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ON FOUR-POINT REGULAR BVPs 
FOR SECOND-ORDER QUASI-LINEAR ODEs 

JAN ANDRES, VLADIMÍR VLČEK 
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AJbstract. Sufficient conditions for the existence of a 

solution to four-point boundary value problems for the 

second-order quasi-linear ordinary differential equations are 

given by means of the Schauder fixed point theorem. 
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1. In this note we will consider the boundary value problem 

(BVP): 

(1) x' '=f(t,x,x' ), feC(<a,|3>xR2), 

(2) x(a)+px(b)=A, x(c)+qx(d)=B, 

where A, B, a, b, c, deR1, a=min {a,b,c,d}, £=max {a,b,c,d}; 

p,q€{-l,o, 1}. 

So far, only multi-point problems for p=l, q=0 and be(a,c) 

(see [4]) or for p=q=l (see [6], [7]) and for the special case, 

when a=0, d=b+c, (see [1]) have been studied. 
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2. Besides (l)-(2), consider still the linear homogeneous 

BVP: 

(3) x"+kx-0, keR1, 

(4) x(a)- -px(b), x(c)= -qx(d), 

where p,qe{-1,0,1}. 

It is well-known (cf. e.g. [8]) that (l)-(4) is equivalent 

to the integral equation 

(5) x(t)= J G(t,s)[kx(s)+f(s,x(s),x' (s))]ds:=F(x(t)), 

a 

as far as Green's function G(t,s) [ related to (3)-(4) ] exists. 

This is true (see e. g. [8] again) if BVP (3)-(4) has only the 

trivial solution. Furthermore, since integral operators 

originated from solving the BVPs to ODEs are totally continuous, 

because Green's functions involved in these problems are 

continuous ( see [3, p. 123] and [5, p. 25] ), it is sufficient to 

verify that a closed convex subset S of the Banach space B of all 

continuously differentiable functions x(t) on the interval <a,£> 

with the norm 
lix(t)ll :- max [lx(t)I + lx' (t) I ] 

te <a,0> 

exists such that [cf.(5)] 

(6) F(S)cS, 

in order to apply the well-known Schauder fixed point theorem 

(see e.g. [3,p.322]). 

3. As we have just pointed out, our problem reduces to the 

question of 

(i) the nonexistence of any nontrivial solution to (3)-(4), 

and (ii) the verification of (6). 

Hence, let us begin with the first requirement. 

For k=0 or k<0 or k>0 in (3), substituting 

x(t)=C t+C or x(t)~C chy-kt + C shy-kt 

1 2 1 2 

or x(t)=C cost/k+Csint/k , C eR1, into (4), 

we obtain the system the determinant of which differs from zero 
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iff 

(a+pb)(1+q)*(c+qd)(1+p), 

or 

ch V^ka+pchV^b)(shV^kc+qshV^d)* 

* (shV^ka+pshV^kb) (chV^c+qchV^-kd), 

or 

( COSK ka+pcosK kb)(sinV kc+qsin/ kd)* 

* (sinK ka+psinK kb) ( cos]! kc+qcosV kd), 

respectively. 

Taking into account the values of p€{-l,o,l}, we can easily 

arrive at the conditions stated below in the form of the 

following three lemmas. 

Lemma 1. Problem (3)-(4) has for p= -l(a*b) only a trivial 

solution, provided 

k=0, q*-l, 

or k<0, q*-l, d=C, 

or k<0, q*-l, a+b=c+d, 

or k<0, q=-l, c*d, a+b*c+d. 

Lemma 2. Problem (3)-(4) has for k^O only a trivial 

solution, provided 

1) p=0 and 

q*-l, c=d, a*c, 

or q*0, a=c, a*d, 
or q*l, a=(c+d)/2, a*c, 

or q*l, a=d, a*c, 

or q=-l, c*d, 

or q=0, a*c, 

or q=l, a*(c+d)/2; 

2) p=l and 
q*-l, c=d, c*(a+b)/2, 

or q*0, c=(a+b)/2, d*(a+b)/2, 
or q*l, c+d=a+b, c*(a+b)/2, 
or q*l, d=(a+b)/2, c*(a+b)/2, 
or q=-l, c*d, 
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or q=0, c*(a+b)/2, 

or g= l , a+b+c+û. 

3 . Problem (3)-(4) has for k>0 only a trivial 
solution, provided 

1) p=-l, b*a+2шn/V k and 

q*-l, d=c+2jn/V k , c*(a+b)/2+(2n+l)n/V k , 

or q*0, c=(a+b)/2+(2j+l)n/2Vk , d*(a+b)/2+(2n+l)n/гV k 

or q*l, d=c+(2j+l)n/V k , c*(a+b)/2+(2n+l)n/2V k , 

or q*l, c*(a+Ъ)/2+(2j+l)n/2V k , d=(a+Ъ)/2+(2n+l)n/2V k 

or q=-l, c+d*a+b+2jn/V k , d*c+2nn/V k , 

or q=0, c*(a+b)/2+(2j+l)n/źV k , 

or q=l, c+d*a+Ъ+(2j+l)n/V k , d* c+(2n+l)n/V k ; 

2) p=0 and 

q*l, d=c+2jn/V k , c*a+nn/V k , 

or q*0, c=a+jn/V k , d*a+nn/V k , 

q*l, a=(c+d)/2+jn/V k , d*a+nn/V k , 

q*l, c=d+(2j+l)n/V k , d*a+nn/V k , 

or q*l, a=(c+d)/2+2jn/V k , c*d+2nn/V k 

or 

or 

or q=-l, a=(c+d)/2+(2j+l )n/V k , d*c+2nn/V k , 

or q=0, c*a+jn/V k , 

or q=l, a*(c+d)/2+jn/V k , d*c+(2n+l)n/V k ; 

3) p=l, b*a+(2m+l)n/V k and 

q*-l, d=c+2jn/V k , c*(a+b)/2+nn/V k , 

or q*0, c=(a+b)/2+jn/V k , d*(a+b)/2+nn/V k , 

or q*l, c+d=a+b+2jn/V k , d*(a+b)/2+nn/V k , 

or q+1, c=d+(2j+l)n/V k , d*(a+b)/2+nn/V k , 

or q*l, (a+b)/2=(c+d)/2+2jn/V k \ d*c+nn/V k , 

or q=l, c+d*a+b+(2j+l)n/V k , d*c+2nn/V k , 

or q=0, c*(a+b)/2+jn/V k , 
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or q~l, c+d*a+b+2jn/V k , d*c+(2n+l )n/V k , 
where j,m,ne{0,±l,±2, . . . } . 

4. Denoting (see Section 2) 

S:-={x(t)eB: Hx(t)ll--D, DeR*}, 

it is obvious that S is closed convex set. Thus, it is sufficient 

to prove that HF(x(t)) ||=£D with a suitable D for all x(t)es in 

order to satisfy (ii) (see Section 3). 

Assuming that suitable function F(t,r) exists which is 

piece-wise continuous in te<a,£>, r^O, and nondecreasing (for 

fixed t) with respect to r such that 

(7) lkx+f(t,x,y) l-sF(t, Ixl + lyl ) for tG<a,/3>, (x,y)eR2, 

we can give the following 

Lemma 4. Let the assumptions of Lemma 1 or Lemma 2 or 

Lemma 3 he satisfied. If a nonnegative constant D exists such 

that 

(8) max F(t,D)*D/(p-a)G (a*&), 
te<a,/3> 

inhere G:=max {max [\G(t,s)\ + \ dG(
d\'

s) \l> (>0), 

t€<a,/3> s€<a,/3> ' • 

G(t,s) is Green's function related to (3)-(4), then 

\\F(x(t))\\*D for all x(t)<zS. 

Proof. Let x(t) be a continuously differentiable function 

from S. Applying (7), (8), we obtain that 

0 
IIF(x(t))«--lir G(t,s)[kx(s)+f(s,x(s),x'(s))]dsl|£ 

Ja 

-s max f jlG(t,s)[kx(s)+f(s,x(s),x'(s))] 1 + 
te<a,/5> a^ 

+ | dG{t,s) [to(s)+f(s,x(s),x' (s))]|lds-£ max F(t,D) ({B-a)GsQ. 
I a t l; t€<a,/S> 

This completes the proof. 

Remark 1. The same can be proved, when applying directly 

Bihari's theorem in [2]. 
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Remark 2. Conditions (7), (8) are evidently fulfilled, 

provided the existence of nonnegative constants M , M such that 

Ikx+f (t,x,y) |sMo+M( Ixl + lyl ) for teca,/3>, (x,y)eR
2, 

where M<0-a)"1G"1. 

Remark 3. One can already easily deduce that under the 

assumptions of Lemma 1 or Lemma 2 or Lemma 3 problem (l)-(4) 

admits a solution, provided 

(9) lim ilkX |(x(y)||/Y)^~~s::0 uniformly to te<a,/3> 
|| ( x , y) ||- O) ' * 

with the appropriate norm II . II. 

5. It can be readily checked that x (t) satisfies equation 

x''=f(t,x-P(t),x'-P'(t)) 

with conditions (4) iff x(t)=x (t)+P(t),where P(t) is a suitable 

polynomial, is a solution of (l)-(2). Therefore, (l)-(2) is 

certainly solvable under the restrictions of Lemma 4, but (7), 

which reads here 

(10) |k[x+P(t)]+f(t,x-P(t),y-P' (t))l-sF(t, ixl + iyl ), 

where te<a,/5>, (x,y)eR2, and P(t) is such that 

P(a)+pP(b)-=A, P(c)+qP(d)=B. 

It is evident that (10) is satisfied, when 

(10) !k(x+ei)+f(t,x+ei,y+c2) l*F(t, Ixl + lyl ) 

holds for all te<a,/3>, (x,y)eR2, e e<-P,P> and e2€<-p'/p'>, 

where 

P:=max IP(t)|, P':=max lP'(t)|. 
te<a,£> te<a,/3> 

According to monotonicity of F(t,r) in r, it is, 

furthermore, obvious that (11) can be still replaced by 

(12) Ikx+f(t,x,y)I^F(t,|xl+lyl-P~P'), 

where t€<a,/3>, (x,y)eR2, 

- 42 



Remark 4. For the function [kx+f (t, x, y) ] bounded in a 

linear way (see Remark 2), and all the better in a sublinear 

way (see Remark 3), the same conclusion can be certainly done 

( i. e. without any modification of the growth restrictions ) 

with respect to (l)-(2). 

Therefore, we can give the main result. 

Theorem, Let the assumptions of Lemma 1 or Lemma 2 or 

Lemma 3 be satisfied. If condition (9) is still fulfilled, then 

problem (l)-(2) admits a solution. 

Remark 5. Knowing the explicid form of Green's function to 

(3)-(4), we can qualitatively improve the above assertion by 

means of (9) replaced by (12) [ c f . ( 8 ) V 

Remark 6. Another improvement consists of the application 

of the a priori estimates technique. 

REFERENCES 

[1] J. Andres: A four-point boundary value problem for the 

second-order ordinary differential equations, 

Arch. Math. (Basel) 53 (1989), 384-389. 

[2] I. Bihari: Notes on a nonlinear integral equation, 

Stud. Sci. Math. Hung. 2 (1967), 1-6. 

[3] L. Collatz: Funkcionální analýza a numerická raatematika, 

SNTL, Pґaha 1970. 

[4] A. G. Lomtatidze: On a singular three-point boundary value 

problem, Trudy IPM Tbilisi 17 (1986), 122-134 (Russian). 

[5] M. A. Neшaark: Lineare Differentialopęratoren, 

VEB DVW, Berlin.1960. 

43 



[6] I. Rachùnková: A four-point problem for ordinary 

differential equations of the second order, 

Arch. Math. (Brno) 25, 4 (1989), 175-184. 

[7] I. Rachùnková: Existence and uniqueness of solutions 

of four-point boundary value problems for 2nd order 

differential equations, Czech. Math. J. 39 (1989), 692-700. 

[8] G. F. Roach: Green's functions. 

Cambridge Univ. Press, Cambridge 1982. 

Author's address: Department of Math. Analysis 

Palacký University 

Vídeňská 15, 771 46 Olomouc 

Cze choslovakia 

Acta UPO, Fac.rer.nat. 105, Mathematica XXXI (1992) 

- 44 -


		webmaster@dml.cz
	2012-05-03T21:48:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




