Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Jiří Rachůnek
Non-modular and non-distributive primitive ordered subsets of lattices

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 32 (1993), No. 1, 141--149

Persistent URL: http://dml.cz/dmlcz/120289

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1993
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

NON-MODULAR AND NON-DISTRIBUTIVE PRIMITIVE ORDERED SUBSETS OF LATTICES

Jıíí RACHU゚NEK

(Received November 28, 1992)

Abstract

Lattices not containing an isomorphic copy of a member from a given set of finite ordered sets as a primitive subset form a variety of lattices. In the paper some collections of primitive ordered sets characterising the variety of distributive lattices and two small nondistributive varieties of lattices are shown.

Key words: Primitive ordered subset of a lattice, lattice variety, distributive (modular) ordered set, distributive (modular) lattice.

MS Classification: 06B20, 06A99

In the paper [4] modular and distributive ordered sets are introduced and some of their properties are shown. Forbidden subsets of these types of ordered sets are described in [1]; these configurations are isomorphic to the sets $R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}, S_{1}, S_{2}, S_{3}, S_{4}$ and S_{5}. (See Figures 1 and 4.) R. Wille in [6] defined the notion of a primitive subset of a lattice and showed that the lattices not containing an isomorphic copy of a member from a given set of finite ordered sets as a primitive set form a variety of lattices.

In this paper there is shown which of the ordered sets $R_{1}, \ldots, R_{4}, S_{1}, \ldots, S_{4}$, characterize the class of all distributive lattices \mathcal{D} and there are studied the varieties characterized by the sets R_{1} and S_{1}.

If L is a lattice, $g, h \in L$, then $\theta(g, h)$ will denote the principal congruence relation on L generated by the pair $\langle g, h\rangle$. The trivial congruence relation on L will be denoted by ω.

Let L be a lattice, P a finite non-void subset of L. Then P is called a primitive subset of L if

$$
\bigwedge(\theta(x, x \vee y) ; x, y \in P, x \neq x \vee y) \neq \omega
$$

Lemma 1 If L is a distributive lattice, then it contains no primitive subset isomorphic to the ordered set R_{1} or to the set S_{1} (See Fig. 1.)

- b

R_{1}
Fig. 1
S_{1}
Proof Let L be a distributive lattice.
a) Let us suppose that L contains a subset $P_{1}=\{x, y, z\}$ isomorphic to R_{1} (Fig. 2.).

Fig. 2
Consider the congruence relations

$$
\theta(x, z), \theta(x, x \vee y), \theta(y, x \vee y), \theta(y, y \vee z), \theta(z, y \vee z)
$$

and denote by ψ_{1} their intersection.
Let $p, q \in L, p \equiv q\left(\psi_{1}\right)$. Then by [2, Theorem II.3.3] we have

$$
p \vee z=q \vee z \quad \text { and } \quad p \wedge z=q \wedge z
$$

therefore $p=q$. This implies $\psi_{1}=\omega$, and so P_{1} is not a primitive subset of L.
b) Let L contain a subset $P_{2}=\{x, y, z\}$ isomorphic to S_{1}. (Fig. 3.)

Fig. 3
Denote by ψ_{2} the intersection of the congruence relations

$$
\theta(x, x \vee y), \theta(y, x \vee y), \theta(x, x \vee z), \theta(z, x \vee z), \theta(y, y \vee z), \theta(z, y \vee z)
$$

Let $p, q \in L, p \equiv q\left(\psi_{2}\right)$. Then e.g.

$$
p \wedge x=q \wedge x, p \wedge z=q \wedge z, p \vee(x \vee z)=q \vee(x \vee z)
$$

hence we have

$$
p \wedge(x \vee z)=q \wedge(x \vee z)
$$

and therefore $p=q$. This means $\psi_{2}=\omega$, thus P_{2} is not a primitive subset of L.

Lemma 2 If L is a lattice, $P \subseteq Q \subseteq L$, and if P is not a primitive subset of L, then Q is not a primitive subset of L, too.

S_{2}

S_{3}

S_{4}

S_{5}

Fig. 4
Corollary 3 If L is a distributive lattice, then it contains no primitive subset isomorphic to some of the ordered sets $R_{1}, \ldots, R_{6}, S_{1}, \ldots, S_{5}$.

Let \mathcal{P} be a set of finite ordered sets. Denote $\operatorname{Equ}(\mathcal{P})$ the class of all lattices that do not contain an isomorphic copy of a member of P as a primitive subset. By [6] (see also [2, Theorem V.2.6]), $E q u(\mathcal{P})$ is a variety of lattices.

Let us denote

$$
P_{i, j}=\left\{R_{i}, S_{j}\right\}, i=1, \ldots, 6 ; j=1, \ldots, 5 .
$$

The variety of all distributive lattices will be denoted by \mathcal{D}.
Theorem $4 \operatorname{Equ}\left(\mathcal{P}_{i, j}\right)=D, i=1,2,3,4 ; j=1,2,3,4$.

Proof By Corollary $3, \mathcal{D} \subseteq \operatorname{Equ}\left(\mathcal{P}_{i, j}\right), i=1,2,3,4 ; j=1,2,3,4$.
Let L be a non-distributive lattice.
a) First, let L contain a sublattice $L_{1}=\{x, y, z, u, v\}$ isomorphic to the pentagon R_{4}. (See Fig. 5.)

Fig. 5
If $\psi_{1}=\bigwedge\left(\theta(r, r \vee s) ; r, s \in L_{1}, r \neq r \vee s\right)$, then we have $x \equiv z\left(\psi_{1}\right)$. This means that L_{1} is a primitive subset of L. Hence, by Lemma 2,

$$
Q_{1}=\{x, y, z\}, \quad Q_{2}=\{x, y, z, v\} \quad \text { and } \quad Q_{3}=\{x, y, z, u\}
$$

are primitive subsets of L, too.
b) Now, let L contain a sublattice $L_{2}=\{x, y, z, u, v\}$ isomorphic to the diamond S_{4} (See Fig. 6.)
L_{2}

Fig. 6
Then for each elements $e, f, g, h \in L_{2}, \quad e \neq f$, we have $g \equiv h(\theta(e, f))$, thus L_{2} is a primitive subset of L. And therefore, by Lemma 2,

$$
P_{1}=\{x, y, z\}, \quad P_{2}=\{x, y, z, u\} \quad \text { and } \quad P_{3}=\{x, y, z, v\}
$$

are primitive subsets of L, too.
Denote $\mathcal{P}_{0,1}=\left\{S_{1}\right\}, \mathcal{P}_{1,0}=\left\{R_{1}\right\}$. Let \mathcal{N}_{5} be the smallest non-modular lattice variety, i.e. the variety generated by the lattice $N_{5}=R_{4}$, and \mathcal{M}_{3} the variety generated by the lattice $M_{3}=S_{4}$.

Theorem $5 \operatorname{Equ}\left(\mathcal{P}_{0,1}\right)=\mathcal{N}_{5}$.

Proof By Theorem 4, we have $\mathcal{D} \subseteq E q u\left(\mathcal{P}_{0,1}\right)$. Lattice N_{5} contains no primitive subset isomorphic to S_{1}, thus $\mathcal{N}_{5} \subseteq \operatorname{Equ}\left(\mathcal{P}_{0,1}\right)$. Moreover, $\mathcal{M}_{3} \notin \operatorname{Equ}\left(\mathcal{P}_{0,1}\right)$.

Hence, let us consider the lattices $L_{1}-L_{15}$. (See Fig. 7.)

L_{4}

L_{7}

L_{5}

L_{8}

L_{6}
L_{9}

Fig. 7 (part 1)

L_{13}

L_{14}

L_{15}

Fig. 7 (part 2)
By [5], each of these lattices generates a variety covering \mathcal{N}_{5} in the lattice of varieties of lattices. And by [3], every variety of lattices that properly contains \mathcal{N}_{5} includes one of the lattices $M_{3}, L_{1}, \ldots, L_{15}$.

For $L_{i}(i=1, \ldots, 15)$ put

$$
\psi_{i}=\bigwedge(\theta(x, x \vee y) ; x, y \in\{a, b, c\}, x \neq x \vee y)
$$

Then we have e.g.

$$
\begin{array}{lll}
(e, c) \in \psi_{1} & (e, b) \in \psi_{6} & (b, d) \in \psi_{11} \\
(f, b) \in \psi_{2} & (b, g) \in \psi_{7} & (a, d) \in \psi_{12} \\
(e, d) \in \psi_{3} & (b, d) \in \psi_{8} & (a, d) \in \psi_{13} \\
(a, d) \in \psi_{4} & (b, d) \in \psi_{9} & (b, e) \in \psi_{14} \\
(e, d) \in \psi_{5} & (c, f) \in \psi_{10} & (b, g) \in \psi_{15} .
\end{array}
$$

But this means that $\psi_{i} \neq \omega$ for each $i=1, \ldots, 15$, hence $L_{i} \notin \operatorname{Equ}\left(\mathcal{P}_{0,1}\right)$, $i=1, \ldots, 15$. Therefore $\mathcal{N}_{5}=\operatorname{Equ}\left(\mathcal{P}_{0,1}\right)$.

Let \mathcal{M}_{4} denote the variety of lattices generated by the lattice M_{4}, and $\mathcal{M}_{\mathbf{3}, \mathbf{3}}$ the variety of lattices generated by the lattice $M_{3,3}$. (See Fig. 8.)

Fig. 8
Theorem $6 \operatorname{Equ}\left(\mathcal{P}_{1,0}\right) \supseteq \mathcal{M}_{4}, \quad \operatorname{Equ}\left(\mathcal{P}_{1,0}\right) \supseteq \mathcal{M}_{3,3}$.
Proof Obviously, M_{4} contains no subset isomorphic to R_{1}. The lattice M_{3} is congruence trivial, hence $\{a, b, c\}$ is a primitive subset of $\mathcal{M}_{3,3}$.

Let M denote the variety of all modular lattices.
Corollary $7 \mathcal{M}_{3} \subset \operatorname{Equ}\left(\mathcal{P}_{1,0}\right) \subset \mathcal{M}$.
Remark 1 Now, let us consider $\operatorname{Equ}\left(\mathcal{P}_{0,5}\right)$, the variety of lattices not containing a primitive subset isomorphic to the ordered set S_{5}. It is clear that if a lattice contains a primitive subset isomorphic to S_{5}, then it also contains a subset isomorphic to the lattice L_{16}. (See Fig. 9.)
Therefore every lattice having at most eight elements belongs to $E q u\left(\mathcal{P}_{0,5}\right)$. It means that $E q u\left(\mathcal{P}_{0,5}\right)$ contains e.g. all three varieties covering the variety \mathcal{M}_{3}.

Fig. 9

Moreover, a unique subset of L_{16} isomorphic to S_{5} is $A=\{a, b, d, e, c, f\}$. But in L_{16},

$$
\begin{aligned}
& \theta(a, e)=\{\{a, b, k, d, e\},\{h, f\},\{c, g\}\} \\
& \theta(e, e \vee c)=\{\{e, g\},\{k, c\},\{a\},\{b\},\{d\},\{h\},\{f\}\}
\end{aligned}
$$

hence

$$
\theta(a, e) \wedge \theta(e, e \vee c)=\omega
$$

and this means that A is not a primitive subset of L_{16}.
Therefore $L_{16} \in \operatorname{Equ}\left(\mathcal{P}_{0,5}\right)$ and thus every lattice which fails to belong to $E q u\left(\mathcal{P}_{0,5}\right)$ has at least ten elements.

Remark 2 Consider $\operatorname{Equ}\left(\mathcal{P}_{5,0}\right)$, the variety of lattices not containing a primitive subset isomorphic to R_{5}. We have

$$
\begin{aligned}
& \operatorname{Equ}\left(\mathcal{P}_{0,1}\right) \subseteq \operatorname{Equ}\left(\mathcal{P}_{5,0}\right), \\
& \operatorname{Equ}\left(\mathcal{P}_{1,0}\right) \subseteq \operatorname{Equ}\left(\mathcal{P}_{5,0}\right) .
\end{aligned}
$$

In addition, every lattice which does not belong to $\operatorname{Equ}\left(\mathcal{P}_{5,0}\right)$ contains a subset isomorphic to the lattice L_{17}. (See Fig. 10.) Hence every lattice L such that $L \notin E q u\left(\mathcal{P}_{5,0}\right)$ has at least eight elements.

Fig. 10

Moreover, in L_{17},

$$
(c, f) \in \bigwedge(\theta(x, x \vee y) ; x, y \in\{b, d, a, e, c\}, x \neq x \vee y)
$$

hence $\{b, d, a, e, c\}$ is a primitive subset of L_{17}, and so $L_{17} \notin \operatorname{Equ}\left(\mathcal{P}_{5,0}\right)$.
The ordered set R_{6} is the dual case of R_{5}, hence for R_{6} we obtain analogical results as for R_{5}.

References

[1] Chajda, I., Rachůnek, J.: Forbidden configurations for distributive and modular ordered sets, Order 5 (1989), 407-429.
[2] Grätzer, G.: General Lattice Theory, Akademie-Verlag, Berlin, 1978.
[3] Jónsson, B., Rival, I.: Lattice varietics covering the smallest non-modular variety, Pacific J. Math. 82 (1979), 463-478.
[4] Larmerová, J., Rachůnek, J.: Translations of modular and distributive ordered sets, Acta UPO, Fac. Rer. Nat., Math. 91(1988), 13-23.
[5] McKenzie, R.: Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1-43.
[6] Wille, R.: Primitive subsets of lattices, Alg. Univ. 2 (1972), 95-98.

Author's address: Department of Algebra and Geometry
Faculty of Science
Palacký University
Tomkova 38, Hejčín
77900 Olomouc
Czech Republic

