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Abstract 

Planar ternary rings under consideration lie between general ones ([1]) 
and natural ones ([3]). The aim of the present paper is to find algebraic 
counterparts to various transitivities of convenient collineation subgroups. 

K e y words : Projective plane, flag, planar ternary ring, coordinati-
zation, algebraic description of transitivities. 
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1 Admissible planar ternary rings 

Our starting point is the notion of a planar ternary ring: An ordered couple 
(M, t ) consisting of a set M , # M > 2 and a ternary operation t on M is said 
to be a planar ternary ring ( P T R ) if it satisfies following conditions: 

( A l ) Vx,m,y G M 3 ! 6 e M : t(x,m,b) = y; 

(A2) Vm,b ,m,6 e M , mj^fh 3\x £ M : t(x,m,b) = t(:r ,m,6); 

(A3) Var, y> x, y G M , x^x 3! (m, b) 6 M x M: t(ar, m, b) = y A t(x, m, b) = y. 
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A P T R (M, t) is said to be admissible (APTR) if 

(A4) there is an element OL G M and a permutation *: b i—> b* of M such that 
for all ra, b € M the equality 

t(0L ,ra,6*) = & 

holds and moreover the following condition is fulfilled: 

(A5) V a G M , a ? - 0 L 3\na G M V b G M : t (a ,n a ,6*) = b. 

Replacing (A4) and (A5) by 

(A) there are elements 0L,0R and a permutation *: b i—> b* of M such that 
for all ra, 6, x G M the equalities 

t (OL , ra ,6*)=6 and t(x,GH,&*) = b 

hold, we get a natural P T R ( N P T R ) . Any N P T R is a special case of 
an A P T R . In fact, it satisfies the condition na = OR for all a G M \ {OL}. 

The element OL from (A4) is uniquely determined ([4], propositon 2.3) and is 
called the left quasizero of the given A P T R (M, t). In the sequel we will writte 
briefly 0 instead of OL. For any a,b,c G M, a ^ 0, where ( M , t ) is an A P T R 
there exists just one x G M such that t (a ,x ,6) = c (see [4], proposition 2.3). 
Hence for any a G M \ {0} there is exactly one ea G M such that t (a, ea , 0*) = a 
is valid. When a = 0 then we put ea = 0. Now we are able to define two binary 
operations (a,6) H> a + 6 (addition) and (a, 6) H> a*6 (multiplication) on M such 
that 

a + 6 = t (a ,e a ,6*) , a- b = t(a,6,0*). 

Further we recall some fundamental properties of both operations + and • 
([4], proposition 2.4): 

(a) V a Є M : a + 0 = 0 + a = a; 
(b) Va,ÒGM Э b є M : a + ж = 6, 

hence Va, xђ y Є M : a + ж = a + y ==> x — y\ 

(c) V a Є M : 0 • a = 0, a • n a = 0; 

(d) Va,òєM, a ^ 0 Зìx Є M : a • ж = 6, 
thus Va,x,y Є M, a ф 0 : a- x = a- y =-> rc = y; 

(e) Va Є M : a • e a = a. 
Ifa- æ = 6 and a^-Owe will write ж = a\ò. Thus we have a • (a\b) -= 6 for 

all a, b Є M, a ф 0. 

2 Coordinatization of projective planes by 
planar ternary rings 

Consider a projective plane P = (U, L, e) and call a flag every couple consisting 
of a point and a line through this point. A projective plane together with a 
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distinguished flag (V, n) will be denoted by P(V,n) . Points of U\n are said 
to be affine and these of n ideal. For any ideal point N the set (N) of all lines 
containing N is said to be a direction. Especially the direction (V) is called 
vertical and lines of (V) are called vertical too. All the remaining directions are 
said to be skew and lines not going through V are said also to be skew. 

Let A denote the set of all affine points and B the set of all skew lines. As 
it is well known the equality 

card A = cardS = (ordP)2 

is valid. 
Now investigate a PTR (M,t) with cardM =ordP. By a frame of P we 

understand a couple S of bijections 

M x M - > . 4 , ( x , y) i—•» (x, y)s and M x M -~» B, (m, 6) i—> [m, 6]s (1) 

such that 

y = t(x, m, 6) ^=> (x, y)s 6 [m, 6]s (2) 

for all x,y,m,b £ M. 
We see that for all a e M the set 

[a)B = {(x,y)seA\x = a}U{V} (3) 

is a vertical line different from n. Dually, for all u G M the set 

(u)s = {[m, 6]s € B | m = u] U {n} (4) 

is a direction different from (V). Thus we have two bijections M —> (V)\{n}, 
a i—> [a]s and M i—> n\{V}, u i—> (u)s, where (u)s denotes also the corre­
sponding ideal point of the direction considered. We conclude that 

[m,6]s = {(x,y)s € A\y = t(x,m,b)} U {(m)s} (5) 

for all m, 6 € M. 
Remark that in the case of an APTR (M, t) we have a distinguished vertical 

line v = [0]s. Now let [m,6]s, [m,6]s be distinct skew lines and denote by c,c 
the elements such that c* = 6, c* = 6. Assumingjm, 6]s, [m, 6]s have a common 
point on v we get_c = t(0,m,6) = y = t(0,m,6) = c and consequently 6 = 6. 
Conversely, if 6 = 6 then c = c and t(0, m, 6) = c = c = t(0, m, 6) so that (0, c)s 

is a common point of both lines. We can formulate the result as 

Theorem 1 Two distinct skew lines [m, 6]s, [m, 6]s have a common point on 
the vertical axis iffb = b. 
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3 Transitivities 
First recall some important notions and results concerning transitivities of cen­
tral collineations groups. Let Q be a point and q a line of a given projective 
plane P(V,n). Denote by G(Q,q) the group consisting of all collineations of 
P(V,n) which fix every line through Q and every point of q. (Q is the centre 
and q the axis of the collineation under consideration). If Q ^ q we have a 
homology and if Q G q we have an elation. A projective plane is said to be 
(Q,q)-transitive if for all lines 1 ̂  q, Q e 1 G(Q,q) operates transitively on 
1\{Q, 1A q}. Necessary and sufficient for P(V, n) to be (Q, q)-transitive is the 
existence of a line 1 ̂  q, Q € 1 and a point P € 1, P / Q , P ^ q such that 
every point P ' G 1, P ' ^ Q, P ' $ q there is an K G G(Q, q) with K : P i—> P ' . 

If q is a line of P(V,n) we say that P(V,n) is q-transitive if it is (Q,q)-
transitive for any Q £ q. If we denote by G(q) the group of all collineations 
fixing all points of q, then P(V,n) is q-transitive iff the group G(q) operates 
transitively on the set U\q (U is the set of all points of P(V,n)). P(V.n) 
is q-transitive iff it is (Q,q)-transitive and (Q,q)-transitive for distinct points 
R, Q € q. In the case G(q) = G(Q,q) © G(R,q), the group G(q) is abelian. 
Dually, let Q be a point of P(V,n). We say that P(V,n) is Q-transitive if it 
is (Q, q)-transitive for all q 3 Q. P(V,n) will be called desarguesian if it is 
(Q> q)~transitive for all points Q and all lines q. P(V,n) is desarguesian iff 
there exists a line q and a point S $ q such that P(V,n) is q-transitive and 
(S,q)-transitive. The elation (homology) of P(V,n) whose axis is the line n is 
said to be a translation (a homology) of P(V,n). The (V,n)-transitive plane 
is called vertically transitive plane, the n-transitive plane called also translation 
plane. The translation plane P(V, n) is desarguesian iff there exists an affine 
point P such P(V,n) is also (P,n)-transitive. The desarguesian plane P(V,n) 
is pappian if for all lines q and all points Q £ q the group G(Q,q) is abelian. 
If there exists for a q-transitive plane P(V, n) a point Q £ q such that P(V, n) 
is (Q, q)-transitive and the group G(Q,q) is abelian then P(V, n) is pappian. 
Especially a translation plane P(V, n) is pappian iff there exists an affine point 
P such that G(V,n) is (P,n)-transitive and the group G(P,n) is abelian. 

4 APTR's of vertically transitive planes and of 
translation planes 

Here we recall some results concerning the APTR's coordinating a (V, n)-
transitive or an n-transitive projective plane P(V,n). In what follows we as­
sume that the given projective plane P(V,n) is coordinatized by an A P T R 
(M,t). 

Theorem 2 A P(V,n) is vertically transitive iff 
(a) Vo,6,c€M: a + (6 + c) = (a + b) + c and 
(b) \fx,m,beM: t(x,m,b*) = x • m + 6* ((M,t) is linear). 

Remark: If P(V,n) is vertically transitive then (M, 4-) is a group. 
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Theorem 3 A vertically transitive plane P (V ,n ) is a translation plane iff for 
any a, b, c G M , 6 ^ 0 the equation 

c-m — b-m — a - m - = c - r i 6 — a - nt (1) 

has either just one solution m = n& or is fulfilled identically. 

Remark: If P ( V , n) is a translation plane then the group (M, +) is abelian. 

5 APTR's of V-transitive planes 

Suppose P ( V , n ) is a vertically transitive plane. Then P (V ,n) is V~transitive 
iff it is (V, v)-transitive (v is the vertical axis [0]s). Any (V, n)-transitive plane 
P ( V , n) is (V, v)-transitive iff for any d, a G M there exists an elation e G 
G(V,v) such that e : (d) s •—• (a) s . 

Theorem 4 A vertically transitive plane P ( V , n ) is V-transitive iff for any 
a, 6, c, d € M the equation 

m-a — m-d^m-c — m-b (1) 

has only trivial solution (m = 0) or is fulfilled identically. 

Proof Assume that the given (V, n)-transitive plane P (V ,n ) is (V, v - t r ans ­
itive and that for given a ,6 ,c yd,m € M , m ^ 0 the equality 

m - a — m - d = m • c~~ m - b (2) 

holds. Then there exists an e G G(V, v) such that e((a)s) = ((d) s). Let (c ') s = 
e((6)s). If m is an arbitrary non left-quasizero element of M then e maps [d, 0] s 

onto [a, 0]s and € : (m,m-d)& i—1> (m,m-a)s- As (m,m-d) s G [6, (—m-b-|-m-d)*]s 

we have (m, m • a ) s G [c;, (—m -b-r-m • d)*] s . Therefore 

m-a — m-d^m-c' — m-b (3) 

(for any m G M\{0} s ) . Especially for m = m we have 

m - a — m - d ~ m - c1 -- m - b. (4) 

Comparing (2) with (4) we obtain c = d and consequently for all m G M (1) is 
satisfied. 

Let P ( V , n) be (V, n)-transitive plane and let the coordinatizing A P T R 
(M,t) satisfy the condition of the theorem. If m G M\{0} and d, a G M then 
define a mapping U : M -» M , u \—> u' by 

u1 = U(u) <=$ m-a — m-d^m-u' ~~fh'U, (5) 
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u is a permutation of M. Now define the map e of P (V , n) onto itself by 

V(x,y)s€A e((x,y)s) - (x,x • a - x • d + y)s; 
(u)a e n \ V e((u)«) = ( « ' ) B , « ' = e(u); 

e(V) = V. 

6 is map of P ( V , n) onto itself carrying every affine point onto an affine point and 
fixing all vertical lines and all points of the vertical axis. In addition there holds 
e((d)s) = (a)s (as U(d) = a). Let us have skew lines 1 = [w,g*]s> 1' = [w',<?*]s 
and let (x, y)s be an affine point. According to our supposition we get from (5) 
also 

x-a — x-d — x-u' — c-u. 

As (x, y)s G 1 <=—> y = x • u + q <==$ x-a — x-d + y — x-a — x-d + q <=> 
x-a-x-d + y — x-uf + q <=> (x, x • a — x • d + y)s G 1' 4=> e((x, y)s) G 1', e is 
a collineation. 

6 APTR's of desarguesian planes 

Theorem 5 If a translation plane P ( V , n ) is also V-transitive then it is de­
sarguesian iff the corresponding (M, t) satisfies the condition 
(P) for all u , u , x , x € M\{0} : 

x\(x -m — u • m + u • r) — x\(x • m — u- rn + u-r) (1) 

either admits just one solution m~r or is fulfilled for all m,r G M . 

Proof (i) Let P ( V , n ) be desarguesian. For given u,u,x,x G M\{0} let there 
exist diferent m, f satisfying 

x\(x •m — u-fh + u-f) — x\(x •m — u-m + u-f). (2) 

Investigate a homology K £ G ( P , n ) , P = (0,0) s carrying [u]& onto [u]& and 
[x]s onto [xf]&. Let m,r be distinct elements of M . Since the line [m,0] s is 
fixed under K, it follows that 

K((U,U • m)s) = (u,u* m ) s , K((X,x • .m) s) = (x',xl • m ) s . (3) 

The lines [r, (u • m — u • r )*] s , [r, (u • m — £t • r )*] s belong to the same direction 
( r ) s and contain the points (u,u • m ) s and (u,u • m ) s , respectively. Hence 
«([r, (it • m - u • r)*] s) = [r, (t£ • m - u • r )*] s and consequently 

K : (0, (M • m - u • r )*) s = (0, (u • m - u • r )* ) s . (4) 

Assume K G M to be such that [fc, (u-m-u-r)*]s contains the point (x,x• m ) s . 
We get K([k, (u-m-u- r)*]s) = [Jfe, (u • m - u • r )*] s so that (a;', a;' • m ) s G 
[fc, (u • m - u • r )*] s . This means that 

x-m — x-k + u-m — u-r, 
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Eliminating k we get 

x\(x • m — u- m + u- r) = x'\(x' • m — u-m + u-r). (5) 

Since (5) is true especially for m = m, r = f, we obtain 

x\(x -fh — u -fh + u • f) = x'\(x' • fh — u-fh + u-f). (6) 

Rewritting (2) and (6) as 

£ • (-c\(x • m — u-fh + u-f)) = x - m — u- m + u- f, 

x' • (rc\(x • m — u • m 4- u - f)) = #' • m — w • fh -f tl • f 

and using a:\(x • m — u-fh + u-f) ^ fh we reach x = x'. Hence (1) is true for 
all rn,r € M . 

(ii) Let P ( V , n) be a V-transitive translation plane and let its A P T R (M, t) 
have the property ( P ) . For given vertical lines [w]s, [u]s different from vertical 
axis w, u are non-zero elements. Choosing diffferent elements m, f € M we may 
define a map U as follows: 

Vx1xeM\{Q}:x=U(x) 

x • (x\(x -fh — u- m + u • f)) = x -fh — u-fh + u-f, U(0) = 0. (7) 

According to (P) it follows that 

x • (x\(x -m — u-m + u-r)) = x -m - u-m + u-r. (8) 

for all m, r G M . 

Take a n s G M and define a further map V of M onto M with help of 

Vq,q eM: q = V(q) «==> q = u-s-u- (u\(u - $- q)). (9) 

Here we have V(0) = 0 and if s is an arbitrary element of M then for 

a = u\(u- s - q), b = u\(u-s-q) (10) 

we obtain 
u • a = u - s — q, u-b = u-s — q 

and consequently 
u-a — U'S = u-b — u-s. (11) 

According to theorem 3, we obtain 

u-a — u- s = u-b — u-s 

and consequently 
u • b = u • a — u • s + u ' s. (12) 
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Using (9), (10), (12) and (9) we get 

q — u • s — u • (u\(u • s — q)) = u • s — u b = 
u-s — u-a + u-s — u-s = u-s~^u-a = u-s — u- (u\(u • s — q)). 

Thus if there is an s € M such that q = u • s — u • (u\(u • s — q)) then for any 
s e M 

q =:&• $ - u- (u\(u • s — q)) (13) 

is true. 
Now if x = U(x), x j£ 0 and c = u\(u • s - q) then u • c = u • s — q and 

q =z u - s — u • c. Using (P) and (8) we obtain for m = s and r = c that 

x • (x\(a: • s — u • s + u • c)) =x-s — u-s + u-c, 
x • (x\(:r • 5 — #)) = x • s — q 

and finally 
q = x • s - x • (x\(x • s — q)). (14) 

We obtain a result: (13) and x = U(x) imply (14). 

Take an i £ M and define third map W of M onto M by 

Vy,yx e M : y* = W(j/) <=> yx = u-i+x-i-u- (u\(u-i+x-i-y)). (15) 

We will prove that for a lH € M there holds 

yx=u-t + x-t-u< (u\(u -t + x-t- y)). (16) 

If re = 0 then also x = 0 and yx = V(t/). Then we can state that for a lH € M 

yx = u-t — u- (u\(u -t — y)) 

holds true. 

Now let x ^ 0 and p, q be elements of M satisfying 

x-t + p = yi x-t + q = y. (17) 

Denoting p = V(p), q = V(q) we obtain 

p = x • s - x • (rr\(«r • 5 - p)), (18) 

q = x • s - re • (x\(x • s - q)) (19) 

for some s G M and consequently for all s € M . Putting a = # \p , /? = x\q and 
replacing 5 by a in (18) as well as in (19) we get 

p = x • a — x • n x , q = x • (3 — x -nx. (20) 

As p = re • a and q = x • f3, we obtain by (17) 

x • t + x • a — x -t + x • fl. 
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Hence 
x • t + x • a = x • t + x • fj 

and consequently 

x -t + x- a- x -nx = x -t + x • j3 - x -nx. (21) 

According to (20) we have 

x-i + p-x-t + q. (22) 

Using (Q) we obtain 

p-=U'i-U'(u\(u-i-p)) and q = u -t - u - (u\(u -t - q)). (23) 

Now it follows from (15), (22) and (23) that 

yx ~u-i+x -i-u- (u\(u •i+x-i-y))~U'i+x-i-U' (u\(u -i - p)) = 
x • t+ (u • i — u • (u\(u • t — p))) = x • J-fp = 
x-t + q — x-t+(u-t — u- (u\(u • t — q))) = 

u-t + x-t — u- (u\(u -t - q)) = u-t + x -1 — ti - (u\(-t + x • t — y)). 

Hence (16) is true. 
Further let us define a map K of P(V, n) onto itself by 

[a] V(x,t/) G M x M , x^O K((x,y)s) = (x,yx)s, where x = U(x), yx = W(y), 
[b] Vs/ G M /c((0,2/)s) = (0,y)s, where £ = V(</), 
[c] VtiGM K((U)S) = (u)s, and 
[d] K(V) = V. 

Evidently K is bijective and all ideal points together with P = (0,0)s are 
fixed under K. Moreover any vertical line [x]s is carried onto the vertical line [x]s, 
where x = U(x). Especially we have «([0]s) = [0]s, AC([U]S) = [u]s- It remains to 
prove that the image of every skew line is a skew line of the same direction. Thus 
consider a skew line 1 = [h, q*]s and denote 1' = [h, q*]s (q — V(q)). Evidently 
K((0>Q)S) = (0,q)s so that the image of (0,q)s G 1 is the point (0,q)s € 1'. Now 
let (x7y)s be an affine point lying not on the vertical axis. If (x,y)s G 1, then 
y = x - h + q. We know that 

yx~x-h + u-h-u- (u\(u -h + x-h- y)). (24) 

Thus yx = x-h+u-h-u-(u\(u-h-q)) = x-h+(u-h-u-(u\(u-h-q))) = x-h+q =$> 
(x,yx)seV. 

Conversely, let (x,yx)s € 1', x ^ 0. As yx = x • h + q, we have 

yx = x-h + (u>h-u- (u\(u • /i - q))). (25) 

On the other side, we have 

yx=u-h + x-h-u- (u\(u -h + x-h- y)). (26) 

Comparing (25) with (26) yields 

u-h — q^u-h + x-h — y and y = x • h + q, 

which means that (x,y)s € 1. Therefore we have proved that K G G(P,n) . 
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7 APTR's of pappian planes 

T h e o r e m 6 A desarguesian plane P ( V , n ) is pappian iff its A P T R ( M , t ) 
satisfies the condition 

Va, b, c, d € M , 6 ^ 0 : ( , 
a-nb — a- (b\(-~c - nb + c • d)) = c-nb — c • (b\(—a -nb + a • d)). ^ 

P r o o f Consider the group G ( P , n) where P = (0,0)s- Then G ( P , n) is abelian 
iff for any two homologies tc, p € G ( P , n) there exists an affine point Y = (0, t /) s , 
y ^ 0, such that (p o K)(Y) = (K O p)(Y). Let a,b,c,d be given elements of 
M, b ^ 0. We may assume that a ^ 0, c ^ 0, d ^ n&. 

I. Let P ( V , n ) be pappian and K,p homologies from G ( P , n ) carrying the 
vertical line [b]s onto [a]s or [c]s, respectively. Consider an arbitrary point 
(0,y) s ,! / ? 0. If (0,yx) = /c((0,y)8) and (0,y2) = «((0,y) s) then 

yi-a-s-a- (b\(b • s - H)), y2 = c • t - c • (6\(6 • * - ?/)). (2) 

We know that if (2) is true for some s £ M (for some £ £ M) then it is true 
for all s 6 M (for all t E M) . Thus putting s = t = n&, we have 

yi = c • n& - a • (b \ ( -y) ) , y2 = c • nb - c - (b\(~y)). (3) 

Similarly, denoting (0,y3)s = p((0,yi)s) and (0,y4)s = «((0,y2)s), we obtain 

y3=c-nb~c- (6\(—2/1)), y4-a-nb~a- (b\(-y2)). (4) 

As /) o K = « o p, we have 
Vs = 2/4- (5) 

Now choose y = — (& • d). Then yi = a • nb — a - d, y2 = c • nb — c • d and 
furthermore 

yz — c-nb-c- (b\(~a -nb + a- d)), y4 = a • nb - a - (b \ ( - c • n& 4- c • d)). (6) 

Thus (5) and (6) imply (1). 
II. Conversely let (1) be true. Let us take two homologies K,p € G ( P , n ) 

and suppose that «([6]s) = [a] s , p([b]s) = [c]s- As in the first part we find that 

(poK)((0, ~(b-d))s) == (0,c-nb - c - (b\(-a • nb + a • d)))s, 
(K O p)((0, ~(b • d)) s) = (0, a • nb - a • ( 6 \ ( - c • nb + c • d))) s . 

(1) implies that both points are equal so that p o K = K O p. 
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