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1992 Mathematica XXXI Vol.105 

LATTICES IN QUASIORIXRED SETS 

IVAN CHAJDA 

(Received October 30, 1990) 

Abstract. Let Q be a quasiorder on a set A. It is shown 

that the factor set A/QnQ"1 ordered by an induced order Q/QciQ"1 

is a lattice if and only if A can be equiped by two binary 

operations satisfying identities similar to those of l a t t i c e s . 
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An ordered set A is a lattice if there exist sup(a,b) and 

inf(a,b) for each a,b<zA. This concept was generalized by many 

authors. Especially, J.Nieminen and K. Leutola generalized 

lattices for ordered sets which are directed but sup(a,b) or 

inf(a,b) need not exist, see [3], [4], [5]. In this case, some 

choice-function is used to choose "join" (or "meet") of a,h^A 

in the set of all minimal elements of upper bounds (or maximal 

elements of lower bound, respectively) of a,b. A similar but 

rather more general method is used by V.Snasel in [7]. 

On the other hand, E.Fried [2] and H. Skala [6] tried to 

generalize the concept of a lattice in a pseudo-ordered set (i.e. 

a set with reflexive and antisymmetrical relation which need 
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not be t r a n s i t i v e ) . These so called weakly associative lattices 

are developed e.g. in [2],[6]. 

Let Q be a quasiorder (i.e. a reflexive and transitive 

binary relation) on a set A*®. It is well-known (see e.g. [1]) 

that E **Qc\Q~ is an eguivalence on A and the relation Q/E 

linduced on A/E by Q: 

<B,C>eQ/E for BtCeA/E, iff <b,c>eQ for each beB, ccc 

is an order ( i.e. a reflexive, transitive and antisymmetrical 

binary relation). For the sake of brevity, we will write -s 

instead of Q/E . 

Definition 1. Let Q be a guasiorder on a set A*® and K be a 

choice-function on exp A such that *c(B)eB for each BeA/E . If 

there exist sup^ (B,C) and inf' (B,C) for each B,C<zA/E , the 

~o "o . 
triple (A,Q,K) is called an L-guasiordered set. 

If Q is a guasiorder on _4*0, denote by [x] the eguivalence 

class of E -QnQ~ containing the element x^A. 

Lemma 1. Let (A,Q,K) be an L-quasiordered set. For each xty^A 

we put 

xvy=K(sup:S ([x], [y])), x/\y=K(inf^ ([x], [y])). 
0 ~0 

Then the algebra (A,V,A) satisfies the following identities: 

(c) commutativity avb-bva aAb=bAa 

(a) associativity av(bvc)=(avb)vc aA(bAc)=(aAb)Ac 

(w-ab) weak absorption av(bAa)=ava aA(bva)-aAa 

(w-id) weak idempotence avb=av(bvb) aAb=aA(bAb) 

(e) equalization ava=aAa . 

Proof. Since (A,Q,K) is an L-guasiordered set, the factor set 

A/E is a lattice with respect to s , i.e. o ^ o 
sup^ ([jsr],[y]) and i n ^ ([x],[y]) exist for each x,y^A. 

"o ~Q 
For commutativity, we have 

avb=*:(sup< ([a], [b]) )=*(sup< ([Jb], [a]) )=-bva, 
~"o o 

dually it can be proven for A. Similarly we can show 
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associativity of v and A. Prove weak absorption: 

aA(i>va)«jc(inf̂  ([a],sup< ([b], [a])) )*#c( [a]), 
Q ~Q 

as it follows by the lattice absorption law. Moreover , lattice 

idempotence implies 

aAa=«:(inf^ ([a], [a]) )=K( [a]), whence 

aA(bva)=aAa . 

Dually we can prove av(bAa)=aAa. Weak idempotence and 

equalization can be proven in a similar way: 

avb=*c(sup£ ([a],[Jb]))«Jc(sup̂  ([a]rsup< ([b], [b])) )«av(bvb), 

Q Q Q 

dually we obtain aAb=aA(bAb); 

ava=K(sup^ ([a],[a])=K([a])=K(inf^ ([a],[a]))=aAa. 

"° 
Definitions. An algebra (A,V,A) whose binary operations V,A 

satisfy (c),(a),(w-ab),(w-id),(e) will be called a q-lattice. 

Lemma 2. Let (A,V,A) be a q-lattice. The relation Q defined by 

<a,b>e.Q iff avb=bAb (or equivalently iff aAb=aAa ) 

is a quasiorder on A, a mapping K-.A/E ->A defined by 

K([a])^ava 

is a choice function satisfying K(B)GB for each B^A/E and the 
Q 

triple (A,Q,K) is an L-quasiordered set. 

Proof. Put <a,b>eQ iff avb=bvb. Since ava=ava, we infer 

reflexivity of Q. 

Let <a,b>eQ and <b,O^Q. Then avb=bvb and bvc-cvc. Using of 

identities of q-lattices, we conclude 

avc=av(cvc)=av(bvc)=(avb)vc=(bvb)vc=bv(bvc)*=bv(cvc)=(bvc)vc= 
*=(cvc)vc=cvc , 

thus also <a,c>eQ proving transitivity of Q. Moreover, if 

avb^bvb, then 

aAa=aA(avb)-ah(bvb)=aA(bAb)=aAb 

thus <a,b>e(2 can be defined equivalently by aAa=aAb 

(the converse implication can be shown in a similar way). 

It is clear that afb^A belong into the same class B&A/E if 

and only if ava^bvb, thus ic: [a]->ava is really a choice function 

with (c(B)eB. 
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Let B,Ce.A/E and b*B, c^C. It is a routine way to prove 
o 

sup^ (B,C)=[bvc] , inf^ (B,C) = [bAc] , thus (A,Q,K) is an 
0 0 

L-guasiordered set. D 

Theorem 1. Let Q be a quasiorder on a set A*®. The following 

conditions are equivalent: 

(1) (A/E , -s ) is a lattice; 
o o 

(2) there exist binary operations v, A on A such that 

<a,b>eQ iff avb=bvjb and (_4,V,A) is a q-lattice. 
The proof is a direct consequence of Lemma 1 and Lemma 2. 

Let Q be a quasiorder on a set A*Q> such that (A,Q,K) be an 

L-quasiordered set for some suitable K. Call (A/E ,-£ ) the 

induced lattice. By Theorem 1, for any q-lattice (*4,V,A) there 

exists an induced lattice. 

Example. Let A={a,b,p,q,x,y,z,v} be a set and Q be a 

transitive hull of the relation 

R = ta u {<a,q> , <p,q>, <q,p>, <a,b> , <b,y> , <p,x> , <x,y> , <y,z> , <z,v> , 

t<v,x>}, 
where to denotes the identity relation on A. We would visualize 

quasiordered sets such that <a,b>GQ iff there exists a path of 

oriented arrows from the point a to the point b. Hence, our 

quasiordered set A is depicted in Fig.l. The factor-set A/E has 

four classes: {a}, {b}, {p,q}, {x,y,z,v}. It is easy to see that 

A/E is a lattice wiht respect to the induced order -S , 
Q o 

see Fig.2. Now, choose some 

K:A/E *A with *c(B)eB, e.g.: o 
ic({a})=a, *c({b})=b, ic({p,g})=p, *c( {x, y, z, v} )=y. 

Then, by Theorem 1, (A,Q,K) is an L-quasiordered set and we can 

list some non-trivial joins and meets in (_-_,V,A): 

avg=p=gvg 
pvb=y=xv*=zvz=rvr=gvb 

xvx-y-xAy, etc. 
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Fig. 1 

{лy.a-.v} 
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M 
Fig. 2 

Since q-lattices are defined by a set of identities, i*e can 

investigate varieties of q-lattices. Especially,we can introduce 

distributive or modular q-lattices: 

a q-lattice (il,v,A) is distributive if 

av(bAc) = (avb)A(avc) for each a,b,c^A; 

it is modular if 

av(bA(avc) )«=(avb)A(avc) for each a,b, ceil . 
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Hence, distributivity or modularity are defined by the same 

identities as in the case of lattices. Thus also results on 

these concepts are almost identical as those for lattices. 

Therefore, we will not develope these theories but only 

formulate some basic statements whose proofs are straightforward 

and hence omitted: 

Theorem 2. 

(1) A q-lattice (A,V,A) is distributive (modular) if And only 
if the induced lattice has this property. 

(2) A q-lattice (A,V,A) satisfies an identity u^v , urhere u,v 
are terms in V,A such that each of them contains at least one 
of these operations, if and only if this identity is satisfied 
by the induced lattice. 

(3) The free q-lattice with one or two free generators is 
visualized in Fig.3 or Fig.4, respectively. 

(4) The free q-lattice with at least three free generators is 
infinite. 

^>J£ v л * л л д 

ууу-улу 
J ÍVJC- -XA-> : 

Fig .4 
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