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Abstract 

A variety V has the Congruence Extension Property, briefly CEP, if 
for each A £ V, every subalgebra B of A and each 0 £ Con B there exists 
$ £ Con A with <1>|B = 0. It is known that varieties having CEP cannot 
be characterized by a Mal'cev condition. It motivates us to give another 
condition using term functions characterizing varieties having CEP. 

Key words: variety of algebras, congruence, CEP, principal tole
rance trivial variety. 
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If A is an algebra, denote by Con A the lattice of all congruence of A. If 
a,b are elements of AL, denote by 0^(a , b) the least congruence on A containing 
the pair (a,b), the so called principal congruence generated by (a,b). If B is 
a subalgebra of A and 0 £ Con A, denote by 0|H the restriction of 0 onto H, 
i.e. e|J3 = On(Sx5) . 

Recall (see [1]) that a variety V has the Congruence Extension Property, 
briefly CEP, if for each 0 £ ConH there exists $ £ Con A such that $\B = 0 ; 
<$ is called the extension of 0 . 

It was mentioned already in [1] that varieties having CEP cannot be charac
terized by a Mal'cev condition. The paper [2] contains another condition using 
term functions characterizing varieties which are congruence permutable and 
have CEP . The aim of this paper is to generalize it also for non-permutable 
varieties and for varieties having trivial principal tolerances, see [3]. If V is 
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a variety and a?, y, Z\,..., zn are free generators, denote by Fv(#,y, z\,..., zn) 
the free algebra of V generated by the set {xiy,z\,... ,zn}. For the sake of 
brevity, denote by z the sequence z\,..., zn. 

T h e o r e m 1 For a variety V. fhe following conditions are equivalent: 

(1) V has CEP; 

(2) for every (2 -f- n)-ary terms P i , . . . ,p* satisfying 

Pi(y, x,z)= Pi+\(x, y,z) for i = 1 , . . . , k - 1 

/here exisf 6-an/ terras oi,..., om such /hatf 

pi(.r,y,;T) = oi (;r,y, z, y,pi(x, y,z),pk(y, x, z)) 

qj(y)xJx,y,p1(x,y,z)Jpk(y,x,z)) = qj+\(x,y,x,y}p\(x,y1z),pk(y,x,z)) 

for j = 1, . . . , r a - 1 

Pk(y,x,z) = gm(y,^,^,y,Pi(^,y,^),pjb(2/,^,^))-

Proof (1) :--> (2): Let V have CEP, let yl = Fv(x,y,zi,.. . , z n ) , and pi , ...,pk 

be (2 -j- n)-ary terms satisfying 

Pi(y,x,z) = pi+1(x,y,z) for i = 1 , . . . , k - 1. 

Let i? a subalgebra of A generated by the four elements: #, y, pi(«r,y,iT), 
pk(y,x,z). Then clearly {p1(x1y,z)}pk(y1x,z)) £ 6,4(#,y) of Con A However, 
P\(x,y, z)y pk(y,x,z) £ H and V has CEP, thus also 

(pi(x,y,z),Pk(y,x,z)) e 0A(x,y)\B = e ^ ( ^ , y ) . 

Hence, there exist binary polynomial functions (f\,..., (pm over I? such that 

pi(#,y,?) = <£>i(£, y)> Pfc(y,x,z) = <pm(y,x) 

and 
<^(y,x) = y? i+i(z,y) for j = l . . . , m - 1. 

Since B has four generators x, y, pi(ar,y, z), p&(y, #,z), there exist 6-ary terms 
g i , . . . , qm such that 

<^(a,6) = qj(a,bix,yJpl(x,y,z),pk(y,xJz)) for j = l , . . . , m . 

Hence, we obtain (2). 
(2) => (1): Let V be a variety satisfying (2) and A £ V. Let H be subalgebra 

of A, let a,b,c,d £ H and (c,^) £ G^(a ,^ ) |5 . Hence, there exit (2-f n)-ary 
terms p i , . . . ,p& (for some n > 0, k > 1) and elements e i , . . . , en of A such that 

c = pi(a, 6, e i , . . . , en) , d = Pk(b, a, e x , . . . , en) 
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and 

p;(b,a,ei,...,en) = pi+1(a, b,ei,..., e„) for i = 1 , . . . ,k - 1. 

By (2), there exist 6-ary qi,... ,qm with 

c = qi(a, b, a, b, c, d), d = gm(b, a, a, b, c, d) 

and 
qj(b, a, a, b, c, J) = g j + i (a, b, a, b, c, J) for j = 1,. . ., m — 1, 

thus (c,d) G &B(a,b), i.e. 0^(0,6)11? C 0j3(a,b). The converse inclusion is 
trivial thus V satisfies the Principal Congruence Exclusion Property By [1], it 
is equivalent with CEP. D 

The condition (2) of Theorem 1 can be essentially simplified provided V 
satisfies one interesting condition on tolerances. Let A be an algebra. By 
a tolerance is meant a reflexive, symmetric and compatible binary relation on 
A, i.e. it is a reflexive and symmetric binary relation on the support of A which 
is a subalgebra of the direct power A x A. The set of all tolerances on A 
forms a complete lattice, see e.g. [4], hence, for any a,b of A there exist the 
least tolerance containing the pair (a,b). This tolerance is denoted by TA(a,b) 
and called the principal tolerance generated by (a,b). An algebra A is called 
principal tolerance trivial, see e.g. [3], [5], if TA(a,b) = QA(a,b) for any a, b of 
A. A variety V is principal tolerance trivial if every A. of V has this property. 

Principal tolerance trivial algebras and varieties were characterized in [3], [5] 
and [6]. Especially, every congruence-permutable variety is principal tolerance 
trivial. However, also the variety of all distributive lattices is principal tolerance 
trivial although it is not permutable, see [4]. 

Varieties having CEP were characterized also among principal tolerance triv
ial varieties, see e.g. the Corollary of Theorem 5.5 in [4]. The aim of the next 
theorem is to characterize varieties which are simultaneously principal tolerance 
trivial and have CEP. For the convenience of the reader, let us mention one im
portant characterization of principal tolerance trivial varieties, see Theorem 4.19 
in [4]: 

Proposit ion 1 For a variety V. the following conditions are equivalent: 

(1) V is principal tolerance tolerance trivial; 

(2) for each A G V and every a, b, c, d of A, 

TA(a,b) .TA(c,d) .TA(a,b) = TA(c,d) .TA(a,b) .TA(c,d). 

Now, we are ready to formulate our result: 

Theorem 2 For a variety V. the following conditions are equivalent: 

(1) V is principal tolerance trivial and has CEP; 
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(£) for every (2+n)-ary terms fyg there exist 8-ary terms pyqyr such that 

f(xyyyz) = q(f(yyxyz)yg(xyyyz)yw) 

p(xyyyw) = q(g(xryyz)yf(yyxyz)yw) 

p(yyxyw) = r(f(yyxyz)yg(xyyyz)yw) 

g(yyxyz) = r (g(xyyrz)y f(yrxyz)yw)•;, 

where, for the sake of brevity, w denotes the sequence: xyyy f(xyyyz), 
f(yyxrz)y g(xyyyz)y g(yyxyz). 

Proof (1) =-> (2): Let V be a principal tolerance trivial having CEP. Let 
A = Fv(ar, yy z\y..., zn) and / , g be (2 + n)-ary terms. Then clearly 

(/(*> y> 5), f(y> x> zfi € TA(xy y)y (g(xy yy z)yg(yy xy z)) £ TA(xy y) 

whence 

(/(«,IF, z)yg(yy xy z)) £ TA(xy y) • TA (f(yyxy z)yg(xyyy z)) • TA(xy y). 

Since V is principal tolerance trivial, we can apply Proposition 1 to obtain 

if{*&*),§($,*>*)) € 
£ TA (f(yyxy z)yg(xy yy z)) • TA(xyy) • TA (f(yy xyz)y g(xy yy z)). 

Let B be a subalgebra of A generated by the six generators: x, y, f(xyyyz)y 

f(yyxyz)y g(xyyyz)y g(yyxyz). Since V has CEP, the foregoing relation yields 

{f{Xr¥fZ),§(y,%rZ}} e 
€ TB (f(y>%> z),g(x>y, z)) • TB(xyy) • TB (f(yyxy z)yg(xy yy z)). 

Hence, there exist elements cyd E B with 

(f(xyyyz)yc) E TB(f(yyxyz)yg(xyyyz)) 

(cyd) E TB(xyy) 

(dyg(yyxyz)) E TB(f(yyxyz)yg(xyyyz)). 

Thus 
c = p(xyyyw)y d = p(yyxyw) 

for some 8-ary term py where w denotes the sequence: xy yy f(xy yy z)y f(yy xy z)y 

g(xyyyz)y g(yyxyz) of generators of By and, moreover, there exist 8-ary terms 
qyr with 

f(xyyyz) = q(f(yyxyz)yg(xyyyz)yw) 

c = q(g(xyyyz)yf(yyxyz)yw) 

and 

d = r(f(yyxyz)rg(xryz)yw) 

g(yyxyz) = r(g(xTyrz)yf(yrxrz)rw). 
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Altogether, we obtain (2). 
(2) => (1) : Let A E V, V satisfy (2) and a , b , c , o > , g be elements of A. At 

first, we prove that V is principal tolerance trivial. Suppose (x,y) E TA(a,b) • 
TA{c,d) • TA{a,b). Hence, there exist z,v £ A with 

{*, z) E TA(arb), (z, v) E T^(e, J), (», y) E r A (o- * ) . 

Therefore, there exist (2 -f n)-ary terms / , f and elements c i , . . . , e n E -4 such 
that 

ar = / ( a ,* ,e ) , z = / (b , a ,e ) and v = 0(a,&,e), y = a(b ,a ,e) . 

By (2), there are 8-ary terms p, a, r with 

# = / (a ,b , e ) = ${z,0,«,i, .«, z, », y) 

p(a, b, a, b, x, 2:, 0, fjf) = 0(0, z,«, A, z, z, 17, y) 

аnd 

Hence 

p(b, a, a, b, æ, z, 0, ^) = r(z, 0, a, I, #, z,0, u) 

y = §Џ,щèђ = r( î ; ,z ,a,b ,x, z,v,y). 

(*,p(«,6,*,*,*,»,»,f)) E T&(*,*0 C TA(c,a*) 

(p(b ,a,a,b ,^,z,v,u),w) E T A ( ^ ) CT^(c , J ) 

thus (ic,y) E TA(c,d)+ TA(aJb) *TA(c,d). By Proposition 1, A and hence also 
V is principal tolerance trivial. 

Now, we prove that V has CEP. 
Let again A E V and B be a subalgebra of A. Let x, y,a, b E B and suppose 

(x}y)eTA(a,b))®~ 

Since w© = wal-3 = T,4(a,a)|i3, we have also 

(*, y) E TA(a, b)\B • u;B • TA{a, b)\B . 

Hence, there exist z,v E B with 

(*,z) E TA(a,b)|H, {*,*) E w», (»,*} € TA{u,b)\B. 

Thus there are (2 -f n)-ary terms / , # and elements ci, • • • ,«n E A with 

* = / («,*,€) , z = / ( i , a , e ) 

and 

v = §r(a, fc, e), y = #(!>, a, e) . 
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By (2), there exist 8-ary terms p,q, r such that 

x = q(z,v,a,b,x,z,v,y) 

p(a,b,a,b,x,z,v,y) = q(v,z,a,b,x, z,v,y) 

p(b,a,a,b,x,z,v,y) = r(z, v, a,b,x, z,v, y) 

y = r(v,z,a,b,x,z,v,y) 

whence 

(x,p(a,b,a,b,x,z,v,y)) G TB(z,v)=uB 

(p(b,a,a,b,x,z,v,y),y) G TB(z,v)=uB 

and (p(a,b,a,b,x,z,v,y),p(b,a,a,b,x,z,v,y)) G TB(a,b). So we have (x,y) G 
WB ^TB(a,b)^uB = TB(a,b). Hence, A. and also V has PCEP. By [1], V has 
CEP. • 
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