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Abstract 

In the paper, circular totally semi-ordered groups are introduced and 
some properties of them, especially for the cases having least strictly posi
tive elements, are studied. 
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cular tournament. 
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Let T / | be a set. Then a binary relation "<" on A is called a semi-
order if it is reflexive and antisymmetric. The pair (T, <) is then said to be a 
semi-ordered set (a so-set). 

If moreover 
Va,6 G T; a < b or b < a, 

then (T, <) is called a tournament. Denote 

a < b <=>df a < b and a ^ b. 

A tournament T = (T, <) is said to be circular (see [1]) if 

(a) there exist a,b,c £ T such that a < b < c < a, 

and if 

(b) whenever x,u , z G T satisfy x < y < z < x, then there exists no w E T 
such that w < {x, y, z) or {x, y, z} < w. 
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If (G, +) is a group and (G, <) is a .so-set, and if 

a < b r r > c + a + J<c + b + J 

for any a,6,c,J G G, then G = ( G , + , < ) is called a semi-ordered group (a so-
group). If, moreover, (G, <) is a tournament, then G = ( G , + , < ) is called a 
totally semi-ordered group (a to-group). A ^O-group G is said to be circular if 
the tournament (G, <) is circular. 

We will denote by G + the positive cone of any So-group G (i.e. G+ = { i G G ; 
0<x}). 

Some properties of so-groups and lo-groups were studied in [2], [3], [4] 
and [5]. 

The definition of a to-group of course admits essentially more possibilities 
of total semi-orders than total orders on a given group. For example, if G is an 
abelian group, then any subset P with 0 of G containing no non-zero element 
together with its opposite element such that P U — P = G is the positive cone 
of a total semi-order on G. 

Therefore, first it is important to study classes of la-groups which are "enough 
close" to totally ordered groups. Evidently the circular la-groups form such a 
class of la-groups. The study of properties of circular lc-groups is the aim of 
the paper. 

Proposition 1 A to-group G = ( G , + , < ) is circular if and only if there are 
u,v E G with 0 < u < v < 0 and if(G+, <) satisfies the condition (b) from the 
definition of a tournament. 

Proof Let G be circular, a, 6, c E G, a < b < c < a. Then 0 < 6 - a < c — a < 0. 
The condition (b) is satisfied trivially 

Conversely, let x}y, z,w e G, x < y < z < x, w < {x,y,z}. Then 0 < 
{x — w, y — w, z - w} and x — w < y — w < z — w < x - w, and so we get 
a contradiction with the hypothesis of the validity of (b) in G + . Similarly for 
{x,y, z] < w. The condition (a) is for G valid trivially D 

Example 1 We will show that the io-group G = ( G , + , < ) , where (G,+) = 
(Z, +) and 

G + = { 0 , l , - 2 , 3 , 4 , - 5 , 6 , 7 , - 8 , 9 , 1 0 , - l l , . . . , 3 n , 3 n + l , - ( 3 n + 2) , . . . } 

is circular. 

(a) We have e.g. 0 < 1 < - 1 < 0. 
(b) Let x}y,z £ G + \ { 0 } , x < y < z < x. Then y-x,z-y,x-z £ G + \ { 0 } . 

1. Let y - x = 3a, z - y = 36, x - z = 3c, a, 6, c G N. Then 

3a = y — x = z — 36 — z — 3c = 3(—6 — c), 

a contradiction, hence such elements x,y, z do not exist. 

110 



2. Let y - x = 3a, z - y = 36 + 1, x - z = - (3c + 2), a G N, 6, c > 0. Then 

3a = y - l r = z-36-l-z + 3c + 2 = 3(-6 + c) + 1, 

a contradiction. 
3. Let u - x = 3a, z - y = 3b, x - z = 3c + 1. Then 

3a = y - x = z-3b-z-3c-l = 3( -b - c) - 1, 

a contradiction. 
4. Let y - x = 3a, z - y = 36, z - z = - (3c + 2). Then 

3a = u-x = z-3b-z + 3c + 2 = 3(-b + c) + 2, 

a contradiction. 
5. Let y - x = 3a + 1, z - u = 36 + 1, x - * = - (3c + 2). Then 

3 a + l = g-£ = z - 3 6 - l - z + 3 c + 2 = 3(-6 + c) + l, 

hence a = — 6 + c. 
Let x = 3n. Then 

z = a; + 3c + 2 = 3n + 3c + 2 = 3(n + c) + 2 £ G + , 

a contradiction. 
Let £ = 3n + 1. Then 

y = 3n + 1 + 3a + 1 = 3(n + a) + 2 g G + , 

a contradiction. 
Let z = - ( 3 n + 2). Then 

H = - 3 n - 2 + 3a + 1 = 3 ( - n + a) - 1 g G + , 

a contradiction. 
6. Let H - a: = 3a + 1, z - y = -(36 + 2), x - z = --(3c + 2). Then 

3a + l = ? / - l r = z + 36 + 2 - z + 3c + 2 = 3(6 + c + l ) + l, 

hence a = 6 + c + 1. 
Let x = 3n. Then 

z = 3n + 3c + 2 = 3(n + c) + 2 £ G + , 

a contradiction. 

Let x = 3n + 1. Then 

g = 3n + 1 + 3a + 1 = 3(n + a) + 2 0 G + , 

a contradiction. 
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Then 

Let x = --(3n + 2). Then 

y = - 3 n - 2 + 3a + 1 = 3 ( - n + a) - 1 £ G + , 

a contradiction. 

7. Let y — x = 3 a + l , z — y = 36 + 1, # — 0 = 3c + 1. Then 

3a + l = y - x = z - 3 6 - l - z - 3 c - l = 3( -6 - c - 1) + 1, 

hence a = —6 — c — 1, a contradiction. 

8. Let y - ar = - ( 3 a + 2), 2 - y = -(36 + 2), x - z = - (3c + 2). 

- ( 3 a + 2) =zy-x = z + 36 + 2 - 2 + 3c + 2 = 3(6 + c + 1) + 1, 

hence 3(—a — 1) + 1 = 3(6+ c + 1) + 1, therefore a = —6 — c — 2, a contradiction. 

9. Let y — a; = 3a, 2 — y = 36 + 1, a? — z = 3c + 1. Then 

3a = y — £ = 2: — 36— 1 — z — 3c— 1 = 3(—6 — c) — 2, 

a contradiction. 

10. Let y - x = 3a, z - y = - (36 + 2),x-z = - (3c + 2). Then 

3a = y - x = z + 36 + 2 - z + 3c + 2 = 3(6 + c + l ) + l, 

a contradiction. 

11. Let, for example, y — x = 3a + 1, z — y = 36 + 1, x — z = 3c. Then 

3 a + l = y — £ = z — 36— 1 — z — 3c = 3(—6 — c) — 1, 

a contradiction. 

12. Let, for example, y — x = —(3a+ 2), z — y = 3 6 + 1 , x — z = 3 c + 1 . Then 

3 ( -a ) -2 = y~x = z - U - l - z - 3 c - l = 3(-6 - c) - 2, 

hence a = 6 + c. 

Let x = 3n. Then 

z = 3n — 3c — 1 = 3(n — c) — 1, 

a contradiction. 

Let x = 3n + 1. Then 

y = 3n + l — 3a — 2 = 3(n — a) — 1, 

a contradiction. 

Let x= - ( 3 n + 2). Then 
y = - 3 n - 2 - 3a - 2 = 3 ( - n - a - 1) - 1, a contradiction. 
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Therefore we can see that in all examined cases (and evidently also in all 
remaining ones) such elements £,y, z do not exist. Hence the condition (b) is 
for G+ valid trivially 

Example 2 Denote G = ( Z , + , < ) , where G+ = (Z+ \ {4}) U {-4}. (Z+ is 
meant in the natural order of (Z,+).) Then G is a lo-group, but it is not 
circular. Indeed, for example, 1 < 3 < 5 < 1 and 0 < {1,3,5}. 

The positive cone G+ of a so-group G need not be, in general, convex in G. 
(For instance, for Z3 , where Z+ = {0,1}, we have 1 < 2 < 0, 1,0 G Z3 , but 
2£Z+. 

Lemma 2 If G is a so-group such that G+ is convex in G, then G satisfies one 
of the following conditions: 

a) G is a po-group (i.e. "<" is transitive); 
b) 3a,beG; 0 < a < b, 0 || b. 

Proof Let us suppose that x)y) z G G and x < y < 2, that means 0 < —x + y < 
—x + z. If in such a case always 0 < — x + z) then G is a po-group. 

Thus, let 0 <£ —x + z. Suppose that —x + z < 0. Then —x + y < —x + z < 0, 
hence from the convexity of G+ we have — x + z G G+. Therefore — # + z G 
G+ H —G+ = {0}, i.e. # = z, a contradiction. Hence 0 || —x + z. • 

Corollary If G is a to-group, then the following conditions are equivalent: 
a) G is an 0-group (i.e. a totally ordered group). 
b) G+ is convex in G. 
c) There are no elements a,b £ G with 0 < a < b < 0. 

Proof a <=> b: By Lemma 2. 
b ==> c: Trivial. 
c = > a: Suppose that G is not an o-group. Then there exist elements 

x}y,z G G such that x < y < z < x) hence 0 < —x + y < —x + z < 0, a 
contradiction. Therefore x < z) and thus "<" is transitive. • 

Theorem 3 Let; G be a circular to-group which contains an element a G G+ \ 
{0} such that a < b for every b G G+\{0} (i.e. a is the least element ofG+\{0}), 
and let a have infinite order. Then [a] = grp(a) is a subgroup of G that is an 
o-group and for which [a]+ is convex in G+. 

Proof a) Let a be the least element of G+ \ {0}. Let us suppose that x G G, 
n G N, and 0 < x < na. Then a < x, and so 0 < x — a. If x — a = 0, then 
x G [a]. In the opposite case 0 < x — a, hence a < x — a, that means 0 < x — 2a. 
If x — 2a = 0, then £ G [a], otherwise 0 < x — 2a, etc. But because x < na, 
there exists kGN, 0 < k < n , such that x = ka, therefore # G [a]. 
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b) Let us show that the lO-group [a] is an o-group. First we will prove that 
(~n)a < 0 for any n E N. Let n be the least natural number with 0 < (~n)a. 
(Clearly n > 1). Then we have: 

(2n — l)a — (2n)a = —a < 0, hence (2n — l)a < (2n)a; 

(2n)a — na = na < 0, hence (2n)a < na\ 

na — (2n — l)a = —(n — l)a < 0, hence na < (2n — l)a. 

At the same time: Because 0 < (~n)a, we have a < (~n)a, thus 0 < (—n — l)a, 
and because a has infinite order, it must be 0 < (—n — l)a. But this means that 
a < (—n — l)a, and so 0 < (—n —2)a. By this method, we obtain 0 < (—2n + l)a, 
0 < (—2n)a. Therefore we have 

( -2n)a < ( -2n + l)a < (~n)a < ( -2n)a, 

0 < ( -2n + l)a, 0 < (~2n)a, 0 < (~n)a, 

that contradicts the condition (b) from the circularity of G. 
Hence (~n)a < 0, and therefore 0 < na for any n £l$. 
Now, if ra, n E 7L, na E [a] + , 0 < ma < na, then m,n £ Z + , and thus [a]+ is 

convex in [a]. But this means, by Corollary of Lemma 2, that [a] is an D-group. 
c) Now it is clear, by the preceding parts of the proof, that [a]+ is convex in 

G+. * ^ ^ . ^ 

T h e o r e m 4 Let G be a circular to-group with the least strictly positive element 
a which has infinite order. Then [a] is the least of all proper subgroups H of G 
such that H+ is convex in G + . 

P r o o f Let H be a subgroup of G and let H+ be convex in G + . If 0 < b E H, 
then a < b, and hence 0 < a < b implies a E H. • 

T h e o r e m 5 If G is a circular to-group with the least strictly positive element 
a, then there is no element x in G such that 0 < x, ~x < x and x < (~n)a for 
some n EN. 

P r o o f Suppose that for 0 < x, —x < x, there exists n £f$ such that x < (~n)a. 
Since 0 < x we have a < x, and since x ^ a (it follows from the fact that 
a <fi (—n)a), 0 < —a + x. From this a < —a + x, and because x ^ 2a, we obtain 
0 < —2a + x, i.e. 2a < x, etc. Therefore na < x, that means — x < (~n)a. Hence 
~x < {0,x,(—n)a}, and at the same time 0 < x < (~n)a < 0, a contradiction 
with the circularity of G. • 

E x a m p l e 3 Consider again the circular tfo-group G from Example 1. Let n G N . 
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Then 

3 n - 3 = 3 ( n - 1 ) E G + , hence 3n > 3, 

(3n + 1) - 3 = 3(n - 1) + 1 £ G + , hence 3n + 1 > 3, 

- ( 3 n + 2) - 3 = - 3 ( n + 2) + 1 £ G + , hence - ( 3 n + 2) > 3, 

therefore 3 is the least element in G + \ {0}. 
Hence the subgroup [3] is, by Theorem 3, an o-group and it is the least of 

all subgroups H of G such that H+ is convex in G + . 
In this case, the subgroup [3] = 3Z has more properties. Consider the group 

G' — (2^3,+) of numbers {0,1,2} with the addition modulo 3 totally semi-
ordered b y 0 < l < 2 < 0 . Let / be the mapping of Z onto Z3 such that for 
x G 3Z + i, f(x) = i (i = 0,1,2). Clearly, / is a ?Bal-homomorphism of G onto 
G with the kernel 3Z, and hence 3Z is a wal-ideal of G. 

Let riL (n > 1) be a convex ival-ideal of G. If n G 3N, then 0 < 3 and 3 < n 
imply 3 G riL. But this is possible only for n = 3. 

If n G 3N + 1, then 0 < 1 < n imply 1 G riL, a contradiction. 
If n G 3N + 2, then 0 < n — 1 < n, hence n — 1 G nZ, a contradiction. 
This means that 3Z is the unique proper wal-ideal (and so also the unique 

convex uja/-subgroup) of G. 
Evidently Z7L is also the only subgroup such that its positive cone is convex 

i n G + . 
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