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Abstract 
New boundary value problems for the functional differential equa

tion x1' = f^yXyXyXtyx't) are considered. By the Leray-Schauder de
gree method, existence results are proved under assumption that / is the 
Caratheodory operator. 

Key words: Existence, Caratheodory solution, functional boundary 
conditions, functional differential equation, Leray-Schauder degree, 
Borsuk theorem. 

1991 Mathematics Subject Classification: 34B15, 34K10 

1 Introduction 
Let Cr (r > 0) be the Banach space of C°-functions on [—r, 0] with the norm 
\\x\\* — max{|x(z)| : t E [—**, 0]}. For any continuous function x : [—r, 1] —> R 
and each t £ [0,1] = : J denote by xt the element of Cr defined by 

xt(s) = x(t + s) for s £ [-r, 0]. 

Let X be the Banach space of C7°-functions on J with the norm ||#||oo = 
max{|.r(r)| : t £ J} and Lk(J) (k £ N) be the Banach space of measurable 
functions x : J —> R such that 

11*11*= / l*(<).** <°°-
jo 
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150 Svatoslav STANCE 

For each interval I C J denote by Vj the set of surjective functionals 7 : X —» R 
which are 

(i) continuous, 7(0) = 0, and 

(it) increasing (i.e. x,y G X , x(t) < y(t) for t G I => 7(2?) < 7(2/)) 

and set V\ = {7 .7 G X>j, limn^oo 7(£#n) = eoo for each e G { -1 , 1} and any 
{xn} C X, limn_+00 xn(t) = 00 locally uniformly on / } (see [11] and [12] where 
also some examples of functionals belonging to Vj are given). 

From the following Example 1 follows that Vj — VL -x ^ 0. 

E x a m p l e 1 Consider the functional 7 : X -» R defined by 

>y(x) = x(l) + arctana? ( - ) 

en 

y 

Obviously, 7(0) = 0, 7(R) = R and 7 is continuous increasing; hence 7 G Vj. 
Set xn(t) = n c o s ^ ) for t G J and n G N . Then limn^oo xn(t) = 00 locally 
uniformly on [0,1) and 

lim j(exn) = lim ( exn(l) + arctan f exn ( - ) ) ) 
n—>-oo n—Kx> y V \Zf J J 

= lim arctan (en cos [ — )} = 
n-^-oo \ \ 4 / / 

for e G { - 1 , 1 } . Thus 7*2>[o,i)-

We say that / : J x R 2 x C r x C r ~> R satisfies assumption (H) if 

(H): (a) / ( • , x, y, D, 1/)) is measurable on J for each (x, z/, D, ^ ) G R 2 x C r x C r , 

(6) / ( r , •, •, •, •) is continuous on R 2 x C r x Cr for a.e. t G J, and 

(c) there exist kj,p, QSTG L\(J) such that 

|/(*. x, y, e,1>)\< k(t)\x\ + l(t)\y\ +p(t)\\e\U + q(t)U\\. + r(t) (1) 

for a.e. t G J and each (#, y, £, t/)) G R 2 x Cr x C r . 

Let / satisfy assumption (H). In the paper we consider the functional dif
ferential equation 

x,f^f(tixix
f
ixtix

,
t) (2) 

together with the functional boundary conditions 

(•*o,«o) €{(»> + c r > x + c 2 ) : C i , c 2 € R } , a(ar|j) = A, /?(ar'|j) = B (3) 

or 

( a r 0 , 4 ) € { ( ^ + c i , x + c 2 ) : c i , c 2 € R } , a(x\j) = A, lh{x{l)-x\j) = B. (4) 
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Here <p, % G Cr) a,f3 € Vj, 0i e Vf- ^ , A, B E R and x | j is the restriction of a? 
to J. 

By a solution of BVP (2),(i) (i = 3, 4) we mean a continuous function 
x : [—r, 1] -> R having the absolutely continuous first derivative on J (i.e. 
z U e A C V ) ) , ( x o ^ ^ ^ ^ - ^ W + ^ W ^ - x W + ^ W ) and satisfying the 
last two boundary conditions of (f) (see [11]). 

This definition of a solution of BVP (2), (i) (i = 3,4) is motivated by the 
papers of Hascak ([5]-[7]) where some formulations of BVPs for the n-th order 
linear differential equations with delays were given. We observe that for any 
solution x of BVP (2), (i) (i = 3,4) the functions x\,x2 defined by 

Xl{t) = 

x2{t) = 

tp{t) + cj foг t Є [~r, 0] 

x{t) for t Є (0,1], 

X(i) + c2 for t £ [-r, 0] 

x'(t) f o r t e (0,1] 

with c\ = — cp(0) + ^(0), c2 = —x(0) + xf(0) are continuous on [— r, 1]. 

Remark 1 If /(t^^y,g,ij)) = fi(t,x,y) is independent of g, t/> and if we set 
a (-or) = x(0), j3(x) = ^(1), /?i(x) = cc(ry) for a: G X with an 77 E (0,1), then 
(2)-(4) (with A = 5 = 0) imply 

^ ' = / i ( M , y ) , (5) 

x(0) = 0, x'(l) = 0 (6) 

and 

ar(0) = 0, x(l)-x(n)--Q. (7) 

This paper was motivated by the recently papers of Marano [8] and Gupta 
[3] where sufficient conditions for the existence of BVP ("), (i) (i = 6, 7) where 
given. In [8] the results are proved by an existence theorem for operator inclu
sions by O. N. Ricceri and B. Ricceri [10]. In [3] it is given a simple proof of 
Theorem 1 of [8] using a Leray-Schauder continuation theorem by Mawhin [9] 
and the author also obtained a better analogue of Theorem 3 of [8]. The results 
of [3] and [8] improve those of [2]. 

In this paper we generalize results of [3] and [8] especially in the following 
directions: 

(i) there are considered functional differential equations, and 

(it) boundary conditions have a nonlinear functional form. 

The existence theorems are proved by the Leray-Schauder degree method and 
by the Borsuk theorem (see e.g. [1], [9]). 
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2 Lemmas, notation 

L e m m a 1 Let I C J be an interval, u G X, a G Vj and c G [0,1]. Let the 
equality 

a(x + u) + (c — l)a(—x + u) = ca(u) 

be satisfied for an x G X . Tften fnere exists a £ G I such £ha£ 

x(0 = 0. 

Proof Set 7(z) = a(z + u) + (c - l ) a ( - z + u) - ca(u) for z G X . Then 7 G Dj 
and 7(x) = 0. If x(t) 7-: 0 on I we obtain 7(2) ^ 0, a contradiction. D 

L e m m a 2 Fe£ a, /3 EVj and A, B G R. Then £he system 

a(a + 61) = A /?(6) = 5 (8) 

has a unique solution (a0,60) G R 2 . 

Proof Define the continuous functions p : R —» R, a : R —> R by 

p(a,6) = a(a + 6i), g(6) = /?(6). 

Since g is increasing on R and limfc_>±oo #(&) = ±00, there exists a unique 
60 G R such that g(60) = B. The function p(-,60) is increasing on R and 
lima-j.ioo p(a,bo) = ±00, and consequently p(a0.60) = A for a unique a0 G R. 
We see that (a0, 60) G R 2 is the unique solution of (8). • 

L e m m a 3 Let a G Dj, /?i G DrQ x\ ana7 A, B G R. Then £he system 

a(a + bt) = A, / ? i ( 6 ( l - i ) ) = J9 (9) 

has a unique solution (a0,60) G R 2 . 

Proof Since the proof is very similar to that of Lemma 2, it is omitted. • 

Let u,v G X, a, (3 G £>j, /?i G T ^ -\, V?> X £ CT and let /i satisfy assumption 
(IT) (with / = h). To prove the main existence results we consider the auxiliary 
BVPs (10), (i) (i = 11,12) where 

x" = A(*, *,:»/, a?*, x{), (10) 

(#o,a?0) € {(y + c i , x + c2) : c i , c 2 G R } , 

a ( z | j + u) = a(ti), /?(.r'|j + v) = /?(t/). (11) 

(z0,ar'0) € {(<r° + c i , x + c2) : c i , c 2 G R } , 

a(x\j + u) = a(u) , /3i(ar(l) - x | j + v) = /^(v) . (12) 

Let Y be the Banach space of AC1-functions on J endowed with the norm 
\\x\\A = max{||a:||00, ||;r'||oo, | |#" | | i}- For each c G [0,1] define the operators 

He, Vc : Y x R 2 - ) Y x R 2 
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by 

He(x,A,B)=(A + Bt + c I J h(T,x(T),x'(T),xr,x'T)dTds, 

A + a(x + u) + (c — l)a(—x + u) — ca(u)} 

B + /3(x' + v) + (c- l)P(-x' + v)- cp(vj) , 

Vc(x,A,B)= (A + Bt + c / / h(T,x(T),x'(T),xTix'T)dTds, 

A + a(x + u) + (c — l)a(—x + u) — ca(u), 

B + /?i(x(l) -x + v) + (c- l) /?i(- .r(l) + x + v) - c/?(i/)) , 

where 
f tp(t + s) - p(0) + a?(0) for r + B G [-r, 0] 

«*(*) = < (13') 
[ z ( r + s) for r + 5 E (0,1], V 

, / x f X(* + « ) - x ( 0 ) + -r'(0) forr + * E [ - r , 0 ] 
xj(«) = < (13") 

\z'(t + 8) fort + * 6 ( 0 , 1 ] . V ' 

Consider the operator equations 

Hc(xiAtB) = (x,A,B), ce [0,1] (14c) 

and 
Vc(xfA9B) = (x,A,B), c E [0,1]. (15c) 

R e m a r k 2 We see that z is a solution of BVP (10), (11) (resp. (10), (12)) if 
(x\j, x(0)} x'(0)) is a solution of (14i) (resp. (15i)). And conversely, let (a?, A, B) 
be a solution of (14i) (resp. (15i)) and x : [—r, 1] —> R be given by x(t) = 
<p(t) — (p(0) + x(0) for t E [— r, 0] and x\j = a;. Then (x. A, B) is a solution of 
BVP (10), (11) (resp. (10), (12)). So to prove existence results for BVP (10), 
(11) and BVP (10), (12) it is enough to show ones for functional equations (14i) 
and (15i), respectively. 

Lemma 4 Let h satisfy assumption (H) (with f = h). Let 

A:= | |* | | i + ||i||i + | b l l i + l l « l l i < l (16) 

and set 

A = - - ~ [ 2 ( | | P | | I I M I » + I|«I|IIWI.) + IMII] + I. 

n = {(x,A, B) : (x, A,B)£Yx R 2 , \\x\\A < A, \A\ < A, \B\ < A } . 

/ / (x, A, B) is a solution of (14c) or (15c) for a c £ [0,1], then (x, A, B) € ft. 
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Proof Let (x} A, B) be a solution of (H c ) for a c G [0,1], Then the following 
equalities 

x(t) = A + Bt + cj J hfrx^^'^^^x'^drds, te[0,l], (17) 

a(x + u) + (c-l)a(-x + u) = ca(u), (18) 

/?(*' + v) + (c - l)p(-x
f + v) = c/%) (19) 

hold, where art and arj are defined by (13') a n d (13"), respectively. By (18), (19) 
and Lemma 1, there exist some £,T? 6 J such that x(£) = 0, x'(n) = 0; hence 
(cf. (17)) 

rt pS 

X(t) = C h(T,X(T),X'(T),XT,X'T)dTds, 
J £ Jf) 

x'(t) = c f h(s,x(s),x'(s),x„x's)ds 
• ! -

for * G J. Thus (cf. (1) with f = h) 

l*'(*)l < c(ll*lli||*l|oo + ||l||i||.-'||00 + ||p||1max{||a;t||, : t 6 j } 

+ ||t7||imax{||x;||. : t £ J} + ||r||i) 

< (ll*l|l + l|p||l)ll*lioo + (||/||l + IM|l)||*'||co 

+ 2(||p||1|MI. + lk||i||xll*) + IHi , < e j 

since ||z.,||. < ||x||oo + 2|M|„ |K||* < flx']^ + 2||x||» for t <E J. Consequently, 

ll*'l|00 < (ll*l|l + l|p||l)||*||0O + (| | . | | l+N!l)|M|oo 

+ 2(||p||ilM|. + |M|1||xl|*) + IMIi. (20) 

We next have \x(t)\ = \f* x'(s) ds\ < Ĥ 'Hoo for t e J and therefore 

ll*l|oo < llx'Hoo (21) 

which implies (cf. (20)) 

ll*'lloo < Allx'Hoo + 2(||p||1|M], + IklhHxIl*) + |fr||i 

and llx'lloo < A. Then Wx^ < A and since A = x(0), B = x'(0) we obtain 
|A| < A, | 5 | < A. Finally, 

Wx"\h = c/o \h{s,x(s),x'(s),xs,x's)\ds 

< A|K||oo + 2((|p||1|M|. + ||9||1||xllO + ||r||1 

< AA + ( A - 1 ) ( 1 - A ) < A . 

Hence (x, A, B) G fi. 
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Let (x, A, B) be a solution of (15c) for a c E [0,1]. Then the equalities (17), 
(18) and 

Pi{x(l) - x + v) + (c - l ) /? i ( -x( l ) + x + v) = cf3(v) (22) 

are satisfied. By (18), (22) and Lemma 1, there exist a £ £ J and an e E [0,1) 
such that #(£) = 0, x(l) — x(e) = 0. Thus x'(n) = 0 for an n E (£, 1) and, in 
the same manner as in the first part of our proof, we obtain (#, A, B) £ Q. • 

L e m m a 5 Fe£ h satisfy assumption (H) (with f = h). Assume k E L2(J), 
I E Li(J), p E £j(«I) and g E Fm(J) where t, jf, m E {1, 2} and 

A*:=^||*l|2 + ||l||. + ||p||i+IM|m<l. 

Let (x, A, B) be a solution of (14c) or (15c) for a c € [0,1]. Then 

IW|oo<Ai, |W||oo<Ai, ||*"||i<Ai, |A|<Ai, \B\<KX, (23) 

where 

[2(l|p|lilMI. + ll«ll™llxllO + IHIi] + i. 
1 

x 1-A* 

P r o o f By the proof of Lemma 4, A = #(0), I? = x'(0) and there exist some 
£,n E J such that #(£) = 0, £'(7?) = 0. Hence 

IWloo < Ik'lloo < lk"Hi, IWIU < IWHoo 

and 

II-II2 < \\Wh 

by the Wintinger inequality (see e.g. [4], Theorem 256). Using (1) (with / = h) 
we get 

p"||i = c [ \h(t,x(t),x'{t),Xt,x't)\dt 
Jo 

< ll*lblk||2 + ||.||.-||x'||oo + IblbdWIoc + 2|MU) 

+ IM|m(|W||oo + 2||x||,) + |H|1 

< (|ll*ll2 + tll||,- + ||p|li + IM|m)lWI|oo 

+ 2aip|lilMI* + IHIm||xl|.) + IHIi 
< A*||>||1+2(||p||i|M|. + ||j||m||x|U) + IMIi.' 

and consequently \\x"\\i < Ai which implies that (23) holds. D 
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3 Existence theorems 

Proposit ion 1 Let h satisfy assumption (H) (with f = h) and ft C Y x 
R be open bounded and symmetric with respect to 0 £ ft. Then operator 
equation (14i) and (15i) has a solution in ft provided Hc(x,A,B) ^- (x,A,B) 
and Vc(x, A, B) ^ (x, A, B) on <9ft for any c £ [0,1], respectively. 

P r o o f Assume (x,A,B) ^ <9ft for any solution (x, A, B) of the family od 
equations (14c) (resp. (15c)) with c £ [0,1]. Set W(c,x,A,B) = Hc(x,A,B) 
(resp. W(c,x,A,B) = Vc(x,A,B)) for (c,aj,A,H) £ [0,1] x Y x R 2 . Then JV 
is a compact operator on the closure ft of ft by the Arzela-Ascoli theorem, the 
Bolzano-Weierstrass theorem and the Lebesgue theorem, and W(c, x, A, B) ^ 
(x, A, B) for any (x, A, B) £ 3ft and each c £ [0,1] by our assumption. Thus 

D(I - W(l, ; ; -),fi,0) = D(I - W(0, ; ; •), Q, 0) 

where "D" denotes the Leray -Schauder degree (see e.g. [1]). To prove the ex
istence of a solution for equation W(l, x, A, B) = (x, A, B) (that is (14i) resp. 
(15i)) we have to show that 

D(I -W(0, ;;•), SI, 0 ) # 0 . 

Since 

H0(-x,-A,-B) = 

= {-A - Bt, -A + a(-x + u)- a(x + u), -B + f3(-x' + v)- 0(x' + v)) 

= -H0(x,A,B) 

and 

V0(-x,-A,-B) = 

= (-A-Bt,-A+a(-x+u)-a(x+u),-B+p1(-x(l)+x+v)-f31(x(l)-x+v)\ 

= -VQ(x,A,B) 

for (x, A , B ) 6 Y x R 2 , W(0, •, •, •) is an odd operator and then 

D(I-W(0,;;-),il,Q)^0 

by the Borsuk Theorem (see [1], Theorem 8.3). D 

T h e o r e m 1 Let h satisfy assumption (H) (with f = h). Then BVP (10). (i) 
(i = 11,12) has at least one solution for each u, v £ X , a,/? £ Vj, /?i £ X>* 
and ip,x £ CV provided 

Plli + llllli+ IHi + IM!i<i- (24) 
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Proof Let u,v £ X, a,/3 £ Vj, f3x £ V^01) and y?,x G C r and let (24) be 
satisfied. By Remark 2, it is sufficient to show that operator equations (14i) 
and (151) have solutions. By Lemma 4, there exists an open bounded subset Q, 
of Y x R 2 which is symmetric with respect to 0 G £1 such that (ar, A, B) £ <9fi for 
any solution (x, A, B) of the family of equations (14c) and (15c) with c G [0,1]. 
The conclusion of Theorem 1 follows immediately from Proposition 1. O 

Using Proposition 1 and Lemma 5 we can prove the following theorem. 

T h e o r e m 2 Let h satisfy assumption (H) (with f = h). Assume k G L2(«I), 
I £ Li(J), p£ Lj(J) andqe Lm(J) where i,j,m£ {1,2}. Then BVP (10). (i) 
(i = 11,12) has at least one solution for each u,v G X, a,/3 G Vj} j3i G V?Q ^ 
and (p,x £ Cr provided 

\\\*h + 11% + llPlli + I'kllm < 1- (25) 

The main existence results for BVP (2), (i) (i = 3,4) are given in the follow
ing two theorems. 

T h e o r e m 3 Let f satisfy assumption (H). Assume that (24) is satisfied. Then 
BVP (2), (i) (i = 3,4) has at least one solution for each a, ft G Vj, j3\ G A*0)i)> 
<p, x £ Cr and A,B ell. 

Proof Fix a,(3 e Vj, /?-. G Pjp.i)' <P> X € C r and A,B £R. By Lemma 2 (resp. 
Lemma 3) there exist (unique) a0, 60 G R such that tv(a0 + 6ot) = A, 0(bo) — B 
(resp. a(a0 + b0t) = A, /3(60(1 - i)) = £ ) . Set 

h(t, x, y, Q, ip) = f(t, x + a0 + 60i, y + 60, D + u^, i/> + 60) 

for (r, z, y, D, ^) G J x R 2 x C r x C r where 

a0 for £ + s G [—r, 0] 
w*(s) 

a0 + 60(* + B) for t + s £ (0,1]. 

We see that a; is a solution of BVP (10), (11) with u = a0 + b0t and v = 60 if 
and only if x + a0 + 60£ is a solution of BVP (2), (3), and x is a solution of BVP 
(10), (12) with u — a0 + b0t and v = 60(1 — t) if and only if x + a0 + 60£ is a 
solution of BVP (2), (4). Since (cf. (1)) 

\h(tixiy,Q,1>)\ = k(t)\x+aQ+bQt\+l(t)\y+^^ 

< k(t)\x\ + Z(i)|»| +p{t)\\Q\U + ffWIWI* + ri(t) 

for (t, a:, y, Q, i/>) G J x R 2 x C r x C r , where 

r i W - (*(*) + P(*))(|a0| + |6o|) + (/(*) + g(t))|60 | + r(«), 

there exists a solution of BVP (10), (i) (i = 11, 12) by Theorem 1. This com
pletes the proof. • 
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Theorem 4 Let f satisfy assumption (H). Assume k E L2(J), I E Li (J), 
p E Lj(J) and q E Lm(J) where i,j,rn E {1,2} and (2b) is satisfied. Then 
BVP (2), (i) (i = 3.4) has at least one solution for each a,/3 E Vj, Pi E 2??0 -x, 
y>,X £ CV- and AL,jB E R. 

P r o o f We proceed exactly as in the proof of Theorem 3 but instead of Theo
rem 1 we now use Theorem 2. • 

R e m a r k 3 Note that analogously existence results as above can be shown for 
the functional differential equation of the form 

x"(t) = f(t, x(t),x'(t),x(a(t)), x'(b(t)),xt, x't) 

with a : J —> J, b : J —> J continuous. 

References 
[I] Deirnling, K.: Nonlinear Functional Analysis. Springer, Berlin—Heidelberg, 1985. 

[2] G u p t a , C P. : Solvability of a three-point boundary value problem for a second order 
ordinary differential equation. 3. M a t h . Anal . Appl . 168 (1992), 540-551. 

[3] G u p t a , C P . : A note on a second order three-point boundary value problem. J . M a t h . 
Anal . Appl . 186 (1994), 277-281. 

[4] Hardy, G. H., Lit t lewood, J. E. , Polya, G.: Inequalities. Cambridge Univ. Press, L o n d o n -
New York, 1967. 

[5] Hascak, A.: Disconjugacy and multipoint boundary value problems for linear differential 
equations with delay. Czech. M a t h . J. 114 , 39 (1989), 70-77. 

[6] Hascak, A.: Tests for disconjugacy and strict disconjugacy of linear differential equations 
with delays. Czech. Math . J. 114 , 39 (1989), 225-231. 

[7] Hascak, A.: On the relationship between the initial and the multipoint boundary value 
problems for n-th order linear differential equations with delay. Arch. M a t h . (Brno) , 26 , 
4 (1990), 207-214. 

[8] Marano , S. A.: A remark on a second-order three-point boundary value problem. J. M a t h . 
Anal. Appl. 183 (1994), 518-522. 

[9] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems. In: 
NSF-CBMS Regional Conference Series in Math . , No. 40, Amer . Math . S o c , Providence, 
RI , 1979. 

[10] Ricceri, O. N., Ricceri, B.: An existence theorem for inclusions of the type ty(u)(t) £ 
F(ti$(u)(t)) and application to a multivalued bpundary value problem. Appl . Anal . 38 
(1990), 259-270. 

[II] Stanek, S.: On some boundary value problems for second order functional differential 
equations. Nonlin. Anal, (in press) . 

[12] Stanek, S.: Leray-Schauder degree method in one-parameter functional boundary value 
problem. Ann. Math . Silesianae, Katowice (in press) . 


		webmaster@dml.cz
	2012-05-03T22:38:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




