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Abstract 

In the paper a classification of almost geodesic mappings is specified. 
It is proved that if an almost geodesic mapping / is simultaneously 7Ti and 
7T2 (or 7T3) then / is a mapping of affine connection spaces with preserved 
linear (or quadratic) complex of geodesic lines. 
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The present paper is devoted to an investigation of completeness of a clas­
sification of almost geodesic mappings of affine connection spaces An without 
the torsion. 

In [4, 5] the almost geodesic mappings of an affine connection space An were 
introduced and three types of them were distinguished, 7Ti, 7T2 and -K%. We 
proved [1, 2] that for n > 5 other types of almost geodesic mappings do not 
exist. However, one can not exclude the case when a mapping 7rr (r = 1,2,3) 
is simultaneously a mapping ix0 (cr ^ r ) . 

* Supported by grant No. 201/96/0227 of the Grant Agency of Czech Republic. 
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In this paper we characterize non-overlapping types of almost geodesic map­
pings. We receive the complete classification of these mappings for n > 5. 

The curve /: xh = xh(t) is almost geodesic in an affine connection space An 

if there exists a distribution F2, complanar along /, to which the tangent vector 
\ h = dxh jdt of this curve belongs at every point. The diffeomorphism / : An -> 
An is almost geodesic if, as a result of / , every geodesic of the space An passes 
into an almost geodesic curve of the space An. 

The mapping An -> An is almost geodesic if and only if the connection 

deformation tensor Phj{x) = T{j(x) — Thj(x) satisfies the relation [4, 5] 

p[h pi d] __ n 
r{a(31

 r8e %) ~ U> 

where 
ph — ph | pa ph 
rijk — ijk « rij ^ka-) 

Thj(x) and Tij{x) are objects of connection An and An, 6h is the Kronecker 
symbol, square and round brackets denote the alternation and symmetrization 
of indices without division, respectively, comma denotes the covariant derivative 
with respect to the connection on An. 

N. S. Sinyukov [4, 5] defined three kinds of almost geodesic mappings, namely 
7Ti, 7T2,and7T3 which are characterized, respectively, by the conditions 

*-: pkk) + p°npk)* = 5fa*) + hpk> (^ 
P^S&n + Ffa), (2) 

Ffrj) + F'Ffa) = 8h
{iH) + Ffay, (3) 

7T3: Pi) = 6 ^ + ^ , (4) 

^ . - = ^ + / a I - ) (5) 

where a4j, 62-, ipi, tph ,U)(j, ai, Fh, p are tensors of the corresponding valencies. 
Under an almost geodesic mapping, only the mappings TTI, 7T2 and 7T3 act in 

the neighborhood of every point of the space An (n > 5), exept, maybe, the set 
of points of measure zero [1, 2]. 

It is natural to presume that the affinor Fh of the mapping 7T2 satisfies 
Fh £ pSh + <phai and <phUij £ 0 for the mapp ing 7r3. Then 7r2n7r3~^. Indeed, 

let us suppose, that a mapping is simultaneously 7T2 and 7r3. Then (2) and (4) 
imply 

*hi>j) + Fil<Pj)=6tiiJ)+<f»ij. (6) 

Since ipi ^ 0 then there exists a vector el such that ea(pa = 1. Contracting 
(6) with e V we get 

Fhea ~aeh + 0tph, 

where a, (3 are functions. 
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.-. By the help of the above formula and after contracting (6) with eJ we have 

which was required to prove. 

T h e o r e m 1 If an almost geodesic mapping f is simultaneously TT\ and 7r2 then 
f is a mapping of an affine connection space with preserving a linear complex 
of geodesic lines. 

Proof Let a mapping / be an almost geodesic mapping of types TTI and 7T2 
simultaneously. After substituting (2) in (1) and taking into account (3) one 
finds 

8h
(iAm + FftBjk) = 0 (7) 

where Bjk = <P(j>k) ~ ^(j^fc), Ajk, Ok a r e tensors. Equation (7) implies Ajk = 0 
and Bjk = 0. 

The construction of these tensors shows that relation 

n*j) = ntfj) (8) 

is correct. 
A mapping 7T2 such that (2), (3) and (8) hold, is, evidently, a mapping 7Ti. 

On the other hand, equations (2) and (8) characterize mappings preserving a 
linear complex of geodesic lines [3]. The theorem is proved. 

T h e o r e m 2 If an almost geodesic mapping f is simultaneously TT\ and TT^ then 
f is a mapping of an affine connection space which preserves a quadratic com­
plex of geodesic lines. 

Proo f Let a mapping / be an almost geodesic mapping of types 7ri and 7T3 
simultaneously After substituting (4) in (1) and taking into account (5) we 
obtain 

6fiAjh) + <phBijh = 0i (9) 

where Bijk = U{%j,k) - a{iWjk), Ajk,ai are tensors. From (9) we have Ajk = 0 
and Bijk = 0. 

From here we get 
U(ijtk) = a(iUjky (10) 

Mappings 7T3 given by (4), (5) and satisfying conditions (10) are TT\ mappings. 
On the other hand, equations (4) and (10) characterize mappings preserving 

a quadratic complex of geodesic lines [3]. The theorem is proved. 
In a natural way, there are distiguished mappings TTI2 = TTI D 7T2 and 7Ti3 = 

7Ti fl 7T3. 

As we have already noted, mappings 7Ti2 preserve a linear complex of geodesic 
lines and these mappings are characterized by equations (2), (3) and (8). 

Mappings 7Ti3 preserve a quadratic complex of geodesic lines and are chara­
cterized by equations (4), (5) and (10). 
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Theorem 3 The space An (n > h), except, maybe, the set of measure zero, is 
divided into open domains. In each of them one of the following six mappings 
acts: geodesic, 7r12, 7Ti3, 7TI \ {7T2 U 7r3}, 7T2 \ TTI, 7T3 \ 7Ti. 
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