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MODAL O P E R A T O R S ON O R D E R E D SETS 

JIŘÍ RACHŮNEK 

{Received March 26, 1984) 

Let A be an ordered set, X c A. Then we put L(X) = {a e A; a S x for all x e X}9 

U(X) — {beA; x^b for all x e X}. If xl9 ..., xn eA9 then we shall write 
L(xl9 ..., xn) and U(xl9 ..., xn) instead of L({xl9 ..., xn}) and U({xl9 ..., xn}), 
respectively. An ordered set A is called lower directed if L(x, y) ^ 0 for each x9 

y e A. Let us remind that a closure operator on an ordered set A is any mapping 
q> : A -* A such that for each x9 y e A it is 

1. x S <p(x)9 2. cpcp(x) — q>(x)9 3. x g y => cp(x) ^ <p(j>). 
Macnab, in [1], introduces the notion of a modal operator on a A-semilattice L 

as a mapping cp : L -> L such that for each x, y e L it is 
1. x g <p(x), 2. <p<p(x) = <p(x), 3. <p(x A y) = <p(x) A <p0>). 
In this paper, that notion is generalized for an arbitrary ordered set and there 

are studied its properties. 

Definition. If A is an ordered set, then a mapping ay : A -> A is called a woda/ 
operator on A if for each x, y e A it is 

(1) x = <p(x); 
(2) q>q>(x) = <p(x); 
(3) U(<p(L(x,j))) - U(L(cp(x)9 q>(y))). 

Note, a) The identity is a modal operator for any ordered set. b) If a lower 
directed set A contains the greatest element 1, then the mapping cp such that 
<p(x) = 1 for each x e A is a modal operator on A. 

Theorem 1. Awy modal operator is a closure operator. 
Proof. Let x9y e A9 x ^ y. Then 



cp(y) e U(L(cp{x)9 cp(y))) = U(cp(L(x, y))) = U(cp(L(x))) = 

= U(cp(L(x, x))) = C/(Lfo(x), cp(x))) = C%>(*)), 

hence <p(x) g <p(y). 

Note. Let us show that there exist closure operators which are not modal 
operators. We can consider the ordered set A specified by the diagram in Figure 3. 

Fig. 1 

We denote by cp a mapping such that 

(p(l) = cp(a) = V cp(b) = cp(d) = b, <p(c) = f. 

It is clear that 9 is a closure operator on A. But it is 

U(cp(L(c9 d))) = U(<p(0)) = 17(0) = A 

U(L(<p(c)9 <p(d))) = U(L(c, b)) = U(c) = {c, a, />, 1}, 

that means cp is not a modal operator. 
But it holds the following assertion. 

Theorem 2. A closure operator on an ordered set A is a modal operator on A 

if and only if 

(*) Vx,yeA; U(cp(L(x9 y))) £ U(L(cp(x), cp(y))). 

Proof . Let cp be a closure operator on A, x, y, z e A. If <p(z) e cp(L(x, y)), then 
<p(z) e L(<p(x), </>(y))> a™i thus cp(L(x, y)) £ L(cp(x)9 cp(y)). Hence U(L(cp(x), cp(y))) c 
£ U(cp(L(x, y))), therefore <p is a modal operator. 

Note. If <p satisfies conditions (1) and (2) from the definition of a modal operator, 
then the condition (*) can be satisfied without cp being a closure operator. 
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Let us consider the ordered set A = {0, a, I}, where 0 < a < 1, and the mapping 
<p : A -> A such that 

9(0) = <p(l) = 1, <p(a) = a. 

Then it is 0 ^ a, but <p(0) $ (p(a). But at the same time 

U(9(L(0, a))) = {!}, U(L(<p(0), cp(a))) = {a5 1}; 

U(<p(L(0, 1))) = {I}, U(L(9(0), 9(1))) = {!}; 

U(cp(L(a, 1))) = {!}, U(L(cp(a), 9(1))) = {a, 1}; 

U(9(£(0))) = {!}, U(L(9(0))) = {i}; 

U(cp(L(a))) = {1}, U(L(cp(a))) = {a, 1}; 

U(cp(L(\))) = {1}, U(L(9(1)» = {!}• 

Theorem 3. If (A, ^ , A) is a semilattice, then (p : A -> A is a modal operator on 
(A, S) if and only if it is a modal operator on (A, A). 

Proof, a) Let 9 be a modal operator on (A, A) and z e A. Then L(x, y) = 
= L(x A y) and hence z e U(cp(L(x, y))) if and only if z ^ <p(v) for each v ^ x A y. 
This is, by Theorem 1, equivalent with z = <p(x A y) = <p(x) A 9(j>) and that holds 
if and only if z e U(<p(x) A cp(y)) = U(cp(x), (p(y)). 

b) Let us suppose that 9 is a modal operator on (A, = ) . As x A y g x, y, it is, 
by Theorem 1, 9(x A }>) ^ 9(x) A cp(y). Let z e A be such element that 9(x A y) g 
g z. Then 

z e U(L(9(x A y))) = U(L(9(x A y, x A j))) = U(9(L(x Aj;,A"A J ) ) ) = 

= U(cp(L(x,y))) = U(L(<p(x), 9(y))) = U(cp(x) A 9(y))), 

hence z ^ 9(x) A 9(7). Therefore 9(x A y) = 9(x) A 9 ^ ) . 

Note. In [2] it is introduced the notion of a translation of an ordered set as 
a mapping 9 : A -> A satisfying 

V x, j e A; (p(U(x, y)) = U(9(*), y). 

(In [2] is used the dual notion.) It is proved that translations are closure operators, 
too, and that any two translations commute. Let us show that in contrast to trans­
lations modal operators do not commute in general. 

Let us consider the ordered set A = {0, a, b, 1}, where 0 < a < b < 1. We 
define 9(0) = 9(a) = a, cp(b) = 9(1) = V i/t(0) = W<*) = <K*) = b, i>(l) = 1. 
It can be easily shown that 9 and ij/ are modal operators on A. But it holds 

9</t(a) = 9(b) = 1, ty<p(a) = *l/(a) = b, 
i.e. (p\j/ = \j/(p. 

If 9 is any mapping of A into A, then we put I9 = {a e A; 9(a) = a}. 

Note. It is evident that if 9 is a closure operator on an ordered set A, then it 
holds: 

11 



(a) V a, b e 1^; a A b exists => a A b e 1^. 
In [2] it is proved that for any translation (p on A moreover 

(b) V x e A, b e 1^,; b ^ x => x e I9. 
But, in general, for modal operators (b) is not satisfied. See e.g. the modal operator cp 
from the last note. 

Theorem 4. If for closure operators cp and i/> on A it is 1^ = 1^ = I, then cp = \j/. 

Proof. Let x e A. As, by condition 2 from the definition of a closure operator, 
it is cp(x), \j/(x) e I, it holds also cp\j/(x) = \j/(x) and $cp(x) = cp(x). But then evidently 
\j/(x) ^ (p\l/(x) = cp(x) and cp(x) ^ cp\j/(x) = \j/(x), hence cp(x) = \j/(x). 

Theorem 5. For any closure operators cp and ^ on A it is cp ^ \j/ if and only if 
<p\j/ = i/>. 

Proof. If ( p ^ , x e A, then cp\j/(x) S ^^(x) = *Kx) and \J/(x) ^ (p\j/(x)9 

therefore <p̂  = \j/. 
Conversely, if cpij/ = \j/, then <p(*) ^ cpij/(x) = ^(x). 

Note. If cp and î  are translations on A, then for each x, y e A it is cp\j/(U(x, y)) = 
= cp(U(\p(x),y)) = U(cp\j/(x),y), hence the composition of two translations is 
a translation as well. Let us show that the composition of two modal operators 
need not be, in general, a modal operator (not even a closure operator). 
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Let us consider the ordered set B specified by the diagram of Figure 2. 
Put 

<p(0) = cp(a) = a, (p(b) = cp(c) = c, (p(d) = (p(\) = 1 ; 

</,(0) = il/(b) = b, \jj(a) = ij/(d) = d, iA(c) = tAO) = I-

It holds that cp and i/f are modal operators on B but 

(p\l/(p\l/(0) = #<p(b) = <pi//(c) = <B(1) = 1, 

(pij/(Q) = <p(b) = c, 

thus (pij/cpij/ # <pi/t. 

Theorem 6.lfcpand\j/ are closure operators on A, then the following conditions are 
equivalent: 

1. (p\j/ sss ^(p. 
2. <pi/> tf«d i/f<p tfre closure operators. 
3. (pij/cpij/ = <p<// afld ij/(p\l/(p = i/f<p. 

Proof. 1 => 2: Let cp\jj = i/̂ </>. Then for each x, j e A it is 

1. x g <p(x) <; (p\l/(x); 
2. (p\j/(p\l/(x) = (pcp\j/il/(x) = (p(pij/(x) = (pij/(x); 

3. x 5? y => i/f(x) = *Ky) => <P*K*) .= <p*Ky)-

Therefore <pi/f = i/><p is a closure operator 

2 => 3: Trivial. 
3 => 1: If (p\l/(p\[/ = cp\j/ and il/(p\j/(p = t//<p, then for each x e A it is 

(pil/(x) = (p\j/(pil/(x) ^ il/(pij/(x) = <A<p(x), 

l/t< (̂x) sa \j/(p\l/(p(x) ^ (p\j/(p(x) _̂  (p^/(x), 
thus <pi/t = </«p. 

Corollary, a) [2, Theoreme 4] A«y two translations of an ordered set commute. 
b) Jf modal operators cp and ^ on a K-semilattice commute, then cpij/ and ij/cp are 

modal operators as well. 
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MODÁLNÍ OPERÁTORY NA USPOŘÁDANÝCH MNOŽINÁCH 

Souhrn 

V článku je zaveden a studován pojem modálního operátoru, který je speciálním případem 
uzávěrového operátoru na uspořádané množině. 

МОДАЛЬНЫЕ ОПЕРАТОРЫ 
НА У П О Р Я Д О Ч Е Н Н Ы Х МНОЖЕСТВАХ 

Резюме 

В статье введено и изучается понятие модального оператора, который является специаль­
ным случаем оператора замыкания на упорядоченных множествах. 
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