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PRIMITIVE ORDERED SUBSETS OF LATTICES 
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Abstract 

Lattices not containing an isomorphic copy of a member from a 
given set of finite ordered sets as a primitive subset form a variety 
of lattices. In the paper some collections of primitive ordered sets 
characterising the variety of distributive lattices and two small non-
distributive varieties of lattices are shown. 

Key words : Primitive ordered subset of a lattice, lattice variety, 
distributive (modular) ordered set, distributive (modular) lattice. 
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In the paper [4] modular and distributive ordered sets are introduced and 
some of their properties are shown. Forbidden subsets of these types of orde
red sets are described in [1]; these configurations are isomorphic to the sets 
Iti, It2, It3, ItU, Its, Re)Si)S2, 5*3,54 and S$. (See Figures 1 and 4.) R. Wille in 
[6] defined the notion of a primitive subset of a lattice and showed that the latti
ces not containing an isomorphic copy of a member from a given set of finite 
ordered sets as a primitive set form a variety of lattices. 

In this paper there is shown which of the ordered sets R\,. . . , R4i S\, . . . , S4, 
characterize the class of all distributive lattices V and there are studied the 
varieties characterized by the sets Iti and S\. 

If L is a lattice, g,h £ L, then 0(g)h) will denote the principal congruence 
relation on L generated by the pair (#, h). The trivial congruence relation on L 
will be denoted by LO. 
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Let L be a lattice, P a finite non-void subset of L. Then P is called a 
primitive subset of L if 

/\(0(x,xVy)', x,y£P, x^xVy) / w. 

Lemma 1 If L is a distributive lattice, then it contains no primitive subset 
isomorphic to the ordered set R\ or to the set S\ (See Fig. 1.) 
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Fig. 1 

Proof Let L be a distributive lattice. 

a) Let us suppose that L contains a subset P\ = {x,y, z} isomorphic to R\ 

(Fig-2-)-

Pi 

Fig. 2 

Consider the congruence relations 

9(x,z), 9(x,x\Jy), % i V y ) , 0(y,y\J z), 6(z,y\/ z) 

and denote by rp\ their intersection. 
Let p,q £ L, p= q(^\). Then by [2, Theorem II.3.3] we have 

p\/ z = qV z and p A z = q A z, 

therefore p = q. This implies tpi = a;, and so Hi is not a primitive subset of L. 
b) Let L contain a subset J2 = {x,y,z} isomorphic to S\. (Fig^3.) 

Pi 
o o o 
x y Z 

Fig. 3 

Denote by t/>2 the intersection of the congruence relations 

6(x,xVy), 0(y,xVy), 6(x,x\f z), 6(z,xV z), Q(y,yV z), 0(z,yV z). 
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Let p,q G L, p~ <l(ip2)> Then e.g. 

p Ax =- q Ax, p Az — q A z, p V (x V 2:) = q V (a? V 2:), 

hence we have 
p A (x V 2) = o A (x V 2), 

and therefore p = 9. This means ^2 = u>, thus P2 is not a primitive subset of L. 
D 

Lemma 2 If L is a lattice, P C Q C F; and ?f P is no/ a primitive subset of 
L, then Q is not a primitive subset of L, too. D 

Corollary 3 If L is a distributive lattice, then it contains no primitive subset 
isomorphic to some of the ordered sets Ri,..., R6y S\)...., S5. D 

Let V be a set of finite ordered sets. Denote Equ(V) the class of all lattices 
that do not contain an isomorphic copy of a member of P as a primitive subset. 
By [6] (see also [2, Theorem V.2.6]), Equ(V) is a variety of lattices. 

Let us denote 

Pij = {Ri,Sj}, i = 1, . . . ,6; j = 1 . . . . .5 . 

The variety of all distributive lattices will be denoted by V. 

Theorem 4 Equ(Vij) = D, i = 1,2,3,4; j = 1,2,3,4. 
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P r o o f By Corollary 3, V C Equ(Vij), i = 1,2,3,4; j = 1,2,3,4. 
Let L be a non-distributive lattice. 

a) First, let L contain a sublattice L\ = {x, u, z, u, v} isomorphic to the 
pentagon P4. (See Fig. 5.) 

Fig. 5 

If -01 = ^\(0(r,rW s); r,s E Li, r ^ TV 5), then we have x = z(xpi). This means 
that Li is a primitive subset of L. Hence, by Lemma 2, 

Q i = - { x , u , z } , Q2 = {x,y, z,v] and Q 3 = {x, y, z, u] 

are primitive subsets of L, too. 
b) Now, let L contain a sublattice Li = {#,?/, z,u,v} isomorphic to the 

diamond 54 (See Fig. 6.) 

Fig. 6 

Then for each elements e, / , g, h G L2, e -̂ / , we have g = /i(0(e, / ) ) , thus L2 

is a primitive subset of L. And therefore, by Lemma 2, 

P\ = {x,y,z), P2= {x,y,z,u} and P3 = {x, y, z, v} 

are primitive subsets of L, too. • 

Denote *Po,i = {Si}. ^1,0 = {#i}- Let .A/5 be the smallest non-modular 
lattice variety, i.e. the variety generated by the lattice N5 = 1?4) and yVi3 the 
variety generated by the lattice M3 = S4. 

T h e o r e m 5 Equ(V0)i) = .A/5. 
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P r o o f By Theorem 4, we have V C Equ(Vot\). Lattice N5 contains no primitive 
subset isomorphic to Si , thus .A/5 C Equ(Voti). Moreover, M3 0 Equ(Vot\). 

Hence, let us consider the lattices L1-L15. (See Fig. 7.) 

c a c a 

L7 Lg 

Fig. 7 (part 1) 
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Fig. 7 (part 2) 

By [5], each of these lattices generates a variety covering JV5 in the lattice of 
varieties of lattices. And by [3], every variety of lattices that properly contains 
.A/5 includes one of the lattices M3, L\)..., L15. 

For Li (i = 1 , . . . , 15) put 

$i = f\(°(x> ^ V y ) ; x,ye {a, 6, c}, x^xV y). 

Then we have e.g. 

( e , c ) € ^ i ( e , 6 )E^6 ( M ) € ^11 
(f,b)ei>2 (b,g)ei>r (aid)e^n 
(e,d)eil>3 (b,d)e^s (a,d)e ^13 
(a ,d)G^ 4 (b,d) efa (6,e)€^i4 
(e,d)e^ (cj)e^io (big)ei/>i<>. 

But this means that t/>i 7̂  u> for each t = 1 , . . . , 15, hence £; 0 Equ(Vo,\), 
i = 1 , . . . , 15. Therefore JV5 = Equ(V0yi).

 D 
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Let M\ denote the variety of lattices generated by the lattice M4, and JVi3,3 
the variety of lattices generated by the lattice M3,3- (See Fig. 8.) 

м 4 
M: 3,3 

Fig. 8 

Theorem 6 Equ(Vi)0) 2 M4, Equ(Vho) 2 M3,3-

Proof Obviously, M4 contains no subset isomorphic to R\. The lattice M3 is 
congruence trivial, hence {a,b,c} is a primitive subset of -M33. D 

Let M denote the variety of all modular lattices. 

Corollary 7 M3 C Equ(Vi)0) C M. 

Remark 1 Now, let us consi
der Equ(V0)§), the variety of 
lattices not containing a pri
mitive subset isomorphic to 
the ordered set 55. It is clear 
that if a lattice contains a pri
mitive subset isomorphic to 
55, then it also contains a sub
set isomorphic to the lattice 
L 1 6 . (See Fig. 9.) 
Therefore every lattice having 
at most eight elements be
longs to Equ(Votb). It means 
that Equ(Vo$) contains e.g. 
all three varieties covering the 
variety M3. 

D 

Fig. 9 

Moreover, a unique subset of L\e isomorphic to 55 is A = {a, b,d, e, c, /} . 
But in Fi6, 

0(a,e) = {{a,6,k,J,e},{/i,f},{e,a}}, 
0(e, eVe) = {{e,#},{k,e}, {a}, {6}, {d}, {/i},{/}}, 
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hence 
% e ) Л % e V c ) = 07, 

and this means that A is not a primitive subset of Li6. 
Therefore Li6 £ Equ(Vo^) and thus every lattice which fails to belong to 
Equ(Vo$) has at least ten elements. 

R e m a r k 2 Consider FJqu(Vs}o), 
the variety of lattices not contai
ning a primitive subset isomor
phic to #5. We have 

Equ(Voti) C Equ(Vsfi), 

Equ(Vi}0) C Equ(Vsto). 

In addition, every lattice which 
does not belong to Equ(V^,o) 
contains a subset isomorphic to 
the lattice L17 . (See Fig. 10.) 
Hence every lattice L such that 
L 0 Equ(Vsto) has at least eight 
elements. 

Fig. 10 
Moreover, in L17, 

(c>/) e / \ ( 0 ( x , x V y ) ; * , y € {6,o\a,e ,c}, x^xVy) 

hence {6,d,a,e,c} is a primitive subset of L17, and so L17 ^ Equ(Vsto)-
The ordered set #6 is the dual case of / is, hence for 1^6 we obtain analogical 

results as for #5 . 
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