Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematic

Vladimir Berezovskij; Josef Mikeš
On a classification of almost geodesic mappings of affine connection spaces

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 35 (1996), No. 1, 21--24

Persistent URL: http://dml.cz/dmlcz/120347

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1996
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On a Classification of Almost Geodesic Mappings of Affine Connection Spaces *

Vladimir BEREZOVSKI ${ }^{1}$, Josef MIKEŚ ${ }^{2}$
${ }^{1}$ Department of Mathematics, Agricultural Academy, Lomonosova 10/53, Uman', Ukraine
${ }^{2}$ Department of Algebra and Geometry, Faculty of Sciences, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic e-mail: mikes@risc.upol.cz

(Received January 18, 1996)

Abstract

In the paper a classification of almost geodesic mappings is specified. It is proved that if an almost geodesic mapping f is simultaneously π_{1} and π_{2} (or π_{3}) then f is a mapping of affine connection spaces with preserved linear (or quadratic) complex of geodesic lines.

Key words: Almost geodesic mapping, affine connection space, classification.

1991 Mathematics Subject Classification: 53B05

The present paper is devoted to an investigation of completeness of a classification of almost geodesic mappings of affine connection spaces A_{n} without the torsion.

In $[4,5]$ the almost geodesic mappings of an affine connection space A_{n} were introduced and three types of them were distinguished, π_{1}, π_{2} and π_{3}. We proved [1, 2] that for $n>5$ other types of almost geodesic mappings do not exist. However, one can not exclude the case when a mapping $\pi_{\tau}(\tau=1,2,3)$ is simultaneously a mapping $\pi_{\sigma}(\sigma \neq \tau)$.

[^0]In this paper we characterize non-overlapping types of almost geodesic mappings. We receive the complete classification of these mappings for $n>5$.

The curve $l: x^{h}=x^{h}(t)$ is almost geodesic in an affine connection space A_{n} if there exists a distribution E_{2}, complanar along l, to which the tangent vector $\lambda^{h} \equiv d x^{h} / d t$ of this curve belongs at every point. The diffeomorphism $f: A_{n} \rightarrow$ \bar{A}_{n} is almost geodesic if, as a result of f, every geodesic of the space A_{n} passes into an almost geodesic curve of the space \bar{A}_{n}.

The mapping $A_{n} \rightarrow \bar{A}_{n}$ is almost geodesic if and only if the connection deformation tensor $P_{i j}^{h}(x) \equiv \bar{\Gamma}_{i j}^{h}(x)-\Gamma_{i j}^{h}(x)$ satisfies the relation [4, 5]

$$
P_{(\alpha \beta \gamma}^{[h} P_{\delta \epsilon}^{i} \delta_{\eta)}^{j]}=0,
$$

where

$$
P_{i j k}^{h} \equiv P_{i j, k}^{h}+P_{i j}^{\alpha} P_{k \alpha}^{h},
$$

$\Gamma_{i j}^{h}(x)$ and $\bar{\Gamma}_{i j}^{h}(x)$ are objects of connection A_{n} and $\bar{A}_{n}, \delta_{i}^{h}$ is the Kronecker symbol, square and round brackets denote the alternation and symmetrization of indices without division, respectively, comma denotes the covariant derivative with respect to the connection on A_{n}.
N. S. Sinyukov [4, 5] defined three kinds of almost geodesic mappings, namely π_{1}, π_{2}, and π_{3} which are characterized, respectively, by the conditions

$$
\begin{array}{ll}
\pi_{1}: & P_{(i j, k)}^{h}+P_{(i j}^{\alpha} P_{k) \alpha}^{h}=\delta_{(i}^{h} a_{j k)}+b_{(i} P_{j k)}^{h} ; \\
\pi_{2}: & P_{i j}^{h}=\delta_{(i}^{h} \psi_{j)}+F_{(i}^{h} \varphi_{j)}, \\
& F_{(i, j)}^{h}+F_{\alpha}^{h} F_{(i}^{\alpha} \varphi_{j)}=\delta_{(i}^{h} \mu_{j)}+F_{(i}^{h} \sigma_{j)} ; \\
\pi_{3}: & P_{i j}^{h}=\delta_{(i}^{h} \psi_{j)}+\varphi^{h} \omega_{i j}, \\
& \varphi_{, i}^{h}=\rho \delta_{i}^{h}+\varphi^{h} a_{i}, \tag{5}
\end{array}
$$

where $a_{i j}, b_{i}, \psi_{i}, \varphi^{h}, \omega_{i j}, a_{i}, F_{i}^{h}, \rho$ are tensors of the corresponding valencies.
Under an almost geodesic mapping, only the mappings π_{1}, π_{2} and π_{3} act in the neighborhood of every point of the space $A_{n}(n>5)$, exept, maybe, the set of points of measure zero [1, 2].

It is natural to presume that the affinor F_{i}^{h} of the mapping π_{2} satisfies $F_{i}^{h} \not \equiv \rho \delta_{i}^{h}+\varphi^{h} a_{i}$ and $\varphi^{h} \omega_{i j} \not \equiv 0$ for the mapping π_{3}. Then $\pi_{2} \cap \pi_{3}=\emptyset$. Indeed, let us suppose, that a mapping is simultaneously π_{2} and π_{3}. Then (2) and (4) imply

$$
\begin{equation*}
\delta_{(i}^{h} \psi_{j)}+F_{(i}^{h} \varphi_{j)}=\delta_{(i}^{h} \stackrel{*}{\psi_{j)}}+\varphi^{h} \omega_{i j} \tag{6}
\end{equation*}
$$

Since $\varphi_{i} \not \equiv 0$ then there exists a vector ϵ^{i} such that $\epsilon^{\alpha} \varphi_{\alpha}=1$. Contracting (6) with $\epsilon^{i} \epsilon^{j}$ we get

$$
F_{\alpha}^{h} \epsilon^{\alpha}=\alpha \epsilon^{h}+\beta \varphi^{h}
$$

where α, β are functions.

By the help of the above formula and after contracting (6) with ϵ^{j} we have

$$
F_{i}^{h}=\rho \delta_{i}^{h}+\varphi^{h} a_{i}
$$

which was required to prove.
Theorem 1 If an almost geodesic mapping f is simultaneously π_{1} and π_{2} then f is a mapping of an affine connection space with preserving a linear complex of geodesic lines.

Proof Let a mapping f be an almost geodesic mapping of types π_{1} and π_{2} simultaneously. After substituting (2) in (1) and taking into account (3) one finds

$$
\begin{equation*}
\delta_{(i}^{h} A_{j k)}+F_{(i}^{h} B_{j k)}=0 \tag{7}
\end{equation*}
$$

where $B_{j k} \equiv \varphi_{(j, k)}-\varphi_{(j} \theta_{k)}, A_{j k}, \theta_{k}$ are tensors. Equation (7) implies $A_{j k} \equiv 0$ and $B_{j k} \equiv 0$.

The construction of these tensors shows that relation

$$
\begin{equation*}
\varphi_{(i, j)}=\varphi_{(i} \theta_{j)} \tag{8}
\end{equation*}
$$

is correct.
A mapping π_{2} such that (2), (3) and (8) hold, is, evidently, a mapping π_{1}. On the other hand, equations (2) and (8) characterize mappings preserving a linear complex of geodesic lines [3]. The theorem is proved.

Theorem $\overline{2}$ If an almost geodesic mapping f is simultaneousiy π_{1} and π_{3} then f is a mapping of an affine connection space which preserves a quadratic complex of geodesic lines.

Proof Let a mapping f be an almost geodesic mapping of types π_{1} and π_{3} simultaneously. After substituting (4) in (1) and taking into account (5) we obtain

$$
\begin{equation*}
\delta_{(i}^{h} A_{j k)}+\varphi^{h} B_{i j k}=0 \tag{9}
\end{equation*}
$$

where $B_{i j k} \equiv \omega_{(i j, k)}-a_{\left(i \omega_{j k}\right)}, A_{j k}, a_{i}$ are tensors. From (9) we have $A_{j k} \equiv 0$ and $B_{i j k} \equiv 0$.

From here we get

$$
\begin{equation*}
\omega_{(i j, k)}=a_{(i} \omega_{j k)} \tag{10}
\end{equation*}
$$

Mappings π_{3} given by (4), (5) and satisfying conditions (10) are π_{1} mappings.
On the other hand, equations (4) and (10) characterize mappings preserving a quadratic complex of geodesic lines [3]. The theorem is proved.

In a natural way, there are distiguished mappings $\pi_{12}=\pi_{1} \cap \pi_{2}$ and $\pi_{13}=$ $\pi_{1} \cap \pi_{3}$.

As we have already noted, mappings π_{12} preserve a linear complex of geodesic lines and these mappings are characterized by equations (2), (3) and (8).

Mappings π_{13} preserve a quadratic complex of geodesic lines and are characterized by equations (4), (5) and (10).

Theorem 3 The space $A_{n}(n>5)$, except, maybe, the set of measure zero, is divided into open domains. In each of them one of the following six mappings acts: geodesic, $\pi_{12}, \pi_{13}, \pi_{1} \backslash\left\{\pi_{2} \cup \pi_{3}\right\}, \pi_{2} \backslash \pi_{1}, \pi_{3} \backslash \pi_{1}$.

References

[1] Berezovski, V. E., Mikeš J.: On almost geodesic mappings. Abstr. Int. Conf. on Diff. Geom. and Appl. Dubrovnik, Yugoslavia. Beograd (1988).
[2] Berezovski, V. E., Mikeš J.: On the classification of almost geodesic mappings of affineconnected spaces. Proc. of Conf. Diff. Geom. and Appl., 1988, Dubrovnik, Yugoslavia. Novi Sad (1989), 41-48.
[3] Chernyshenko, V.M.: Affine-connected spaces with a correspondent complex of geodesic. Collection of Works of Mech.-Math. Chair of Dnepropetrovsk Univ. 6 (1961), 105-118.
[4] Sinyukov N. S.: Geodesic mapping of Riemannian spaces. Nauka, Moscow, 1979.
[5] Sinyukov N. S.: Almost geodesic mapping of affine-connected and Riemannian spaces. Itogi Nauki i Tekhniki. Prob. Geom. 13 VINITT, Moscow (1982), 3-26.

[^0]: *Supported by grant No. 201/96/0227 of the Grant Agency of Czech Republic.

