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A b s t r a c t 

The article is devoted to the validity of Grassmann formula and Steinitz 
theorem for R-space in the sense of [1]. It is shown that the formula and 
the theorem above are true if the powers of the maximal ideal 3 of R fulfil 
the descending chain condition. 

K e y w o r d s : R-space, bases of R-space, dual space. 

M S C lass i f i ca t ion: 13C99 

According t o [1] we define: 

D e f i n i t i o n 1 Let A be a local ring. Let M be a finitely generated A-module . 

T h e n M is an A-space of finite dimension if there exists Fl5.... En in M with 

(a) M = AEX © • • • 0 A K n 

(b) the m a p A —• AE^ defined byxn-> xE^ is an A- isomorphism for 1 < i < n. 

R e m a r k 2 A module M over a local ring A is an A-space if and only if it is a 

free finitely dimensional module . 

D e f i n i t i o n 3 A local ring A having the maximal ideal 'J with 

r = {o} A r-17- {o} 
is called a local ring of order m. 
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Agreement 4 In the following text we denote by A the local ring of order 
m (introduced by 3) with the maximal ideal J. By M we denote the finite-
dimensional A-space. By M* we denote the A-module of linear forms M into 
A. Evidently, M* is a A-space (dual A-space to M) . 
Any submodule of M being also an A-space will be called an A-subspace. 

Proposition 5 Let $ = {Fi,.--___r} be some system of generators of a A-
space M . / / _ /_ , . . . ,IZ& are linearly independent elements from M then: 

(1) k<r 

(2) by a suitable renumbering of elements ____,...___-., 

3£= {Hi,-- ,£*,£*+.! ,• —sj^.} 

will be a set of generators of M. 

(3) If the system S is linearly independent then J£ is also linearly indepen
dent. 

Proof If m = 1 [i.e. J = (0), J° = (1)] then A is a field and in this case the 
proposition is well known. Further, let us assume m > 1. 

First, let k = 1, (1) is fulfilled evidently. 
(2): let U_i be linearly independent, 

r 

£. = £«.& (*) 
i=l 

We show, that there exists at least one unit axnong xi,,.,xr. In fact, in the 
opposite case multiplying (*) by h E ' j m _ 1 , h ^ 0 we get: hU_x — o i.e. _7_ 
is linearly dependent—a contradiction. Let for example x\ be a unit, then it 
follows from (*): 

r 

E^x-'U^^-xjx-1)^. 
3=2 

Consequently [_71? J|_2,..., EJ_ — M. 
Now, we finish our proof by induction for k, supposing, that (1), (2) are 

fulfilled for k - L 
As _ / l r . .U_k are linearly independent, then ._X,i..., U.k-1 a r e linearly inde

pendent as well. By the induction supposition we have by a suitable renumbering 

o f £ : ULu-.-lL-n£*^--Mrl = M-
Now 

fc-l r 

£,, € M => £ * = ] T «„& + ~_ xjEj (**) 

Let us derive that there exists at least one unit among #&,.... , # r . Otherwise 
after multiplying (**) by h € If*1""1., h =fc 0 we would obtain: 

(ft*i)_7_ + - • • + (hx^U^ ~hUk = o 
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which contradicts to a linear independence of U_i,... U_k. 
Let for example xk be a unit. Then from (**) we have: 

Ek = (-XkZ_}____ + h (-XkXk-i)ILk-~i + xkHk + 

+ (-&fcZ fc+i)J^+1 + 1" (-xkXr)Er. 

It follows from this that: [U l5.. , g f c , £ f c , f l , . . . , Fr] = M, i.e. (2) is true. 
By the induction supposition we have that k — 1 < r. From (**) it follows 

that k— 1 = r implies the linear dependence of Ul3... U_k, which is not possible, 
i.e. (1) is true. 

It follows from the previous part of this proof that a linear independence of 
the system S implies the linear independence of the system <K. 

Corollary 6 
(a) If the A-space M has one basis consisting of n elements then any its 

basis consists of the same number n elements. The number n is called 
the dimension O/M. (It is true in every free module over a commutative 
ring.1 

(b) From every system of generators o / M we may select a basis O/M. (It is 
valid over every local ring (according to Nakayama's lemma))? 

Moreover in our case: 

(c) Any linearly independent system can be completed to a basis O/M. 

(d) Every maximal linearly independent system in M forms a basis O/M. 

Considering (1.4.) Corollary in [1] and 6. (c) above we obtain the following 
theorem: 

Theorem 7 K is a direct summand O/M if and only if K is an A-subspace 
o /M. 

Definition 8 A linear form <j> M into A is called the cpiform if <j> is a surjective 
homomorphism M into A. 

Lemma 9 Let <j) be a linear form M into A. Then the following are equivalent 

(1) (j) is an epiform 

(2) I m 0 £ 3 

(3) 1 E W 

(4) <j> is a linearly independent element O/M*. 

Proof The validity of this lemma is evident. 

Definition 10 A free n—l-dimensional submodule O/M is called a hyperplane 
of the M. 

xSee [2} 
2 See [1] 
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Proposition 11 Let N C M. N is a hyperplane of M zf and only if there 
exists the epiform <j> such that N = Ker</>. 

Proof 1) Let N be a hyperplane of M. Let {V l 5 . . . , V_n-_} be a basis of N. 
Then (by 6.) there is V_n G M such that { J / x , . . . , Vn„1? V_n} is a basis of M. 

Take X G M, X = Y^=i xiYi- T h e n t h e l i n e a r f o r m <£ : M -> A defined 
by <j)(X_) = xn is the epiform with Ker <j) = N. 

2) Let <j) be an epiform and let {F l 5 . . . , Fn} be a basis of the A-space M. 
Putting (j)(E_i) = az-, 1 < i < n, we get for ___ G M, 

x = _P XІEІ , ФШ = _Z *.<-.• 
! = 1 

As <j> is an epiform then for some j , 1 < j < n, aj is a unit. Without loss of 
generality, assume an is a unit. For any j , 1 < 3 < n l e t u s P u t 

-__j =anEj-ajRn-

Evidently each of them turns the form <j> t o z e r o -
Let us suppose that YllZi fyi-j = O. T h e n 

n —1 /-n— 1 \ n—1 n - 1 

^(b^n)^ - (j2bjaj)En = J2bj(anKj ~ GjKn) = ^bj~i = ~ 
j=i V j = i J j = . i J - 1 

=> 0 i a n = 0 => 6j = 0 (for any j = 1, . . . , n - 1) 

Let us consider the hyperplane N -r: [K-i> • • • 'J-n-iJ-
a) Clearly, i V C K e r f 

b) Let X = ^ r = i «*& b e l o n g t o Ker 4- T h e n 

n - l 

i = i 

And we may express a;n in the form 

n - i 

*„ = £(-aian )xi. 

It follows from this 
n - l 

n-l n ~ l 

X = _P XjEj + XnEn = V »& + E ( - a ' " n 1)a;^n 
i=i i=i '" 

= a- ( g ., (anE, - „,*.)) = ̂  ( E «il-i) 

i.e. X ЄN. 
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Proposition 12 Let 0, ip be epiforms. Then Ker0 = Kerip if and only if there 
exists a unit e £ A such that 0 = eip. 

Proof If there exists a unit e for that <j> = eip then the both forms have 
obviously the same kernel. Now, let N be the common kernel of the form 0 and 
tp. Let {V l 5 . . . , V_n-\} b e a basis of N. Then there exists a V_n £ M such that 
[V1,...,Vn-1,Y_n} = M. Then 

n 

VK £ M : X = £ * , £ => 0(K) = xn<f>(Vn) and V(20 = ^ ( Z n ) . 
i-i 

As 0,1/3 are epiforms 0(Vn)> V'(iln) a r e u n - t s and therefore we can find e for 
which 0(V n) = e.ip(Y_n). Hence 0 = etp. 

Definition 13 Let K CM be a submodule. Then by k(K) we denote the set 

{ 0 E M * ; 0(20 = 0, V K £ K } 

Let K C M* 6e a submodule. Then by k(K) we denote the set 

{ K £ M ; 0(K) = O, V 0 £ K } 

If we take 
(a) the validity of corollaries of Proposition 5, 
(b) the system of coordinate linear forms £ i , . . . , £n defined by 

ţj[_2xiţii) =*f, 
^ г ' = l ' 

1 < 3 < n, 

with respect to the basis IX = (U 1 } . . . , U_n) forms the basis of M* dual to U, 
(c) every basis of M* is dual to exactly one basis of M 

we may prove the following two lemmas in a similar way to the case of vector 
space. 

Lemma 14 If K C M is a A-subspace then 

(1) k(K) is a A-subspace o/M* 

(2) dimA(K) + d i m K = d i m M . 

Lemma 15 I/Ar C M* is a A-subspace, then 

(1) k(K) is a A-subspace ofM 

(2) dimA(K) + d i m K = d i m M . 

Lemma 16 

If K, L are submodules ofM , then k(K + L) = k(K) n A(L). 

If X, £ are submodules ofM*, thenk(X+ £ ) = k(X) n A ( £ ) . 
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Proof The validity of this lemma is evident. 

Lemma 17 

If K C M is a A-subspace, then A(A(K)) = K. 

If A" C M* is a A-subspace, then A(A(K)) = K. 

Proof It is a consequence of 14 and 15. 

Theorem 18 Let K,L be A-subspaces of A-space M. Then K + L is an A-
subspace if and only if the K D L is an A-subspace and the dimensions of 
A-subspaces JK, F, K C\ L, K -f- L fulfil the following relation: 

dim(I\ -f L) 4- dim(I\ H L) = dim K + dim L. 

Proof (a) Let K f) L be a A-subspace with a basis (££, , . . . , f/p). Then there 
exist C / p + i , . . . , ^ resp. Vp+1,...,V, such that (U l 5 . . . , Upi Up+1,..., Uk) is a 
basis of K resp. (UT . . . . , U_ , Vp+1,..., Vj) is a basis of F. 

Obviously, [£/-_,..., Up, Up+1,..., UA., Vp+1,..., Vj] = K -f F. It remains to 
prove the linear independence of this system. Let w j , . . . , t/£, t> p + 1 , . . . , vj be the 
elements of A such that 

uilLi + 1" ukHk + vP+i¥-p+i + h v/Z/ = £• 

Putting U = ^ICT.! -f h Uk U_k w e Se^ \L— — (vp+i ¥-P+i + r V/H/) • Hence 
HE K C\L and it can be written by U = X^f-ri ^:Uf. Thus txp+1 = • • • = Uk = 0 
which implies u\ = • • • = up = v p + 1 = • • • = tu = 0. 

(b) Let K -f L be a A-subspace. Then A(K), A(L), A(I\ + L) are free as 
well (by 14). Due to 16 and 17 we get 

Kn L = A(A(K)) n A(A(F)) = A(A(K) + A(L)) . (* * *) 

Since A(K) D A(L) = A(K -f- L) is a A-subspace, by the part (a) we obtain 
that A(K) + A(F) is a A-subspace, too. It follows from (* * *) that K D L is a 
A-subspace. The relation between dimensions is evident. 
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