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Abstract 
The existence and uniqueness of a weak solution of special problem 

arising in linear theory of coupled thermoelasticity is proved by using 
Rothe method of discretization in time. First, model problem is derived 
from 3D theory of coupled thermoelasticity and then a-priory estimations 
of Rothe vector functions and their time derivatives for the case of clas­
sical boundary conditions and steady sources are shown. Approximative 
properties of the Rothe vector functions and their convergence to the weak 
solution as well as continuous dependence of the solution on the given data 
are also proved. 

Key words: coupled thermoelasticity, Rothe method of discretiza­
tion in time, bending of thermoelastic beam (plate), weak solution 
of BVP for coupled fields, abstract vector functions. 

MS Classification: 35D05 

1 Introduction 

1.1 Brief review of t h e result 

This paper presents an investigation of the solvability of one special problem 
within framework of the linearized theory of coupled thermoelasticity (LTCTh), 
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see [25] for more details. From the mechanical point of view, the problem 
represents evolution process of bending of the thermoelastic beam or infinite 
plate strip under steady load and heat source. We also restrict ourselves here 
only to classical boundary conditions for both unknown abstract functions u 
(vertical displacements) and d (temperature). 

Firstly at the beginning of our paper, we briefly mention the method of 
derivation of govern equations of our model problem (MP): by dimensional re­
duction we derive two linear differential coupled equations of MP from the 3D 
equation of motion (equilibrium condition) coupled with the 3D energy equa­
tion (heat condition equation). Then we formulate model problem as a mixed 
(initial-boundary value) problem. And, by the method of factorization, there 
is also shown that for special type of boundary conditions the problem is not 
coupled one and can be solved sequent ally. 

Next we introduce weak formulation of the MP for continuous case and 
then its semidiscrete "instant" formulation by using Rothe method (RM) of 
discretization in time (see [26], [27], for general description of this method; brief 
mention about RM and mainly another approach can be also find in [8]). As 
a consequence of well known Lax-Millgram Theorem we proof (for any given 
partition of time interval) existence and uniqueness of finite system of instant 
semidiscrete solutions. This system is later used for construction of abstract 
Rothe vector functions (RvF). 

All necessary a-priory estimations of the RvF are derived through a-priory 
estimations of the instant semidiscrete solutions. 

Finally, by using some technical means, there is also shown that a weak 
limit element of sequence of RvF is the unique weak solution of original MP. 
As a consequence of the uniqueness of the weak solution we can derive strong 
convergence of the whole sequence of RvF to the weak solution of MP. 

Different problems of thermoelasticity and coupled thermoelasticity (LTCTh) 
are derived and studied in various publications—see [1], [4], [5], [16], [18], [19], 
[23], for example. 3D and 2D theory of CTh was mathematically treated in [2], 
[21], [22], [28] and so on, while beam and plate theory was studied in [3], [29] 
but only for uncoupled cases. 

The meaningfull advantage of Rothe method we use herein for dealing with 
theoretic questions is that this is also a constructive method and can be therefore 
used directly for numerical solution (in combination with FEM, for example) of 
the problem. 

1.2 Origin of t h e P r o b l e m 

Govern equations of linearized theory of coupled thermoelasticity can be derived 
from the first and second law of thermodynamics and under special assumptions 
on behaviour of material (constitutive relations, properties of materials) and 
on course of evolution of thermodynamic process (see [11] or [15]). Detailed 
derivation is introduced in [7] or in czech in [24], for example, thus we briefly 
recall here first only starting system of field equations for nonlinear theory and 
then resulting linearized equations: 



On Solvability of Coupled Thermoelasticity Problem 41 

• The first thermodynamical law takes, in an admissible thermodynamic 
process, following form 

équation of motion 

ц = — divq + r , (1) 

div S + b = p U , (2) 

• set of reduced constitutive equations that are subjected to the thermo­
dynamics restriction (due to equivalence to local dissipation inequality and 
principle of material frame-indifference (see again [7] or [24], for example)), 

where 9 denotes actual absolute temperature, rj is entropy, q vector of heat 
flux, r inner heat source, U = U(x,y,z,t) = {i/i, 112,1*3} displacement vector, 
S stress tensor, b vector of body forces (per unit mass), p mass density. 

After application of all necessary axioms, assumptions and procedure of 
linearization we obtain resulting set of relations of linear theory of coupled 
thermoelasticity (see [7], [24], for example) which reads as follows: 

g = V0 , (3) 

q = K g , (4) 

E = i ( V U + V U T ) , (5) 

S = C[E] + ( f l - # 0 ) M , (6) 

div S + b = p U , (7) 

-div q + 00M • E + r = cd , (8) 

where #0 denotes reference absolute temperature (#0 == 290K, for example), g is 
thermal gradient, K tensor of thermal conductivity, E infinitesimal strain tensor, 
C[.] tensor of elasticity M tensor of the relation between S and temperature 0 
and c is specific heat. 

Equations (7) are well known Cauchy equations of motion, (8) is energy 
equation and (6) are constitutive relations (Duhamel-Neumann law). 

After introducing of assumption of zero inertia forces (U = 0), notation 
d = 0 - 0O and substitution of (5) into (6), (6) into (7), (3) into (4), (4) and 
(5) into (8) we obtain resulting system of equations for linear and quasistatic 
theory of coupled thermoelasticity in the following form 

div C[VU] + div (tfM) + b = 0, (9) 

div ( K W ) + 90M • VU + r = cd . (10) 

Remark 1 From the previous text we can easily see the origin of both therrno-
elastic coupling terms: the term 90M • VU comes from the (1) after expansion 
of entropy and linearization while "standard" coupling term div ($M) comes 
from Duhamel-Neumann law (6) (see also [7] for more details). 

Remark 2 The set of four linear equations (9) and (10) creates starting point 
for our next study of quasistatic problem of LTCTh. 
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2 Derivation of the Model Problem Equations 
2.1 Assumptions and Dimensional Reduction 

First, for the sake of simplicity, we assume: technical theory of beam (plate) 
bending (see [3], [10] or [29]);. prismatic cross section of the beam with constant 
height H and unit width B = 1; and elastic and thermal isotropic homogeneous 
material Next, because the domain of our MP has special geometrical shape, 
it is a "thin" body, we can essentially reduce dimensions of the problem. The 
assumption of body shape is used directly for dimensional reduction of the heat 
equation while technical theory of bending is used for dimensional reduction of 
the equilibrium equation. Thus dimensional reduction of the problem can be 
realized as follows. We start with heat equation. 

2.1.1 Dimensional reduction of the heat equation 

Due to assumptions on the shape of the domain we can assume only linear 
distribution of the temperature and heat source along the height of the cross 
section, thus we introduce 

ti(x,y,z,t) = i9(0XxJt) + yi9(1\x)t)} (11) 

r(x,y,zj) = r(0\x,t) + yr(1\x,t), (12) 

and then we define u\ = ~J/f~, where u = u(x,t) is a new notation of the 
vertical displacement of the beam (in the direction of component tt2 of the 
displacement vector U, where we put U = {u\(x, y,t),U2(xyt), 0}. Then we 
have divU = -§^u\ — — ^ ^ ( | ^ T ) (coupling term) and after multiplying energy 
equatin (10) by simple test function y° = 1 and using integration over cross 
section of the beam we obtain (for homogeneous and isotropic material) 

/ * dH{x,y,z,t) f% [* Ea 02 (du(x,t)\ 

Lu—^—dy+J_f
rix>y'z>t)dy+J_u9oirw{-^r-)ydy 

dd (H\ dd f H\ [1 dd(x,y,z,t) , 

+ %Uh%HJ=jv « y' 
where a = |-, k is coefficient of thermal conductivity of material, a is coefficient 
of thermal linear expansion of material and E is Young's modulus (suppose 
K,k,a> 0). 

Remark 3 For isotropic and homogeneous material we generally have (for 3D 
problems) M = m l , K = kl, m = -3(A -f 2/j)a (A, fi are well known Lame's 
coefficients and A > 0, /J, > 0), while for ID case we have m = —Ea (for beam) 
and m = — 1J^u (for infinity plate strip) and v is Poisson's coefficient. 

Now we can apply given boundary conditions, originally prescribed on body 
surface: we suppose here free exchange of heat with surrounding environment 
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(Newton boundary condition, see [1] or [16], for example). Thus we introduce 
convection boundary condition 

— + — (#-!?&) = 0 on surface y = + — 
og k 2 

- — + — ( $ - i?d) = 0 on surface u = -—-, 

where a ^ ^ are coefficients of thermal exchange on upper and down surface 
and $h,$d a r e temperatures of surrounding environment. Then the previous 
equation, obtained from (10), has the following form 

A2 

dx2 

dy. 

/>--<MT«f)> + T«f)> 
2 \ 2 / 2 

Finally, by using expansion (11) and (12) we obtain first equation for compo­
nents of the unknown couple of the functions {#(°), i^1)} (where we use notation 
0(0) = tf(o)(^)^(i) = tf(-)(Xjt)) in the form 

_ ^ _ _ ^ , _ ? H r m + _ ^ , _ „ _ | _ , (13) 

where the following notation has been used 

- 07.^/1 +«<_#<* 
-y = . 

<*h + ®d 

Second required equation can be then derived again by multiplying of the 
simplified equation (10) (for homogeneous and isotropic material) by function 
y1 = y and after that by its integration over cross section of the beam. Thus 
we have 

p fAfl n Ea 2 82 fdu\\ . f% dd J 

and for the next simplification we will use the following identity 

d2d d { M\ dd 

dy2 dy \ dy J dy 

After incorporating of this identity and boundary conditions on upper and down 
surface of the beam into former equation and also after its further simplification 
we obtain 

» £ TT / / / T\ \ / / r r \ \ \ --£ 

£/>*-f{т«f)-^)-т«-f)-^)}-/>^ 
è)Чf)H>ШfУ*=ľ.»f"* 
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Now we use the assumptions (11) and (12) to obtain second necessary equa­
tion. Thus we have obtained two resulting equations for couple {_9(°). t!^1)}, first 
one is the equation (13) and second one is the following equation 

^ _ ( 1 2 + 3__+__я)->_^-----.»> 

6 ahůh-adůd , m , л Ea ð2 ( дu\ ØØ(-) 
(14) 

_ » _ « „ . _ - . « _ . _ + „ ( l ) + g 

or after final simplification in the form 

a 2 ^ 1 ) /_„ _a „ \ 1 
ðæ2 1_ + 6 2 Я )І .<.) + J,( . Л _#., + .» 

Ea d2 (du\ důW 
+ oTд^{mҐa дt 

(15) 

where we supposed that coefficients of heat exchange on upper and down surface 
are equal (ah = a „ = i a ) . 

Remark 4 In the case ah = ad = a equations (13) and (14) (or (15)) are not 
coupled and can be solved independently More, as the component $(°) describes 
constant distribution of the temperature along the height of beam (plate) and 
"works" only on normal component of displacement (in the direction of beam 
axis), it has no sense in our model and therefore it can be "neglected" in our 
model problem. 

Due to last remark we see that the problem described by the set of two 
equations (13), (15) can be still further simplified: we can formulate our problem 
for only second component of unknown couple of functions—for i^ 1), while the 
equation (13) for first component has no sense now (within framework of our 
MP and linearized theory, see [25] for details, for example). 

Thus obtained govern equation of "heat convection" in our MP has the 
resulting simple form 

a_D td = D2d - a2d + a3D
2(Dtu) + r , (16) 

where we used following notation d s d^l\ r = A1^ + -£jjk($h — $d), Q>\ = a, 
a2 — jgs + |j|r, as = 0Q*Y- and D — ~, Dt = Jj (these two latter notations of 
derivatives will be systematically used in what follows). 

2.1.2 Equlibrium equation 

In this paragraph we just recall standard direct derivation of the equation of 
beam (plate strip) bending within framework of so called "technical theory" of 
thermoelastic beam (another acceptable approach is to use dimensional reduc­
tion for equation (9)). Normal component of stress tensor (in direction of axis 
of the beam) a = ax is given by 

a = <r(x,y, z,t) = —ED2u(x,t)y — Ead(x, u, z,t) 
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and thus bending moment has the form 

r— r — 

M = J crydy = -EJD2u - Ea j tiydy . 
2~ 2* 

Using assumption (11) and then again the same notation $ ^ tfi1) we obtain 

M = -EJD2u-EJad , 

and after that from "standard" condition of equlibrium (see [29], [16], [10] or 
[3], for example) we get 

D2(EJD2u) + D2(aEJd) = q, 

or (due to our assumptions) 

DAu + aD2d = q , 

where q = -gjj and J is moment of innertia of cross section. 

Resulting set of govern equations of our model problem (MP) for couple of 
unknown functions u = u(x,t), d = d(x,t) has the final form 

D4u + aD2d = q , (17) 

aiDtd = D2d - a2d + a3D
2Dtu + r . (18) 

2.2 Method of factorization—"uncoupled case" 

Classical boundary conditions for our MP can be divided into two disjoint 
groups: the first one—without any posibility to transform the problem into 
uncoupled one and the second one which enables to simplify and study problem 
as an uncoupled one. In this paragraph we briefly mention only the second 
group of boundary conditions (see [25] for more details). 

Boundary conditions representing simple support of the both ends of the 
beam as well as one clamped end of the beam and the other free end belong 
into this group. For the sake of brevity we restrict ourselves in this paper only 
to the first case—simple support of the beam. 

Thus the MP for unknown couple {u, ^} can be in this case formulated as 
follows 

{ D4u + aD2d = q in Q , 

aiDtd = D2d-a2$ + a3DtD
2u + r in Q , 

7(u) = u, yN(M) = M, T(tf) = £ on T , 

d = 0o o n ( ] 0 , 
where M = —EJ(D2u + a$) and w, d) M are given vertical displacements of 
support, prescribed temperatures and moment loads at the ends of the beam. 
Here, we used following notation 

L=(0,T), T G R + , T > 0 , fi = (0,L), LGR+, L > 0, 5 ^ = {0,L}, 

r = dn x I, tt0=Qx {0}, Q = Q x /, 
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and 7, 7^ means standard and Neumann trace operator (see [6] for example). 
By using method of factorization (see [12] for example), we can equivalently 

reformulate the original problem (Pss) to the three following 2 n d order problems 
for unknown triple of functions {M, u, $}: 

• Starting problem for the bending moment M = M(q, M) 

-D2M = q in Q , 

< P м Ь 7(м) = M onГ 

Coupled problem for the vertical displacement u = u(i?, M, u) 

-EJ(D2u + atf) = M in Q , 

W ì т ( м ) = Û on Г , 

• Coupled problem for the temperature d = d(u,r1 ??,^o) 

' aiDtů = D2ů-a2tf + a3DtD
2u + r in Q , 

7(í?) = ů on F , 

?? = ^0 o n Qo , 

and this system can be now easily simplified by eliminating of the term a3DtD
2u 

from the problem (P#) (see [25], for example). After that we obtain resulting 
uncoupled set of two problems of the 2 n d order which reads as follows 

• Independent (uncoupled) problem for the temperature d = ?/(M, r, d, $ 0 ) 

(ft) I 
(ai + aa3)Dtд = D2ð - a2д - fjDtM + r in Q , 

7(1?) = г9 on Г , 

ů = ŮQ on Qo 

• Directly dependent problem (it depends only on former one) for the dis­
placement u = u(i9, u, M) 

°«){ , -EJ(D2u + aд) = M in Q 

7(и) = û o n Г 

where the function M = M(x,t) can be find by solving the problem (PM) but 
this is a simple task and can be done even explicitly. 

Analogical approach can be used to simplification of the beam problem with 
following boundary conditions: "clamped end" (j(u) = u^j(Du) = u{) and 
"free end" (jN(D2u) = u2,jN(D3u) = u%). 
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3 Weak formulation of the problem 

3.1 Classical formulat ion—continuous case 

First, we recall in this section a definition of classical solution of our MP but 
just for the case of homogeneous boundary conditions and homogeneous initial 
condition. Thus we start here with following 

Definition 1 Let us suppose q, r E C(Q) are given continuous functions. Then 
couple of abstract functions 

{«,#} e c(i;C(4\tt)nc(2\(o,L))nc(1)(Q)) 

n C^(I;C^(Q)) x c(1\I;C(2\n)nc(Q)) 

such that 

(P)< 

D4u + aD2ů = q in Q , 

aiDtů = D2ů-a2ů + a3DtD
2u + r in Q , 

7(u) = 0, j(ů) = 0 on T , 
Du = 0 on {0} x I , 

D2u = 0 on {L} x I , 

ů = 0 in Q0 

holds is being to said classical solution of the beam problem within framework 
of linear theory of coupled thermoelasticity 

As it is well known, the classical solution does not exist even for very frequent 
and practical problems due to too restrictional requirements on smootheness of 
the solution itself, data of the problem and so on. This is the reason why we 
use more general notion of the solution. 

3.2 Weak formulat ion—continuous case 

In this paragraph we introduce new definition of the term solution of the MP. 
For this purpose we firstly give some useful notation which will be used system­
atically in what follows: 

• Linear space of kinematically admissable functions 

V = {ve H£(ti) n H2(Q) | Dv(0) = 0} , 

where Hk(Q) denotes standard Sobolev space (see [9], [6] or [14]), 

• Cartesian product of test functions spaces 

H = VxHi(n) , 
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• Bilinear forms defined on Hk(Q,) x Hk(£l) for k = 2 and k = 1 

a(ti, t/) = / n D 2 ^ ) D 2 ? j ( x ) d z for it, t; G H2(ft) , 

b(ti,t;) = /n.Dti(a;)Dt;(ar)da; for u}v G ff^) » 

• Bilinear forms defined on W x W 

-4(U, V) = a(ti, v) + b(i9, ry) + a2(tf, r / ) ^ ) for U, V G W , 

B(U, V) = ai(tf, ij)La(n) + a3b(u , 77) for U, V G ft , 

C(U,V) = crb(tf,t/) f o r U , V G « , 

where we used following notation 

U = {u,tf}, t iGV, tf Gftf(fi) , 

V = {v,r/}, V GV, 17 G HrJW , 

• Linear form defined on 7/ 

T(V) = (q,v) + (r,ti) f o r V E W , 

where (.,.) and (.,.) denote duality pairing on V* x V and H~1(Q)XHQ(Q)J 

respectively (see [17] for example). 

Definition 2 Let us suppose the couple of abstract functions 

{q,r}eL2(I;V*)xL2(I;H-') 

is given. Then an abstract function U = U(I) : I —*• % that holds 

U G L2(I;n)nAC(I;V x L2(fi)) (19) 

A U G F 2 ( I ; V x L 2 ( Q ) ) (20) 

(P2U)(0) = 0 in C(I)L2(Sl)) (21) 

and such that 

fA(V(t),V(t))dt- fc(V(t),V(t))dt+ f B(DtU(t),V(t))dt 

= f T(V(t))dt V V G L 2 ( I ; W ) (22) 

holds, is said to be a weak solution of the problem (P). 

4 Results 

Now we have prepared everything to able to formulate main result concerning 
existence a uniqueness of the weak solution of the problem (P). As we mentioned 
before we restrict oureselves here only to the steady case of heat source and load 
of the beam. 
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Theorem 1 Let us suppose functions {o,r} E V* XL2(Q) are given. Then there 
exists unique weak solution of the problem (P) (defined by (19)-(22)), that is in 
the sense of the Definition 2. 

Theorem 2 Under the assumption of Theorem 1 the solution depends contin­
uously on the given data. More precisely: If functions U 1 and U2 are two weak 
solutions of the problem (P) for the functionals T1 and T2, respectively, then 
following estimation holds 

IIU1 - U2 | | c ( /- ; / f l ( n ) x L 2 ( n ) ) < C\\Tl - T*\\H. 

where C is constant independent on T \ i ~ 1,2. 

5 Proof of the Theorem 1 

5.1 Existence of a weak solution 

In this paragraph, we prove just existence of the weak solution of (P). For this 
purpose we use Rothe method. At first, in the following subparagraph, we in­
troduce another formulation of the model problem—so called "instant" semidis-
crete formulation. Then we show existence and uniqueness of the semidiscrete 
solution and later on we show also its a-priory estimations. Finally, in the next 
subparagraph, we use these semidiscrete solutions for construction of approxi­
mation of weak solution. 

5,1.1 Semidiscrete formnlation—Rothe method 

Starting point for our method of proof of Theorem 1 is the method of dis­
cretization in time. Thus we need to introduce so called "instant" semidiscrete 
formulation and then we formulate and proof theorem on existence and unique­
ness of this "instant" weak solution. This is used later on for construction of 
R,othe functions. 

Definition 3 Suppose p £ N is given and define p(n> = 2^n ^p , n G N, and 

V^ = {t(n)}f:\, t(n)=jl(n), j = 0,l,...,p(n), /(n) = -^y. 

Then a couple of functions {z(n),Z(n)) G V x ff-ftQ) (z(n) = z(x,t(n)), £Jn) = 

$,(x,i(n))) such that 

(»), (V)n>) i 

» „Л _ ™kC<(n) ,л - c„(n) ( фŢ},v) - aЪ(Ąn,,v) = (q\n>,v) W Є V 

«1 ( Җ # S > ? ) +Ъ(^n),v) + a,(^),r1)LÁӣ) 
V / i 2 (П) 

+ «зb ('^ӣў-1, v) = И n ) , rf) Vr. Є Я0Ҷfì) 
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holds, where {gjn ) ,r jn )} € V* x L2(Q), qf = q(x,tf)), rf = r(x,tf), j = 

1 , . . . ,p(n\ is said to be "instant" weak semidiscrete solution in time ty* E I. 

For j = 0 we put {zo,0}, where a(zo,v) = (<T^) Vt; E V. 

Now we can formulate following 

Theorem 3 Let us suppose functions {g,r} E V* x L2(^) «^e given. Then 

for any given partition V^- — {t? }Vjzzi °f ^ie interval I there exists unique 

finite set {{zf\ ^n) }fl\} E [V x HfrO)]*™ of weak solutions {*{n),£Jn)} of 

the problems (Vj ), j — 1 , . . . ,p^n^ fl/tal is ZT? lhe sense of lhe Definition 3). 

Sketch of the proof: this statement follows directly from Lax-Milgram theorem. 
We just need to check if all assumptions of this theorem are satisfied. At first, 
we rewrite formulation of the problem (Vj ) as follows 

A(z\n\V) + ±-B(z\n\v) - C(ZJn),V) = 
Ť>(n)Л ) • ! ' /(») 

r.(n) V , _L т(») = -Íy/3(Zj^, V) + Tln,(V) VV€«, 

where {Zy } = {z- ,£• } and V = {v,rj} and then we need to prove elliptic-
ity of the composed billinear form A given by A = A + B — C (while all other 
assumptions are clear). But this can be easily done through equivalent reformu­
lation of the problem (Vj ) by multiplying both equations in (Vj ) by positive 
constants ffi > 0, a > 0 and then by their summation. Resulting bilinear form 
of the eqiuvalent problem is then 'H— elliptic (under assumption a > 0, see [25] 
for all details). 

5.1.2 Construction of Rothe's Functions 

For definition of Rothe vector functions we firstly use finite set of "instant" 
semidiscrete solutions (independent variable is x E -1) and then piecewise linear 
interpolation in time variable t E I. Latter theorem implies that for any D(n) 
we have the unique finite set of "instant" semidiscrete solutions 

{{Z;n)}J=1„..,p(»,} = {{z^,^}j=l ,(„,}, Zj"> G % 

and our goal is to use this set for construction of a sequence of vector abstract 
functions U(n) : I —> H approximating, in a suitable sense a weak solution of 
the problem (P). Thus, for any D(n), we can construct Rothe functions U^n) in 
the following way 

U<»>«) | / r , = ZW + ZjH ~nf
Jl(t - «W ), t 6 if 

where we used notation 

U(«) = {«(•»), *<»)}, j(n) = (f^,^), j = 1, . . . ,pW . 
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5.1.3 A-priory estimations of "instant" semidiscrete solutions 

We start proving of theorem 1 through a-priory estimations of "instant" semi-
discrete solutions. Using some special "symetrization" formulas (see [27] or [25]) 
and following " 1 s t fundamental relation" in semidiscrete form 

a(z j n ) - z £ \ , «<»> - z<f\) = ab(4"> - £ \ , - < " > - zf\) , (23) 

for j = 1,. .. , p(n) will be our basic tool for finding of estimations of function 

values of Z^ (resp. Uj- ). In the first step we choose as test functions V = 

Zj — Z[_x in problem (V\n ) thus we obtain set of following identities 

-4(Z[ n ) ,z[ n ) - Z & ) + 1^TB(Z^\ Z[n) - Z^\) - C(Z[ n ) ,z[ n ) - Z^\) = 

^ S ^ Z ^ f = l , . . . , j . 

In the second step we substite (23) and all mentioned auxiliary relations into 
these identities and after some calculations and their final summation we obtain 
following estimations for components of semidiscrete solutions 

l$B)llH>(n) < • I - | | r | |g- . " J " K J m m ( l , a 2 ) 

H ^ l l ^ ) -- ^ i > ^ l | r | | g ~ 1 + e | | g | | v ' for"' = 1'2'---

and from equivalence of the norms on H(£2) = HQ(Q) D H2(Q) we also have 
estimation 

H t W ) -- ^T^^II-'+^IMIv* min(T,a2) 

(n) and thus we finally have for function values of Zj- following 

I|Z<">II1M„„. < ||Z5»'||„ < (e) ! | | , | |v . + ^ T ^ I M I / . -

£ ' ° " ( ( S » 2 ' S ^ ) M B - = C I (24) 

where c > 0 is constant from equivalence of norms | |Z | |#2(Q) and ||jO2^||L,,(n) o n 

H(Q) and Ci > 0 is generic constant independent on V^n\ i i E N , 

Thus we have obtained not only a-priory estimation of Z:- (see (24)) but in 
addition to it also (see definition of U(n) and [13] or [27], for example) following 
statement 

Lemma 1 Suppose functions {*g,r} £ V* x F2(^) are given. Then, for Rothe 
functions corresponding to the problem (19)-(22)} following estimation holds 

U{n) E - M J ; H2(0) x IY1^)) V2^n) , n G N . 



5 2 Jin V. HORAK 

Similarly we obtain estimation for difference quotient of semidiscrete solu­
tions. First, we substract problem (V^\) from (f\n)) for i = 2 , . . . , j . Then, in 

the next step, we use as a test function V = {0, $t ^J;1""1} in resulting identities 

A(z[n) - z£\, V) + ^ £ ( z ( n ) - zt\, V) - C(Z(n) - Z(n) , V) = 

- ^ ( Z ^ - Z ^ V ) , fori = 2,...,i 

and for further calculation in last set of identities, similar to (23), we use "2n d 

fundamental relation" in semidiscrete form (playing crucial role for estimation 
of diference quotient of TJj) in the form 

Sn) __ (n) (n) _ (n) (n) _ (n) 
/ f j ^f-1 ^ - 1 ^ - 2 ft 2'~M — 
1 /(n) /(n) ' /(„) 1~ 

^(n) __ An) (n) _ (n) (n) _ (n) 

= ttb -r-r , -7-T 77-r ) , ( 2 5 ) 
V l(n) /(«) /(n) ' v 

for i — 2,. .. , j . After similar procedure like in previous and after some simpli­
fication we obtain 

2<>) _ 2<>) 

/(») 
< I Av___p_3i + y_TTOi j ||p|| _ C2 (26) 

where C2 is again constant independent on D(n),n G N. Now, similarly like 
in previous case, besides the a-priory estimation of diference quotient, we have 
obtained also easily provable (see (26) and definition of RvF) following additional 
result: 

Lemma 2 Suppose functions {q,r} £ V* x L2(Q) are given. Then, for Rothe 
functions corresponding to the problem (19)-(22), following estimation holds 

U ( n ) £ H\I] H2(Q) x ___($_)) VD ( n ) , n G N . 

5.1.4 A-priory estimations of abstract vector Ro the functions 

From estimation (24) and from definition of functions U ( n ) we immediately have 
(see again [13], [27], for example) 

l|u<n)(f)||« < d 

and because, as we can easily check, the Rothe functions are measurable and 
integrable in Bochner sense, we also have 

Hu(n>||_.(/:«) = /V(n)COI& d'< (oi)2r 
Jo 
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and we see that U ( n ) E L2(I;7i) for any HEN. Then we can choose a weakly 
convergent subsequence {U (n fc)}^i1 from sequence {U ( n )}^L1 to an element 
U E L2(I;'H), that is 

U( n *) JL ,T j \nL2(I;7i) for k -» oo. (27) 

Our goal is to show that just this "weak" limit element U is exactly weak 
solution of the problem (P). 

For this purpose we first assign to function U ( n ) a piecewise constant abstract 
function W ( n ) : I —» [L2(Q)]2 which represents time derivative of function U ( n ) . 
Thus we define 

w ( B ) (o) = -£- (z< B >-Zo) , Zo = ^ o ' ° > ' 
and 

w í n ) w !/<-> = -èгMҐ - zí-i)- *є I> j = >• • • • >p(n) > 

where Ij' = m n

v t j )). We see that following estimations hold 

l|W<n>(OI|jr-(n)xi.a(n) < C*, 

| | W C > | | L a ( / ^ - ( n ) x i a ( n ) ) = / ||W<»>(.)||2r-(n)xi.a(n)<-< < (C 2 ) 2 T. 
JO 

Thus, on the top of just proved estimations, we obtained immediately statement 
concerning derivative of RvF. 

L e m m a 3 Suppose functions {q,r} E V* x L2(Q) are given. Then, for deriva­
tives in time of Rothe functions corresponding to the problem (19)-(22), follow­
ing estimation holds 

DtJj(n) a W ( n ) £ ^ ( j . / f 2 ( ^ x L 2 ( Q ) ) V 2 ) ( n ) ^ n £ N . 

Last estimation also implies W ( n ) E L2(I;V x F2(-^)) for any n E N. 
Thus we can again choose a convergent subsequence { W ( n ^ } ^ x from sequence 
{W(n f c)}^= i (see (27)) and an element W E L2(I] V x L2(tt)) such that 

W ( n ^ ) - ^ W i n L 2 ( I ; V x L 2 ( f i ) ) for / -> co . (28) 

5.1.5 Properties of U , W and passing to the limit for n — • oo 

From definition of antiderivative of abstract function (see [13], [27], for example) 
and from previous sections and properties of Rothe functions we see that integral 
fl W(T)dT = w(t) exists and w E ^4C(I; V x L2(Q)) and we have 

Dtw(t) = W(t) in B2(I; V x i 2(f i ) ) . 
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Thus we also have 

W<')(r)dr = U(l)(t) - U ^ ( 0 ) , where U ^ ( 0 ) = Z 0 = {z0,0} / 
Jo 

and after that we obtain, after passing for l —• oo, following identity 

w(t) = JJ(t) - Z 0 for a.e. t E I (in the sense of L2(I; V x L2(Q)). 

Then we also see U E AC(I; V x L2(Q) and such that 

DtU(t) = W(t) in V x L2(Q) for a.e. t E J. 

Finally we obtain relation 

U(ť) = Z 0 + / W ( r ) d r 
Jo /() 

and from this relation we immediately obtain identity 
U(0) = Z o in C(I;VxL2(Q)) 

representing initial condition of our problem. 
Until now we only checked properties of limit elements U, W but we also 

need to verify if the element U holds integral identity from Definition 2. For 
this purpose we need to go back to the problem (Vj ) and because it does 
not depend on variable t E I we start with its reformulation. Then, we define 
piecewise constant approximation of Rothe function U " ' E L2(I;n), that is 

worn - / z-° l f * = °-
U w-\zS'> if ie(0,T)n(4Vf> 

(see also [27] or [25]) and later on, through definition of functions U^n) and 
W ( n ) and for any function V E L2(I;H) we obtain "instant" form of (fjni)) 

A(fjW(t),V(t)) - C(U«(t),V(t)) + B ( W % V ( f ) ) = F(V(t)) 

for a.e. t E J, / = 1,2,.... After integration of this identity over I, we ob­
tain following form of the integral identity (22) written for piecewise constant 
functions 

/ A(fjW(t),V(t))dt- C(fjW(t),V(t))dt 
Jo Jo 

+ / B(W^(t\V(t))dt= I T(V(t))dt VVeL2(I;n). (29) 
Jo Jo 

The proof of the Theorem 1 can be now finished as follows. First we note that 
following implication holds for l —+ oo (that is for JJ(V(1^) —> 0 + ; for exact proof 
of this statement see [27]) 

JJ(J) _Z_ u in L2(l; n) = > U ( 0 -^ U in L2(I; H) 

and then that all terms in last identity (29) are continous for passing I '—* oo. 
But this can be proved through some calculation (see [25]) and thus the proof 
of existence of weak solution of the problem (P) is completed. 
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5.2 Proof of uniqueness 

For the proof of uniqueness of the solution we assume there exist two weak 
solutions Ui and U2 of the problem (P). Then we define U = Ui — U2 and 
we immediately see that relations (19)—(22) are also fulfilled for this function. 
Next, by choosing test function in the form V = {^,0} we obtain following 
simplified form of equation (22) for function U 

/ a(u(t),v(t))dt-a [ b(ti(t),v(t))dt = 0 Vv £ L2(I;V) (30) 
Jo Jo 

and similarly by choosing V = {0,77} we have 

(b(tf(*), r)(t)) + a2(ti(t), r)(t))L2m)dt + 
J0 

+ I (ax(Dtd(t), rj(t))L2(a) + a3b(Dtu(t), rj(t)))dt = 0 Vry G L2(I; Hl
0(Q)). (31) 

Jo 

Then, for arbitrary but fixed t* £ I we define special test function in the form 

v m - / U(t) = {u(t),m} for t 6(0,.*), 
w ~ \ o ioite(t*,T), 

and after its substitution into the previous identity we see that the first two 

terms are non-negative while for two last terms we have 

ft* 

(ai(Dt<d(t), m)L2(n) + a3b(Dtu(t)J(t)))dt = / 
Jo 

^ 1 Dt(\\m\\l3(n))dt + a3JQ b(Dtu(t), Щ) di . 

Last term on the right side of the latter relation can be expressed more exactly 
by special selection of the test function in (30) (v = Dtu G L2(I; V)) as it can 
be is seen from following (3 r d "fundamental relation") 

a3 f b(Dtu(t),ti(t))dt=^ f R(Dtu(t),u(t))dt=^ [ Dt(\\u(t)\\*)dt. 
Jo a Jo *<* Jo 

From this and previous relation we finally get 

rt* 

(ai(Dtd(t), d(t))L2{n) + a3b(Dtu(t), d(t)))dt = 
/o 

= yll^*)llL(a) + | |ll^(l*)lll2(n) (32) 

where we used initial condition and definition of the norm on H(Q). Finally, 
from (31) and (32) we obtain estimation 

0>yll^)llL(a) + glP2«(^)llL(a) 
showing $(t*) = 0 and u(t*) = 0. The point t* G I was arbitrary chosen and 
thus we have U(t) = 0 for a.e. t G J and proof of uniqueness is finished. 

/' 
Jo 
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5.2.1 Consequences of uniqueness of t h e solut ion 

Now we can formulate some consquences of the statement of Theorem 1, namely 
of uniqueness of the solution of the problem (P) . 

First we introduce direct consequence of uniqueness of the solution—state­
ment concerning convergence of the whole sequence of Rothe functions. 

Corollary 1 The whole sequence of the Rothe functions {\3^}^zl converges 
weakly in L2(/;7Y) for n —» oo to the weak solution of (P) . 

This lemma can be proved by contradiction argument and thus it follows imme­
diately from uniqueness of the solution of the problem (P). But we can obtain 
even more—that is following statement 

Corollary 2 The sequence of the Rothe functions {U^}^L1 converges strongly 
in C(I\ Hl(Q) x L2(Q)) for n —* oo to the weak solution of(P) (that is uniformly 
with respect to t £ I). 

Proof: is based on one generalization of Arzela-Ascoli Theorem (see [13], The­
orem 1.6.9, p.42, for example) as well as on compactness of imbedding of space 
V x HX(Q) into space H\tt) x i2(J2). 

Let us first remind we have U' n ) - ^ U in L2(/;/Y) for n —• oo and 
r|j(n)joo^ c C(I;H1(Q) x L2(fi)). Moreever, from a-priory estimation we see 
that set of Rothe functions {U^J-JJLj is not only bounded but also equicon-
tinuous and we also can easily verify that for any i £ I the set {TJ^n\t)}^L1 is 
relatively compact in H1^) x F2(l^). Thus, according to generalized Arzela-
Ascoli Theorem, there exists subsequence {U(^nk^}^i1 such that \j(nk) —> U in 
C(I; H1^) x L2(Q)) (in "strong" sense) and we immediately see that U = U. 
Next, from uniqueness of the solution, we see the same strong convergency holds 
also for whole sequence {U^n)}^cL1 and statement of Corollary 2 is proved. 

Now, Theorem 2 can be also easily proved: its statement is just direct con­
sequence of the Corollary 2, a-priory estimation (24) and definition of RvF. The 
constant C and estimation itself from Theorem 2 have thus exactly following 
form 

UU1 - U 2 | | * < max ((of, 4 ^ . ) | | ^ - T*\\H* . 

6 Conclusion and future generalization 

Using of Rothe method of discretization in time we have proved existence and 
uniqueness of the weak solution for the problem representing evolution of the 
bending of beam or infinite plate strip. Besides, we have also proved some 
aproximative properties of the Rothe functions and continuous dependence of 
the solution on data of the problem. 

The main result presented here can be generalized in many ways. First, 
some a-priory estimations of the semidiscrete solutions for special type of non-
steady heat source are given in [25], for example. Then we can also prove 
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similar result for "full linearized model": instead of model problem with un­
known couple of functions {u,d} we can consider unknown quadruple of func­
tions {{u^\ u^}, {i^1), fl(2^}} representing normal and vertical displacement 
and constant and linear distribution of temperature along height of cross sec­
tion. Analogical result can be obtained for Riessner-Mindlin-Timoshenko model 
described by quintuplet of unknown functions {{u^\u^2\ u^}, {^^\ 'd^}}. 
Next, another possible way of generalization can be as follows: more general 
heat source, time evolution of the beam load, non-classical boundary condition 
representing rigid or elastic support and with or without friction, inner obsta­
cles and so on (see [12] or [25], for example). Another interesting example of 
possible generalization of our result can be the special problem of two beams in 
contact which but without infleunce of heat was studied in [20], And of course, 
one can take into consideration also such a type of boundary condition where 
both components of unknown abstract vector function U are mutually coupled: 
realisation of contact can lead to heat transfer, see also previous example of two 
beams, for example. 
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