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ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM 

1994 Mathematica XXXIII Vol. 114 

F I R S T PHASES OF T H E ASSOCIATED EQUATION 
W I T H P A R A M E T E R S FOR T H E D I F F E R E N T I A L 

EQUATION y" = q(t)y 

M I R O S L A V L A I T O C H 

(Received August 18, 1993) 

A b s t r a c t 

In the theory of second order linear differential equations in Jacobi 
form 

y" = q(t)y, t e J, (q) 

the phases of the first and second kind for an ordered pair of indepen­
dent solutions u, v of the equation (q) have a fundamental importance. 
In Boruvka's book [l] a relation is given between first and second phases 
of a given solution basis (u,v) of the differential equation (q). The rela­
tion involves the first and second amplitude of the basis. In this question 
emerges the role of the associated differential equation (qi) to the equa­
tion (q). Furthermore, the differential equation associated to differential 
equation (q) has the form 

Y" = h(t)Y, (ft) 

where 
6(t\-a(t\ i g"(0 , 3(g'(<))2

 i e 7 

An associated differential equation (Qi) with par meters [K, A], K 2 + A 2 > 0 
is introduced (see [2], [3]), for the equation (q), which makes it possible 
to show the relationship between the first phases of the differential equa­
tions (Q\) and (g). Furthermore, the associated differential equation with 
parameters [K, A] is of the form 

Y" = Q1(t)Y, 

where t € J and 

o m - ad) + 1 •_-!!_- i 3 AV(*))2 i _V_0 
Wl (l, - q[t) + 2K2_ A 2 g ( < ) + 4 (K2 _ A2g(i))2 + K2 - Vq{t)" 

Introduced here, for the aforementioned reasons, is the terminology 
"a-phase with parameters [K, A] for a basis (it, v) of differential equation 

(?)"• 
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Key words: Linear differential equation of second order in Jacobi 
form, first amplitude, second amplitude, a-amplitude with parame­
ters [K, A], first phase, a-phase with parameters [K, X] for basis (u, v) 
of a linear differential equation in Jacobi form, associated differen­
tial equation to a linear second order differential equation in Jacobi 
form. 

MS Classification: 34A30, 34B05, 34B10, 34C10, 34C20 

Introductory notes: In the paper we will denote by 
N, Z, M. the set of natural, integral and real numbers, respectively. 

J is an open interval (a,b), where a may be - c o and b may be oo. 
Cn(J) is the set of functions defined in J with n continuous derivatives, n G N. 
CQ(J) is the set of functions continuous in J. 

c , i . . o . • . . • 1 <x'"(t) 3 (a"(t))2 

\a,t\ denotes the bchwarzian derivative — ;—- . . . . 
1 J 2 a'(x) 4 (af(t))2 

1 Amplitudes 

Consider the second order differential equation of Jacobi form 

y" = ?«</, (<?) 

where q G C^(J) and J" = (a, b). 
Let (u, u) be a basis of the solution space of differential equation (q). Let w 

be the Wronskian of the basis (u,v), thus 

w = u(t)v'(t) -u'(t)v(t). 

Definition 1 By the formulas 

r = \Ju2 + v2 (1) 

s = y/u'2 + v'2 (2) 

a = y/(Ku + \u')2 + (KV + Xv')2, K,\eM, K2 + X2 > 0, (3) 

we define in J functions r = r(t), s = s(t), a = <j(t) called the first amplitude, 
resp. the second amplitude, resp. the a-amplitude with parameters [K, X] of the 
basis (u, v) of differential equation (q). 

It follows that: 

1° Amplitudes of an inverse basis (v, u) are again r, s, a. 

2° Amplitude r (s) we obtain from the a-amplitude with parameters [K, X] 
by substituting K=1,X = 0(K = 0,X = 1 ) . 
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T h e o r e m 1 The amplitude r, resp. s, resp. a for basis (u}v) of differential 

equation (q) satisfies the following nonlinear differential equation of the second 

order 

resp. s 

resp. a'' 

w 
g r + — 

wzqz q' , 
qs+ — — + — s 

só q 

K,\q' 

-I !_ 
K2 — \2q, 

w2{K2-\2q)2 \2q' 

(4) 

a3 K2 — A2g 

where w is the Wronskian of basis (uyv). 

P r o o f From re la t ion (3) we get 

a2 = (KU + \u')2 + (KV + \v')2 

and by successive differentiation and rearrangemen t follows 

aa' = (KU' + \qu)(KU + \u') + (KV + XV')(KV' + Ag?;); 

a'2 + aa" = (KU' + Ag?i)2 + (KV' + Ag?j)2 + gO2 + 

Xq' [U(KU + \u') + V(KV + A?/)] • 

(5) 

(6) 

(7) 

If we mul t ip ly (7) by a2, subs t i tu te for aa' from (6) and apply (5). then we get 

after a rear rangemen t 

a3a" = gcr4 + AgV2 [K(U2 + tr2) + \(uu' + w')} + ?D2 (K2 - A2g)2 . (8) 

Because of formulas (5) and (6) we have 

Ka2 - \aa' = K3U2 + rcAV2 + 2K2\UU' + / c V + 2tc2A?j?/ + ^ V 2 -

A(tc2?i?j/ + t€Au/2 + /cAg?i2 + A2gu?i/-; K2w1 + ^v'2 +• K\qv2 -{• 

\2qvv') 
= /c3(iz2 + r;2) + tf2A(im' + t ; t / ) - ^ 

= K(U2 + ?j2)(/c2 - A2g) + X(uu' + W)(#c2 - A2g) 

= (K2 - \2q) [K(U2 + ?j2) + \(uu' + vv')}. 

Therefore follows the iden t i ty in J 

Ka2 - \aa' = (K2 - \2q)[K(u2 + v2) + X(uu' + w')] 

and from (8) we get the rela t ion 

(9) 

! 2 aàa" = gcr4 + AgV 
кa2 — Acrcr 

к 2 — A2g 
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and consequently we obtain the third equation in (4). 
For K = 1, A = 0 we arrive at the first equation in (4) for the first amplitude 

r for basis (_, v) of differential equation (q). 
For K — 0, A = 1 we arrive at the second equation in (4) for the second 

amplitude s for basis (u,v) of differential equation (q). 

2 Phases 

Suppose that the zeros of the function v', if they exist, are isolated in the interval 
J. This condition is for example satisfied when the carrier q of differential 
equation (q) is nonzero in J (see [1]). 

Definition 2 By the first phase, resp. second phase, resp. a-phase with param­
eters [ft, A] for basis (u, v) of differential equation (q) we understand a continuous 
function a) resp. /?, resp. 7 in J which satisfies with the exception of the zeros 
of v> resp. vf, resp. KV + Xvf the equation 

/ x U(t) sr, X U'(t) / , / x X 

tancv(l) = - i - i resp tan/?(r) = - ^ , (10) 

KUU) + Au'(i) ,„„. 
resp. tan7(0~-—T4~ rr • (H) 

P / w ft*l(r) + Av'(*) V ; 

By the first, resp. second equation in (10), resp. equation (11), is defined a 
countable system of phases a, resp. /?, resp. 7 for the basis (H, i>) of differential 
equation (q). This system is called the phase system of the first phases, resp. 
second phases, resp. a-phases with parameters [ft, A] for basis (u, v) of differential 
equation (q) and we denote these systems by (a), resp. (/?), resp. (7). 

If we take a first phase a G (a), resp. second phase j3 G (/?), resp. a-phase 
7 G (7) with parameters [ft, A], then the system (a), resp. (/?), resp. (7) consists 
of functions 

av(t) = a(t) + i/7r, resp. /3„(t) = fi(t) + VTT, resp. 7^(1) = 7(1) + /VTT, (12) 

where i / G 2 , a 0 = », /?o = P, To = T-

Functions of phase systems can be ordered so that 

• • < a_2 < a_i < a0 < ot\ < a2 < • • •, (13) 

• • • < /?_2 < /?_! < /?0 < A < ft" < * * ' , (14) 
• • • < 7_2 < 7-1 < To < Ti < T2 < • • • • (15) 

We note now properties of an a-phase 7 G (7) with parameters [ft, A]. From 
formula (11) we obtain in J equalities 

(tanT(<)) = ^ K O = I ^ T T A ^ J ~ -(««+ * • ) ' • (16) 
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From here and (12) we infer that: 
Any a-phase <yu £ (7) with parameters [«,A] in J increases resp. decreases, 
when —W(K2 - \2q) > 0, resp. -W(K2 - A2g) < 0 in the interval J. 

Then from (11) we get 

ps'm(yv(t)) = Ku(t) + \u'(t), 

pcos(y„(t)) = /cv(*) + At/(0. 

thus 
D2 = (KU + Ait7)2 + (ACV + A?;')2 = c 

and from (17) we get 

KU + Alt' = f//cr(t)sin(7i/(t)), 

tci; + At;7 = £i/Cr(1.)cos(7i/(1)), 

where £„ = ± 1 . 

(17) 

(18) 

Definit ion 3 An a-phase 7^ with parameters [/c, A] is called proper (improper) 
relative to the basis (it, L>) of differential equation (q) accordingly as in formula 
(18) there is £u = 1 (£„ = - 1 ) . 

Let 7J, and 7^+1 = 7^+^ be two successive a-phases with parameters [/c, A] in 
phase system (7) with ordering (15). Since sin(7„+i) = — sin(7„), cos(7„ + i) = 
— cos(7„), we obtain by formulas (18): 

Theorem 2 In phase system (8) with ordering (15) of a-phases with parameters 
[K,\], proper and improper a-phases alternate, that is, the successor of a proper 
a-phase is an improper a-phase and conversely. 

From (18) we derive also the following: 

Theorem 3 Any proper (improper) a-phase with parameters [ft, A] relative to 
the basis (u,v) is improper (proper) relative to the basis (—u)—v). 

If we consider two cases of values of the Wronskian w of the basis (u,v), 
whether —w > Oor — w < 0, we can easily derive the following assertions from 
(16): 

3° When — w > 0, then any a-phase 7 with parameters [/c,A] for the basis 
(u,v) increases (decreases) in //accordingly as K2 — \2q > 0 (K2 — \2q < 0) 
holds in J. 

4° When — w < 0, then every a-phase 7 with parameters [/c, A] decreases 
(increases) in J accordingly as K2 — \2q > 0 (K2 — \2q < 0) holds in J. 

5° If K = 1, A = 0, then from (16) we get: 
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When — w > 0, then each first phase a for the basis (u,v) in­
creases in J. 

When — w < 0, then each first phase a for the basis (u,v) de­
creases in J. 

6° If K = 0, A = 1, then from (16) we get: 

When — w > 0, then each second phase /? for the basis (u,v) 
increases (decreases) in J accordingly as — q > 0 (—q < 0) 
in J. 

When — w < 0, then each second phase f3 for the basis (u,v) 
decreases (increases) in J accordingly as — q > 0 (~q < 0) 
in J. 

3 Relations among the phases of the same 
basis. 

Relations among amplitudes and phases for the basis (u, v) of differential equa­
tion (q) and those of the differential equation (qi) associated to (q) (introduced 
in [1]) will be completed here by the relations for a-amplitudes and a-phases 
with parameters [K, \] of the same basis. 

Let (w, v) be a basis of differential equation (q) with Wronskian w — uv'—u'v. 
Let a E (a), (3 E (/?), 7 E (7) be the first phase, resp. the second phase, resp. 
an a-phase with parameters [AC, A] for the basis (u, v) and e, resp. e') resp. e the 
corresponding sign. From the formulas 

Ku(t) -f \u'(t) = eua(t)s'm(ju(t)), 

Kv(t) + \v'(t) = iua(t)cos(ju(t)) 

we obtain in the case K = 1, A = 0 (see [1]) that 

u(t) = £ I /r(f)sin(a i /(t)), 

v(t) — £ur(t)cos(au(t)) 

and in the case K = 0, A = 1 (see [1]) that 

u'(t) = e'vs(t)sm((3u(t)), 

v'(t) = e'us(t)cos(pu(t)) 

(19) 

(20) 

(21) 

By the help of fundamental geometric relations and formulas (19), (20) and (21) 
we get 

ra s in(7~a) = rcr(sin 7 cos a — cos 7 sin a) = e(Ku-\-\u')ev— 1 , , 
S(KV -h \v')eu = ei\(—w), A ̂  0, J ^ ' 
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crssin(/? — 7) = <Ts(sin (3 cos 7 — cos (3 sin 7) = e'u'e(KV + 1 , „, 

Aw') - ^v'eC/cii + Xu') = eVK(- tv ) , « ^ 0, J ^ } 

rssm(/3 — a) = rs(s'm/3 cosa — cos flsina) = e'u'ev — e'v'eu 1 ,Q , 
= ee'(-w). J ^ ' 

Since the righ t side in (22), (23), (24) is different from zero, there exists m, n, 
p G 2£ such that the difference (7 — a) resp. (/? — 7) , resp. (/? — a ) at any poin t 

t £ J lies be tween numbers m7r and (m + 1)TT, resp. n7T and (n + l)7r, resp. p7r 
and ( p + 1)TT; thus we have: 

m7r < 7 — a < ( m + l)7r, n7r < j3 — 7 < (n + l)7r, p7r < /5 — a < ( p + l)7r (25) 

We remark now on the first two inequalities in (25). In the first case, resp. the 
second case, we set 

a0 = a + m7r, 70 = 7, resp. 70 = 7, f30 = (3 - mr (26) 

and we define phases 

av = a0(t) + z/7T, ./?„ = /?0(0 + i/7r, 7^ = 7o(l) + /VTT, 

where i ^ E ^ . If we subs t i tu te from (26) into the first inequality, resp. the second 

inequali ty, in formula (25), then we get 

mn < 70 — (QJO — m 7 r ) < (m + l)7r, resp. n7T < (/?0 + n7r) — 70 < (n + l)7r, 

or 

0 < 70 - a0 < 7r, resp. 0 < /30 - 70 < TT 

and also 

0 < 7^ - o^ < 7r, resp. 0 < pu - j u < 7T. 

T h u s for // G Z we get from the above 

Q^ < lv < 0LV+X, resp. yv < /?„ < jy+i. 

T h u s we can also say: 

7° T h e phase sys tems of first phases and a-phases with parame ters [AC,A], 
resp. second phases and a-phases with parame ters [/c, A] for the basis (n, i>), 
are possible to order in the following way: 

< a _ i < 7_i < a 0 < 70 < oci < 71 < • • •, (27) 

resp. 

• • • < 7_i < /3_i < 70 < A, < 7i < Pi < • • • • (28) 
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We discuss here interleaved phases systems for the basis (uyv). For the above 
orderings the neighboring phases satisfy inequalities 

0 < j v - av < 7T and - IT < yv - av+\ < 0, 1 
resp. \ (29) 

0 < fiv - j v < TT and - 7T < j3v - 7^+1 < 0. J 

We investigate now the third inequality in (25). Let us introduce new notation 

a 0 = a, 0Q = P - pn 

and substitute into the third inequality in (25) to obtain 

P7T < {j3o + P7r) - a0 < {p + 1)7T 

or 
0 < f3o - a0 < 7T 

and also 
0 < (3V - av < 7T. 

Thus for i / E ^ w e get from the above 

av < ftv < av+\. 

We can also say: 

8° The phase systems of first phases and second phases for the basis (it, v) in 
the new notation are possible to order as follows: 

• < CT_i < /?__! < a0 < Po < 6*1 < Pi < - • (30) 

In this ordering, neighboring phases of interleaved phases system (30) obey 
inequalities 

0 < pv — av < 7T, and — 7r < /?„ — cv^+i < 0. (31) 

If we apply formula (24) on phases of the interleaved phase system (30), 
resp. formula (23) on phases of the interleaved phase system (28), resp. formula 
(22) on phases of the interleaved phase system (27), then according to formulas 
(29), (31) we get the following relations: 

A) sgnєvє'u{-w) = 1, sgnє^Єu+ii-w) = - 1 

B) sgïiєvє
f

u{-w) = 1, sgnє'uєџ+i(-w) = - 1 

C) sgiïєvєv{-w) = 1, sgnєvєv+i(-w) = - 1 À 

(32) 

We investigate now two cases where the value of the Wronskian w satisfies 
—w > 0 or —w < 0. 

We discuss (32A): In the case — w > 0 we have 

sgneve'j, = 1, sgn^e^+ i = - 1 . 

Thus in the ordering of the interleaved phase system (30) we have: 
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Behind any proper (improper) first phase av follows a proper (im­
proper) second phase /?„, meanwhile behind any proper (improper) 
second phase j3v follows an improper (proper) first phase OLV+\. 

In the case — w < 0 we have 

sgnevev = - 1 , sgne'usv+i = 1. 

Thus in the ordering of the interleaved phase system (30) we have: 

Behind any proper (improper) first phase av follows an improper 
(proper) second phase f3v, meanwhile behind any proper (improper) 
second phase f3v follows a proper (improper) first phase a^+i. 

We discuss (32B): In the case —w > 0 we have: 

If /c > 0, then sgn^f^ = 1, s g n e ^ + i = —1. 

If /c < 0, then sgnivev = — 1, s g n e ^ + i = 1. 

Thus in the ordering of interleaved phase system (28) we have: 

If K > 0, then behind every proper (improper) a-phase j v with pa­
rameters [/c, A] follows a proper (improper) second phase (3V) mean­
while behind each proper (improper) second phase f3v follows an 
improper (proper) a-phase 7^+1 with parameters [/c,A]. 

If re < 0, then behind each proper (improper) a-phase j v with param­
eters [/c, A] follows an improper (proper) second phase f3v, meanwhile 
behind each proper (improper) second phase f3v follows a proper (im­
proper) a-phase 7^+1 with parameters [/c,A]. 

In the case — w < 0 we have: 

If /c > 0, then s g n f ^ = — 1, sgn £'„£„+1 = 1. 

If /c < 0, then sgn £„£:(, = 1, sgn^f^+i = —1. 

Thus in the ordering of interleaved phase system (28) we have: 

If re > 0, then behind each proper (improper) a-phase j v with param­
eters [re, A] follows an improper (proper) second phase (3V, meanwhile 
behind each proper (improper) second phase j3v follows a proper (im­
proper) a-phase 7^+1 with parameters [re, A]. 

If re < 0, then behind each proper (improper) a-phase j v with param­
eters [re, A] follows a proper (improper) second phase /3V) meanwhile 
behind each proper (improper) second phase /3V follows an improper 
(proper) a-phase 7^+1 with parameters [/c, A]. 

We discuss (32C): In the case — w > 0 we have 
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If A > 0, then sgnevev(—w) = 1, sgn £„£;„+1 = —1 . 

If A < 0, then sgneviv(—w) = —1, sgne ve v+\ = 1. 

Thus in the ordering of interleaved phase system (26) we have: 

If A > 0, then behind each proper (improper) first phase av follows 
a proper (improper) a-phase j v with parameters [ft, A], meanwhile 
behind each proper (improper) a-phase j v with parameters [ft, A] 
follows an improper (proper) first phase av + \. 

If A < 0, then behind each proper (improper) first phase av follows 
an improper (proper) a-phase j v with parameters [ft, A], meanwhile 
behind each proper (improper) a-phase j v with parameters [ft, A] 
follows a proper (improper) first phase av+\. 

In the case — w < 0 we have 

If A > 0, then sgnevev(—w) = — 1, s g n f ^ + i = 1. 

If A < 0, then sgneviv(—w) = 1, sgn £„£„+! = —1. 

Thus in the ordering of the interleaved phase system (26) we have: 

If A > 0, then behind each proper (improper) first phase av follows 
an improper (proper) a-phase j u with parameters [ft, A], meanwhile 
behind each proper (improper) a-phase j u with parameters [ft, A] 
follows a proper (improper) first phase oty+\. 

If A < 0, then behind each proper (improper) first phase au follows 
a proper (improper) a-phase j u with parameters [ft, A], meanwhile 
behind each proper (improper) a-phase j u with parameters [ft, A] 
follows an improper (proper) first phase av+i> 

4 The associated differential equation with 
parameters for the differential equation (q). 

To derive the relation between the first phase and the a-phase for basis (u, v) of 
differential equation (q) we use a special relationship of the associated differential 
equation (Qi) with parameters to the differential equation (q). 

Definit ion 4 The linear second order differential equation of Jacobi form 

Y" = Ql(t)Y, t e j , (Qi) 

with carrier 

o m ,m i 1 A V ( f ) i 3 A4(g,(<))2 i KXq'(t) 
Qx(t) - q(t) + -— ——- + - — . - , , „ ; . + 2K2-\2q(t) 4(K2-\2q(t))2 K2-\2q(t)' 

is called an associated differential equation with parameters [K, \] to the second 
order differential equation (q). 
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It is known that (see [2]): 
If (u, v) is a basis of differential equation (a), then (U. V) is a basis of differential 
equation (Qi), where 

KU + \u' _ KV + \v' 

x/V-A^l' vV-A^ | 
Let 7 be the first phase of the associated differential equation (Q\) to dif­

ferential equation (q). According to the definition of the first phase, 7 is a 
continuous function in J', which satisfies there the equation 

tan7(*)-^ ( t ) f-KU® + M® 
V(t) V *v(t) + \v'(t) 

except at zeros of the denominator Kv(t) + \v'(t). From this we infer the fol­
lowing: 

Theorem 4 The first phase 7 for basis (U) V) of the associated differential 
equation (Q\) with parameters [«,A] to differential equation (q) is an a-phase 
with parameters [/c,A] for the basis (u,v) of differential equation (q), where U, 
V are given by formula (33) and conversely. 

Theorem 5 Let q E C0(J). Then 7 E Ci(J). 

Proof Together with the phase 7 we consider a function 7 = j(t) defined in 
J by the formula 

7 
, , r -W(K2 - X2q(r)) , , x 

where x E _7" is a point at which KV(X) + \v'(x) ^ 0. Clearly 7 E C\(J). 
From formula (11) we obtain that 

j(t) = arctan((/€u(l) + Au/(L))/(r€L)(L) + \v'(t))), 

where arctan means an appropriate branch of the function defined in the interval 
J between neighboring zeros of the function K,v(t) + \v'(t). After differentiation, 
we have 

m_-__±^m 
except at zeros of KV + \V' . From (34) and from (35) it follows that in J except 
at zeros of KV + \v' we have j'(t) = Y(t)-

Functions 7 and 7 therefore differ by a constant. Because of (34) it follows 
that j(x) — j(x) and since zeros of KV + \v' are isolated in J, it follows that 
j(t) — j(t) in J and hence 7 E C\(J)-
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Let cv, /?, 7 be the first phase, resp. second phase, resp. a-phase with pa­
rameters [«, A] for the basis (u,v) of differential equation (q). By equation (35) 
with K = 1, A = 0 we get 

o / = ~ , (36) 

and with K = 0, A = 1 we have 

ß' = 

r 2 ( í ) ' 

wq(t) 

s2(tY 
(37) 

From equations (22), (23) and (24) it is possible to derive, with the use of (35), 
(36) and (37), the following relations: 

rcr sin(7 — cv) = єєA(—гv) 

r2cr2 sin2(7 - OL) = A2u;2 

— w -

a1 

-w(к2 -

i 
sm (7 — OĹ) 

a'i 
= A2Hj2 

tc2 - A 

sin (т — a) Л2 

ser sin(/J — 7) = €'SK(—W) 

s2cr2 sin2(/i - 7 ) = *:2w2 

-«/</. - л Ч)wЧ 2 _ - K

2П? 

/?'т' 

— ҺJ w 

(к2-X2q)q 

s i n 2 ( / ? - T ) к? 

Г5SІn(/3 — CV) = єє'(—w) 

Г252SІП2(/?-CY) = w2 

-w wq . 2ŕ 

-aTTSmiß~a) = 

a'ß' 
w2 

-q 

> . 

sin2(/? - a) 

w2 

-q 

(38) 

(39) 

(40) 

Other relations we get directly from equations (35), (36) and (37). We have 

" o2 ß' s 
1 r2 a' r 

-?, 

І a2 2 л2 
-7-2 = •* ~ Л ?' 

T ' cг2 /c2 A2g 
'/ c 2 ß' S 

(41) 

(42) 

(43) 
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Equations (41), (42), (43) will serve us in the following assertions and also in 
formulating theorems. 

From equation (41) we have: If — q > 0, resp. — q < 0, at a point t € J, then 
the functions a'', f3' have at t the same sign, resp. opposite signs. 

Theorem 6 Let q -̂ 0 in J. Then it follows that: 

If—q > 0, then phases a, (3 for the basis (u) v) will be both increasing 
or both decreasing in J. 

If —q < 0, then one of the phases a, (3 increases and the other 
decreases in J. 

Theorem 7 Let q / 0 in J. Then for the interleaved phase system (30) it 
follows that: 

If —q > 0, then phases av, f3v for the basis (u}v) will be both in­
creasing or both decreasing in J. 

If —q < 0. then one of the phases av, j3v for the basis (u, ?;) increases 
and the other decreases in J. 

From formula (42) follows: 
Let be given K, X G M with K2 -f A2 > 0. If K2 - X2q > 0, resp. K2 - X2q < 0 at 
a point t G J, then the functions a1', j 1 have at t the same sign, resp. opposite 
signs. 

Theorem 8 Let K2 — X2q ^ 0 in J. Then the following holds: 

If K2 — X2q > 0, then the phases a, j for the basis (it, v) will be both 
increasing or both decreasing in J. 

If K2 — X2q < 0, then one of the phases a, j is increasing and the 
other is decreasing in J. 

Theorem 9 Let K2 — X2q -̂  0 in J. Then for the interleaved phase system (27) 
the following holds: 

If K2 — X2q > 0. then the phases av, j v for the basis (u,v) will be 
both increasing or both decreasing in J. 

If K2 — X2q < 0, then one of the phases av, j v increases and the 
other decreases in J. 

From formula (43) follows: 
Let be given /c, A G K with K2 + A2 > 0. If ~ ^ > 0, q £ 0, resp. ^ ^ < 0, 
q jk 0, at a point t 6 J', then the functions j ' , /?' have at t the same sign, resp. 
opposite signs. 
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Theorem 10 Let K2 - \2q ^ 0, q ^ 0 in J. Then the following holds: 

K? — \2q 
jf > o. then phases j , f3 for the basis (u.v) will be both 

increasing or both decreasing in J. 

K2 — \2q 
If < o. then one of the phases j , (3 bdze (u, v) increases 

and the other decreases in J. 

Theorem 11 Let 
X2q 

/ 0, q / 0 in J. Then for the interleaved phase 

system (28) the following holds 

K2-\2q 
/ / • 

> 0. then phases j v , (3U for the basis (u,v) will be both 

increasing or both decreasing in J. 

K2 - X2q 
If < 0, then one of the phases j v , f3v for the basis (u,v) 

increases and the other decreases in J. 

Theorem 12 Let a G C3(J), af ^ 0. j G C\(J) be arbitrary functions and let 

y = a - r arccot 
к 1 / 1 

ЛO7 + 2 W 
(44) 

where arccot is an appropriate branch of the function. Then a is a first phase 
and j is an a-phase with parameters [K, \] for the basis (it, v) of the linear differ­
ential equation (q): y" = q(t)y with basis u = |O/| - 1/2 sin a, v = |O/|- 1 / / 2 cos a 
and carrier q = —{a,t} — (a')2, q G Co(J), where {• • •} denotes the Schwarzian 
derivative. Conversely, let (u,v) be a basis of differential equation (q), q ~ 
Co(J)- Let a, j be first phases, resp. a-phases with parameters [tc,A] for the 
basis (u, v). Then a G C3(J), <*' ^ 0, j G C i ( J ) and 

7 = a + arccot 
к 1 / 1 

л O 7 + 2 Vc7 
(44) 

Proof Besides function a let us consider functions u = |cv / |~1 / / 2sina, v 
|O/|~1//2 cos a. 

If we differentiate twice, then we successively obtain 

u = є\a 
z i l / 2 cos a + -(1/a'У sin a v = є\a 

'11/2 - sin a -Ь -(1/a'У cos a 



where e — sgn(a'), 

u" = e [ -{a , i] - (a')2] | a / | - i / 2 s i n a ? yu __ r__ { ^ / } _ ( a , ) 2 ] | a / | - i / 2 ( 

Note that 

u v 

We see that (u>v) is a basis of differential equation (_) with Wronskian 
iv = - £ and carrier _ =: - { a , r } - (a ' )2 , g £ Co(J)-

Since — = t a n a , it follows that a is a first phase for the basis (u.v) of 
v 

differential equation (q) with carrier q — - { a , l } - (a ' ) 2 . 
Further, we have 

KU + Ait' Acja'!"1/2 sin a + £A|a'|1//2 [cos a + | ( l / a ' ) ' s i n a] 

KV + A^7 tcla ' l - 1 /2 cos a + eAla'l1/2 [— sin a + ~(l/a')' cos a] 

[ f i 7 + hi1/®')'] sin a + cos a 
[f-j7 + ^ l / a ' ) ' ] cos a - s i n a 

cot(Y — a) sin a + cos a 1 
— i . — — tan 7 . 

cot (7 — a) cos a — sin a cot(7 — a + a) 
The function 7 is thus an a-phase with parameters [K,X] for the basis (u,v) of 
differential equation (_). 

Converse 

If a is a first phase and 7 is an a-phase with parameters [AC, A] for the basis 
(it.f), then we have: By the theorems before equation (34) it follows that 7 £ 
C\(J). From formula (36) and the first equation in (4) we obtain that a £ 
C 3 ( J ) , a ' 7- 0. 

From formula (1) we have r2 = u2 + i>2 and thus r r ' = uu' + 01/. By the 
definition of phase and formula (25) it follows that 

/ \ U t \ KU + XU' , 1\ -y 

t a n a u ) = —, tan j(t) = —, ra7r < 7 — a < (ra + l)7r. ra £ Z. 
V KV + Af' 

Using fundamental geometric formulas and the foregoing relations we get in J 
the equalities: 

, J. i 1 KV+Xv' V 1 1 

c o t ( T - a ) = _ c o t 7 c o t a + l = _ K U + A . ? + l 
v y cot 7 - cot a KV+\V' _ _ 
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(KV -f Xv')v -f (KU -f Xu')u 

(KV -f Xv')u — (KU -f Xu')v 

K(U2 -f T;2) -f A(im' -f vv') Kr2 -f Arr' 

A(uV — u'v) Xw 

K r2 rr' K 1 1 , , 
= - A ^ ~ ^ 7 = W + 2 ( 1 / a ) ' 

since from formula (36) we get that ~^- = •—, and by differentiation z l I Z- = 
~(l/O /y. Thus, we obtain formula (44). 

We show now other formulas for an a-phase with parameters [/c,A], which 
are interesting as well as useful in the theory of phases. 

T h e o r e m 13 Let a be a first phase and j an a-phase with parameters [K, A] 
for the basis (u,v) of differential equation (q), q £ CQ(J). Then the following 
holds: 

, x , , x 3 A4(o '(0)2 1 X2q" K\q' , x 

-{tanT(l),0 = q(t) + - 4 { ^ ^ + 5 ~ ^ + -^TT^- (45) 
Proo f After differentiation of the equation 

KU + Alt' 
tanTW = ^TI7 ' 

if we set j / = tan 7, then we get successively the following results: 

y> = (-W)(K2 - \2q)(Kv + \v')-2, 

y" = (-w)[-\2q'(KV + \v')~2 - 2(K2 - \2q)(Kv' + \qv)(KV + 

At/)""], 
y'" = (-w)[-\2q"(KV + \v')-2+4\2q'(Kv' + \qv')(KV + \v')-3 + 

6(K2 - \2q)(Kv' + \qv)2(KV + \v')~4 - 2q(K2 - \2q)(Kv + 

\v')~2 - 2\q'v(K2 - \2q)(KV + \v')~3}. 

Then 

-{y,t} 
3 _ ^ _ _ _ _ _ 
4 y'2 2 y> 

^[\4q'2(K2 - \2q)-2 + 4\2(KV' + \qv)2(KV + Xv')'2 + 

4\2q'(Kv' + \qv)(K2-\2q)-1(KV + Xv')-1}-]^[-\2q"(K2-

\2q)-1+4\2q'(Kv' + \qv)(K2-\2q)-1(KV + \v')-1+Q(Kv' + 
\qv)2(Kv + \v')-2 -2q- 2\vq'(KV + At/)] 

= 9+^A4
g '2(/c2-A2

9)2 + ÍA 2
9 'V-A 2 < ř ) - 1 +«:A í ' ( K

2 -A 2
g ) - 1 

and the assertion of the theorem is proved. 
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Theorem 14 Let q £ Ci(J)- Let 7 be an a-phase with parameters [/_, A] for 
the basis (u,v) of differential equation (q). Then the following holds: 

7 
к 2 - A 2

? ( _ w ) _ _ ^ _ _ 
(T4 

A2g' " # C - - A 3 Í , 

l - ^ - + 2 - ^ - ' T 

'AY' 2AY<т'- (#c2 - A2

?)<т" V - A 2 g ,2 
7 '" = Wl —г; 2 ^ D : (T 

(46) 

(7 cr_ (TJ 

where a is an a-amplitude with parameters [K} A] /or fhe basis (?i,?;). 

/cu + AM' • i i • 
P r o o f From (11) we get 7 = arctan — and between neighboring zeros 

KV + \v' 
of KV + Ai/, arctan means an appropriate branch of the function. By successive 
differentiation we get the above formulas. 

Corollary 1 Setting K = 0, A = 1 we get from (46) the formula for the deriva­
tive of the second phase for the basis (u}v), defined in [1], namely 

/?' = wqs'2, (3" = w(q's~2 - 2qs's~3)} 

/?'" = w(q"s-2-2(2q,s' + qs")s-3 + 6qs'2s-4) 

where s is the second amplitude for the basis (u, v). 

Theorem 15 Let a be a first phase and 7 an a-phase with parameters [/c, A] 
for the basis (u,v) of differential equation (q) in J. Then the following holds: 

{tana,ť} — {tan7 ,!}+{/V 
Jťo 

A2o|JT,г} 
к\q' 

к2 — \2q ' 

where symbol {• • •} denotes the Schwarzian derivative. 

P r o o f From formula (48), which we write in the form 

-{tai_7,t} = Qi, 

where 

a _ o m , 3 \4(g'(t))2 1 AY' K\q> 
A(K2-\2q)2 2K2-\2q K2-\2q' 

we get for K = 1, A -= 0, that 

— {tana,?!} == q. 

(47) 

(48) 

(49) 

91 



Furthermore, 

-{/V 
Jťo 

X2q(т)\dт,t}=- 3 AVM) 1 л 
2 „II 

+ -:-4 ( / c 2 - Л y 2 2 к 2 - Л У 

since if we set y = / |tc2 — A 2a(r) |dr, then we have: y' = |AC2 — A2o|, u" = 
Jt0 

—eX2q', y'" — — eX2q") where e = sgn(tt2 — A2_). Then 

-{/V 
Jío 

A 2
9 ( r ) | d r , 0 = 

З î Г _ 1 _ _ 

4 y'2 2 xt 

3 Л 4(g'(l)) 2 1 W 
+ x-

(50) 

4 ( / c 2 - A 2 g ) 2 2 t c 2 - A 2 o ' ) 

From relations (48), (49) and (50) we get the assertion of the corollary 

Corollary 2 If in formula (47) we set K = 0, A = 1 then we get the relation 
between the first phase a and the second phase (3 for the basis (u, v) of differential 
equation (q), as defined in [1], in the form: 

{ tana,r} — {tan/? ,*.}+{/W) 
Jto 

|dr , í} = 0. 
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