Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Marek Jukl
Grassmann formula for certain type of modules

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 34 (1995), No. 1, 69-74

Persistent URL: http://dml.cz/dmlcz/120334

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1995
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

Grassmann Formula for Certain Type of Modules

Marek JUKL*
Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic
E-mail: jukl@risc.upol.cz

(Received June 30, 1994)

Abstract

The article is devoted to the validity of Grassmann formula and Steinitz theorem for \mathbf{R}-space in the sense of [1]. It is shown that the formula and the theorem above are true if the powers of the maximal ideal J of \mathbf{R} fulfil the descending chain condition.

Key words: R-space, bases of R-space, dual space.
MS Classification: 13C99

According to [1] we define:
Definition 1 Let \mathbf{A} be a local ring. Let \mathbf{M} be a finitely generated \mathbf{A}-module. Then \mathbf{M} is an \mathbf{A}-space of finite dimension if there exists $\underline{E}_{1}, \ldots, \underline{E}_{n}$ in \mathbf{M} with
(a) $\mathbf{M}=\mathbf{A} \underline{E}_{1} \oplus \cdots \oplus \mathbf{A} \underline{E}_{n}$
(b) the map $\mathbf{A} \rightarrow \mathbf{A} \underline{E}_{i}$ defined by $x \mapsto x \underline{E}_{i}$ is an \mathbf{A}-isomorphism for $1 \leq i \leq n$.

Remark 2 A module \mathbf{M} over a local ring \mathbf{A} is an \mathbf{A}-space if and only if it is a free finitely dimensional module.

Definition 3 A local ring A having the maximal ideal \mathcal{J} with

$$
J^{m}=\{0\} \wedge J^{m-1} \neq\{0\}
$$

is called a local ring of order m.

[^0]Agreement 4 In the following text we denote by A the local ring of order m (introduced by 3) with the maximal ideal J. By \mathbf{M} we denote the finitedimensional \mathbf{A}-space. By \mathbf{M}^{*} we denote the \mathbf{A}-module of linear forms \mathbf{M} into A. Evidently, \mathbf{M}^{*} is a \mathbf{A}-space (dual \mathbf{A}-space to \mathbf{M}).

Any submodule of \mathbf{M} being also an \mathbf{A}-space will be called an \mathbf{A}-subspace.
Proposition 5 Let $\mathcal{G}=\left\{\underline{E}_{1}, \ldots \underline{E}_{r}\right\}$ be some system of generators of a \mathbf{A} space \mathbf{M}. If $\underline{U}_{1}, \ldots, \underline{U}_{k}$ are linearly independent elements from \mathbf{M} then:
(1) $k \leq r$
(2) by a suitable renumbering of elements $\underline{E}_{1}, \ldots \underline{E}_{r}$,

$$
\mathcal{H}=\left\{\underline{U}_{1}, \ldots, \underline{U}_{k}, \underline{E}_{k+1}, \ldots, \underline{E}_{r}\right\}
$$

will be a set of generators of M .
(3) If the system \mathcal{G} is linearly independent then \mathcal{H} is also linearly independent.

Proof If $m=1$ [i.e. $J=(0), \mathcal{J}^{0}=(1)$] then \mathbf{A} is a field and in this case the proposition is well known. Further, let us assume $m>1$.

First, let $k=1,(1)$ is fulfilled evidently.
(2): let \underline{U}_{1} be linearly independent,

$$
\begin{equation*}
\underline{U}_{1}=\sum_{i=1}^{r} x_{i} \underline{E}_{i} \tag{*}
\end{equation*}
$$

We show, that there exists at least one unit among $x_{1}, \ldots x_{r}$. In fact, in the opposite case multiplying $(*)$ by $h \in \mathcal{J}^{m-1}, h \neq 0$ we get: $h \underline{U}_{1}=\underline{o}$ i.e. \underline{U}_{1} is linearly dependent-a contradiction. Let for example x_{1} be a unit, then it follows from (*):

$$
\underline{E}_{1}=x_{1}^{-1} \underline{U}_{1}+\sum_{j=2}^{r}\left(-x_{j} x_{1}^{-1}\right) \underline{E}_{j}
$$

Consequently $\left[\underline{U}_{1}, \underline{E}_{2}, \ldots, \underline{E}_{r}\right]=\mathbf{M}$.
Now, we finish our proof by induction for k, supposing, that (1), (2) are fulfilled for $k-1$.

As $\underline{U}_{1}, \ldots \underline{U}_{k}$ are linearly independent, then $\underline{U}_{, 1} \ldots, \underline{U}_{k-1}$ are linearly independent as well. By the induction supposition we have by a suitable renumbering of $\underline{E}_{i}:\left[\underline{U}_{1}, \ldots \underline{U}_{k-1}, \underline{E}_{k}, \ldots \underline{E}_{r}\right]=\mathbf{M}$.

Now

$$
\begin{equation*}
\underline{U}_{k} \in \mathbf{M} \Rightarrow \underline{U}_{k}=\sum_{i=1}^{k-1} x_{i} \underline{U}_{i}+\sum_{j=k}^{r} x_{j} \underline{E}_{j} \tag{**}
\end{equation*}
$$

Let us derive that there exists at least one unit among x_{k}, \ldots, x_{r}. Otherwise after multiplying ($* *$) by $h \in \mathcal{J}^{m-1}, h \neq 0$ we would obtain:

$$
\left(h x_{1}\right) \underline{U}_{1}+\cdots+\left(h x_{k-1}\right) \underline{U}_{k-1}-h \underline{U}_{k}=\underline{0}
$$

which contradicts to a linear independence of $\underline{U}_{1}, \ldots \underline{U}_{k}$.
Let for example x_{k} be a unit. Then from ($* *$) we have:

$$
\begin{aligned}
\underline{E}_{k}= & \left(-x_{k} x_{1}\right) \underline{U}_{1}+\cdots+\left(-x_{k} x_{k-1}\right) \underline{U}_{k-1}+x_{k} \underline{U}_{k}+ \\
& +\left(-x_{k} x_{k+1}\right) \underline{E}_{k+1}+\cdots+\left(-x_{k} x_{r}\right) \underline{E}_{r} .
\end{aligned}
$$

It follows from this that: $\left[\underline{U}_{1}, \ldots \underline{U}_{k}, \underline{E}_{k+1}, \ldots, \underline{E}_{r}\right]=\mathbf{M}$, i.e. (2) is true.
By the induction supposition we have that $k-1 \leq r$. From (**) it follows that $k-1=r$ implies the linear dependence of $\underline{U}_{1}, \ldots \underline{U}_{k}$, which is not possible, i.e. (1) is true.

It follows from the previous part of this proof that a linear independence of the system \mathcal{G} implies the linear independence of the system \mathcal{H}.

Corollary 6

(a) If the \mathbf{A}-space \mathbf{M} has one basis consisting of n elements then any its basis consists of the same number n elements. The number n is called the dimension of \mathbf{M}. (It is true in every free module over a commutative ring. ${ }^{1}$
(b) From every system of generators of \mathbf{M} we may select a basis of \mathbf{M}. (It is valid over every local ring (according to Nakayama's lemma)). ${ }^{2}$
Moreover in our case:
(c) Any linearly independent system can be completed to a basis of \mathbf{M}.
(d) Every maximal linearly independent system in \mathbf{M} forms a basis of \mathbf{M}.

Considering (I.4.) Corollary in [1] and 6. (c) above we obtain the following theorem:

Theorem $7 K$ is a direct summand of M if and only if K is an \mathbf{A}-subspace of M .

Definition 8 A linear form $\phi \mathbf{M}$ into \mathbf{A} is called thę ϵ piform if ϕ is a surjective homomorphism \mathbf{M} into \mathbf{A}.

Lemma 9 Let ϕ be a linear form \mathbf{M} into \mathbf{A}. Then the following are equivalent
(1) ϕ is an epiform
(2) $\operatorname{Im} \phi \not \subset \mathrm{J}$
(3) $1 \in \operatorname{Im} \phi$
(4) ϕ is a linearly independent element of \mathbf{M}^{*}.

Proof The validity of this Iemma is evident.
Definition 10 A free n-1-dimensional submodule of \mathbf{M} is called a hyperplane of the M .

[^1]Proposition 11 Let $N \subseteq \mathbf{M} . N$ is a hyperplane of \mathbf{M} if and only if there exists the epiform ϕ such that $N=\operatorname{Ker} \phi$.

Proof 1) Let N be a hyperplane of M. Let $\left\{\underline{V}_{1}, \ldots, \underline{V}_{n-1}\right\}$ be a basis of N.
Then (by 6.) there is $\underline{V}_{n} \in \mathbf{M}$ such that $\left\{\underline{V}_{1}, \ldots, \underline{V}_{n-1}, \underline{V}_{n}\right\}$ is a basis of \mathbf{M}.
Take $\underline{X} \in \mathbf{M}, \underline{X}=\sum_{i=1}^{n} x_{i} \underline{V}_{i}$. Then the linear form $\phi: \mathbf{M} \rightarrow \mathbf{A}$ defined by $\phi(\underline{X})=x_{n}$ is the epiform with $\operatorname{Ker} \phi=N$.
2) Let ϕ be an epiform and let $\left\{\underline{E}_{1}, \ldots, \underline{E}_{n}\right\}$ be a basis of the \mathbf{A}-space \mathbf{M}. Putting $\phi\left(\underline{E}_{i}\right)=a_{i}, 1 \leq i \leq n$, we get for $\underline{X} \in \mathbf{M}$,

$$
\underline{X}=\sum_{i=1}^{n} x_{i} \underline{E}_{i}, \quad \phi(\underline{X})=\sum_{i=1}^{n} x_{i} a_{i} .
$$

As ϕ is an epiform then for some $j, 1 \leq j \leq n, a_{j}$ is a unit. Without loss of generality, assume a_{n} is a unit. For any $j, 1 \leq j \leq n$ let us put

$$
\underline{V}_{j}=a_{n} \underline{E}_{j}-a_{j} \underline{E}_{n}
$$

Evidently each of them turns the form ϕ to zero.
Let us suppose that $\sum_{j=1}^{n-1} b_{j} \underline{V}_{j}=\underline{o}$. Then

$$
\begin{gathered}
\sum_{j=1}^{n-1}\left(b_{j} a_{n}\right) \underline{E}_{j}-\left(\sum_{j=1}^{n-1} b_{j} a_{j}\right) \underline{E}_{n}=\sum_{j=1}^{n-1} b_{j}\left(a_{n} \underline{E}_{j}-a_{j} \underline{E}_{n}\right)=\sum_{j=1}^{n-1} b_{j} \underline{V}_{j}=\underline{o} \Rightarrow \\
\left.\Rightarrow b_{j} a_{n}=0 \Rightarrow b_{j}=0 \quad \text { (for any } j=1, \ldots, n-1\right)
\end{gathered}
$$

Let us consider the hyperplane $N=\left[\underline{V}_{1}, \ldots, \underline{V}_{n-1}\right]$.
a) Clearly, $N \subseteq \operatorname{Ker} \phi$.
b) Let $\underline{X}=\sum_{i=1}^{\bar{n}} x_{i} \underline{E}_{i}$ belong to $\operatorname{Ker} \phi$. Then

$$
\sum_{i=1}^{n-1} a_{i} x_{i}+a_{n} x_{n}=0
$$

And we may express x_{n} in the form

$$
x_{n}=\sum_{i=1}^{n-1}\left(-a_{i} a_{n}^{-1}\right) x_{i} .
$$

It follows from this

$$
\begin{aligned}
\underline{X} & =\sum_{j=1}^{n-1} x_{j} \underline{E}_{j}+x_{n} \underline{E}_{n}=\sum_{j=1}^{n-1} x_{j} \underline{E}_{j}+\sum_{i=1}^{n-1}\left(-a_{i} a_{n}^{-1}\right) x_{i} \underline{E}_{n}= \\
& =a_{n}^{-1}\left(\sum_{j=1}^{n-1} x_{j}\left(a_{n} \underline{E}_{j}-a_{j} \underline{E}_{n}\right)\right)=a_{n}^{-1}\left(\sum_{j=1}^{n-1} x_{j} \underline{V}_{j}\right)
\end{aligned}
$$

i.e. $\underline{X} \in N$.

Proposition 12 Let ϕ, ψ be epiforms. Then $\operatorname{Ker} \phi=\operatorname{Ker} \psi$ if and only if there exists a unit $e \in \mathbf{A}$ such that $\phi=e \psi$.

Proof If there exists a unit e for that $\phi=e \psi$ then the both forms have obviously the same kernel. Now, let N be the common kernel of the form ϕ and ψ. Let $\left\{\underline{V}_{1}, \ldots, \underline{V}_{n-1}\right\}$ be a basis of N. Then there exists a $\underline{V}_{n} \in \mathbf{M}$ such that $\left[\underline{V}_{1}, \ldots, \underline{V}_{n-1}, \underline{V}_{n}\right]=\mathbf{M}$. Then

$$
\forall \underline{X} \in \underline{M}: \quad \underline{X}=\sum_{i=1}^{n} x_{i} \underline{V}_{i} \Rightarrow \phi(\underline{X})=x_{n} \phi\left(\underline{V}_{n}\right) \text { and } \psi(\underline{X})=x_{n} \psi\left(\underline{V}_{n}\right)
$$

As ϕ, ψ are epiforms $\phi\left(\underline{V}_{n}\right), \psi\left(\underline{V}_{n}\right)$ are units and therefore we can find e for which $\phi\left(\underline{V}_{n}\right)=e \cdot \psi\left(\underline{V}_{n}\right)$. Hence $\phi=e \psi$.

Definition 13 Let $K \subseteq \mathbf{M}$ be a submodule. Then by $\mathbb{A}(K)$ we denote the set

$$
\left\{\phi \in \mathbf{M}^{*} ; \phi(\underline{X})=0, \quad \forall \underline{X} \in K\right\}
$$

Let $K \subseteq \mathbf{M}^{*}$ be a submodule. Then by $\mathbb{A}(K)$ we denote the set

$$
\{\underline{X} \in \mathbf{M} ; \phi(\underline{X})=0, \forall \phi \in K\}
$$

If we take

(a) the validity of corollaries of Proposition 5,
(b) the system of coordinate linear forms ξ_{1}, \ldots, ξ_{n} defined by

$$
\xi_{j}\left(\sum_{i=1}^{n} x_{i} \underline{U}_{i}\right)=x_{j}, \quad 1 \leq j \leq n
$$

with respect to the basis $\mathcal{U}=\left\langle\underline{U}_{1}, \ldots, \underline{U}_{n}\right\rangle$ forms the basis of \mathbf{M}^{*} dual to \mathcal{U},
(c) every basis of \mathbf{M}^{*} is dual to exactly one basis of \mathbf{M}
we may prove the following two lemmas in a similar way to the case of vector space.

Lemma 14 If $K \subseteq \mathbf{M}$ is a \mathbf{A}-subspace then
(1) $\mathbb{A}(K)$ is a \mathbf{A}-subspace of \mathbf{M}^{*}
(2) $\operatorname{dim} \mathbb{A}(K)+\operatorname{dim} K=\operatorname{dim} \mathbf{M}$.

Lemma 15 If $K \subseteq \mathbf{M}^{*}$ is a \mathbf{A}-subspace, then
(1) $\mathbb{A}(K)$ is a \mathbf{A}-subspace of \mathbf{M}
(2) $\operatorname{dim} \mathbb{A}(K)+\operatorname{dim} K=\operatorname{dim} \mathbf{M}$.

Lemma 16

If K, L are submodules of \mathbf{M}, then $\mathbb{A}(K+L)=\mathbb{A}(K) \cap \mathbb{A}(L)$.
If \mathcal{K}, \mathcal{L} are submodules of \mathbf{M}^{*}, then $\mathbb{A}(\mathcal{K}+\mathcal{L})=\mathbb{A}(\mathcal{K}) \cap \mathbb{A}(\mathcal{L})$.

Proof The validity of this lemma is evident.

Lemma 17

If $K \subseteq \mathbf{M}$ is a \mathbf{A}-subspace, then $\mathbb{A}(\mathbb{A}(K))=K$.
If $K \subseteq \mathbf{M}^{*}$ is a \mathbf{A}-subspace, then $\mathbb{A}(\mathbb{A}(K))=K$.
Proof It is a consequence of 14 and 15 .
Theorem 18 Let K, L be \mathbf{A}-subspaces of \mathbf{A}-space \mathbf{M}. Then $K+L$ is an \mathbf{A} subspace if and only if the $K \cap L$ is an \mathbf{A}-subspace and the dimensions of A-subspaces $K, L, K \cap L, K+L$ fulfil the following relation:

$$
\operatorname{dim}(K+L)+\operatorname{dim}(K \cap L)=\operatorname{dim} K+\operatorname{dim} L
$$

Proof (a) Let $K \cap L$ be a A-subspace with a basis $\left\langle\underline{U}_{1}, \ldots, \underline{U}_{p}\right\rangle$. Then there exist $\underline{U}_{p+1}, \ldots, \underline{U}_{k}$ resp. $\underline{V}_{p+1}, \ldots, \underline{V}_{l}$ such that $\left\langle\underline{U}_{1}, \ldots, \underline{U}_{p}, \underline{U}_{p+1}, \ldots, \underline{U}_{k}\right\rangle$ is a basis of K resp. $\left\langle\underline{U}_{1}, \ldots, \underline{U}_{p}, \underline{V}_{p+1}, \ldots, \underline{V}_{1}\right\rangle$ is a basis of L.

Obviously, $\left[\underline{U}_{1}, \ldots, \underline{U}_{p}, \underline{U}_{p+1}, \ldots, \underline{U}_{k}, \underline{V}_{p+1}, \ldots, \underline{V}_{l}\right]=K+L$. It remains to prove the linear independence of this system. Let $u_{1}, \ldots, u_{k}, v_{p+1}, \ldots, v_{l}$ be the elements of \mathbf{A} such that

$$
u_{1} \underline{U}_{1}+\cdots+u_{k} \underline{U}_{k}+v_{p+1} \underline{V}_{p+1}+\cdots+v_{l} \underline{V}_{l}=\underline{o} .
$$

Putting $\underline{U}=u_{1} \underline{U}_{1}+\cdots+u_{k} \underline{U}_{k}$ we get $\underline{U}=-\left(v_{p+1} \underline{V}_{p+1}+\cdots+v_{l} \underline{V}_{l}\right)$. Hence $\underline{U} \in K \cap L$ and it can be written by $\underline{U}=\sum_{i=1}^{p} x_{i} \underline{U}_{i}$. Thus $u_{p+1}=\cdots=u_{k}=0$ which implies $u_{1}=\cdots=u_{p}=v_{p+1}=\cdots=v_{l}=0$.
(b) Let $K+L$ be a \mathbf{A}-subspace. Then $\mathbb{A}(K), \mathbb{A}(L), \mathbb{A}(K+L)$ are free as well (by 14). Due to 16 and 17 we get

$$
K \cap L=\mathbb{A}(\mathbb{A}(K)) \cap \mathbb{A}(\mathbb{A}(L))=\mathbb{A}(\mathbb{A}(K)+\mathbb{A}(L)) . \quad(* * *)
$$

Since $\mathbb{A}(K) \cap \mathbb{A}(L)=\mathbb{A}(K+L)$ is a \mathbf{A}-subspace, by the part (a) we obtain that $\mathbb{A}(K)+\mathbb{A}(L)$ is a \mathbf{A}-subspace, too. It follows from $(* * *)$ that $K \cap L$ is a A-subspace. The relation between dimensions is evident.

References

[1] McDonald, B. R.: Geometric algebra over local rings. Pure and applied mathematics, New York, 1976.
[2] Anderson, F. W., Fuller F. K.: Rings and Categories of Modules. Springer Verlag, New York, 1973.
[3] Machala, F.: Fundamentalsätze der projektiven Geometrie mit Homomorphismus. Rozpravy ČSAV, řada matem. a přír. věd 90, sešit 5, Academia, Praha, 1980.

[^0]: *Supported by grant No 201/95/1631 of the Grant Agency of Czech Republic

[^1]: ${ }^{1}$ See [2]
 ${ }^{2}$ See [1]

