a translation of an ordered set as

a mapping ¢ : A - A satisfying

Vx,yed;  oUx,y) = U,
(In [2] is used the dual notion.) It is proved that translations are closure operators,
too, and that any two translations commute. Let us show that in contrast to trans-
lations modal operators do not commute in general.

Let us consider the ordered set 4 = {0,4,b,1}, where 0 <a < b < 1. We
define @(0) = @(a) = a, @) = (1) =1, Y(0) = y(a) = ¥(b) = b, y(1) = 1.
It can be casily shown that ¢ and ¥ are modal operators on 4. But it holds

oY@ = ob) =1,  Yola) = y(a) = b,
iLe. oY = yo.
If ¢ is any mapping of 4 into 4, then we put I, = {ae 4; ¢(a) = a}.

Note. It is evident that if ¢ is a closure operator on an ordered set 4, then it
holds:
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(@) VYabel;alNbexists=>aAbel,.
In [2] it is proved that for any translation ¢ on 4 moreover

(b) Vxed,bel,; b x=xel,.
But, in general, for modal operators (b) is not satisfied. See e.g. the modal operator ¢
from the last note.

Theorem 4. If for closure operators ¢ and Yy on A it is I, = I, = I, then ¢ = .

Proof. Let x € 4. As, by condition 2 from the definition of a closure operator,
itis o(x), Y(x) € I, it holds also @¥(x) = Y(x) and Yyo(x) = @(x). But then evidently
Y(x) = od(x) = o(x) and o(x) = @¥(x) = Y(x), hence ¢(x) = Y(x).

Theorem 5. For any closure operators @ and y on A it is ¢ < Y if and only if
oy =y. '

Proof. If ¢ Sy, xed, then oy(x) S Yy(x) = Y(x) and ¥(x) S GY(x),
therefore oy = .

Conversely, if @ = ¥, then ¢(x) £ oY(x) = Y(x).

Note. If ¢ and y are translations on A4, then for each x, y € 4 it is eyY(U(x, y)) =
= o(U((x), ¥)) = U(py(x),y), hence the composition of two translations is
a translation as well. Let us show that the composition of two modal operators.
need not be, in general, a modal operator (not even a closure operator).

1

Fig. 2
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Let us consider the ordered set B specified by the diagram of Figure 2.
Put
@) = 9@ =a,  ¢b) =09l =c od =91 =1
YO =y®d) =b, Y@ =yd=d Yl =yd) =1
It holds that ¢ and y are modal operators on B but
PV oy (0) = pp(d) = pY(c) = o(1) =1,
oY (0) = 9(b) = ¢,
thus Yoy # oy.

Theorem 6. If ¢ and s are closure operators on A, then the following conditions are
equivalent:

L oy = yo.
2. oy and Yo are closure operators.

3. Yoy = @i and Yoy = yo.
Proof. 1 = 2: Let gy = . Then for each x,ye 4 it is

L. x = o(x) £ pyY(x);
2. oYY (x) = eoyy(x) = oY(x) = Y(x);
3.x S y=yx) 2y = o¥(x) = oY)

Therefore @y = ¢ is a closure operator

2 = 3: Trivial.
3=1:If oY@y = @y and YoY@ = Yo, then for each x € 4 it is

oY(x) = oY oy(x) = Yoy(x) = Yo(x),
Yo(x) = Yoyo(x) = eYo(x) = oy(x),
thus oy = Y.

Corollary. a) [2, Théoreme 4] Any two translations of an ordered set commute.
b) If modal operators ¢ and  on a A-semilattice commute, then o and Yo are
modal operators as well.
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MODALNIf OPERATORY NA USPORADANYCH MNOZINACH

Souhrn
V ¢lanku je zaveden a studovdn pojem modalniho operatoru, ktery je specidlnim pfipadem

uzivérového operatoru na uspofddané mnoZing.

MOJAJDBHBIE OCIEPATOPBI
HA YHNOPAJOYEHHDBIX MHOMECTBAX

Peszrome

B cTrathe BBEIEHO M M3y4aeTCsl MOHATHE MOAAIBHOTO ONEPaTopa, KOTOPLI SBJIAETCSA CreHualib-
HBIM CJIy4acM OmepaTopa 3aMbIKaHUA HA YIIOPAHOYCHHBIX MHOXECTBAX.
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