Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

František Machala
 Incidence structures of independent sets

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 38 (1999), No. 1, 113--118

Persistent URL: http://dml.cz/dmlcz/120391

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1999
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

Incidence Structures of Independent Sets

František MACHALA

Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic
e-mail: machala@risc.upol.cz
(Received January 28, 1999)

Abstract

Independent sets in incidence structures are studied in this paper. By the help of the mappings norming independent sets we define incidence structures of independent sets. The substructures in them are described. The questions of reducibility of incidence structures in context with reducibility of corresponding structures of independent sets are also studied.

Key words: Incidence structures, independent sets, disjoint union of incidence structures.

1991 Mathematics Subject Classification: 06B05, 08A35

Definition 1 Let G and M be sets and $I \subseteq G \times M$. Then the triple $\mathcal{J}=(G, M, I)$ is called an incidence structure. If $A \subseteq G, B \subseteq M$ are non--empty sets, then we denote

$$
A^{\uparrow}=\{m \in M \mid g \operatorname{Im} \forall g \in A\}, \quad B^{\downarrow}=\{g \in G \mid g \operatorname{Im} \forall m \in B\}
$$

For the empty set we put $\emptyset^{\uparrow}:=M, \emptyset^{\downarrow}:=G$. And moreover, we denote $A^{\uparrow \downarrow}:=$ $\left(A^{\uparrow}\right)^{\downarrow}, B^{\downarrow \uparrow}:=\left(B^{\downarrow}\right)^{\uparrow}, g^{\uparrow}:=\{g\}^{\uparrow}, m^{\downarrow}:=\{m\}^{\downarrow}$ for $A \subseteq G, B \subseteq M$ and $g \in G$, $m \in M$.

[^0]Definition 2 An incidence structure $\mathcal{J}_{1}=\left(G_{1}, M_{1}, I_{1}\right)$ is embedded into an incidence structure $\mathcal{J}=(G, M, I)$ if $G_{1} \subseteq G, M_{1} \subseteq M$ and $I_{1} \subseteq I \cap\left(G_{1} \times M_{1}\right)$. If $I_{1}=I \cap\left(G_{1} \times M_{1}\right)$, then \mathcal{J}_{1} is a substructure of \mathcal{J}.

If we put $\mathcal{P}_{G}=\left\{A \subseteq G \mid A=A^{\uparrow \downarrow}\right\}$, then the pair $\mathcal{G}=\left(G, \mathcal{P}_{G}\right)$ is a closure space in which $X^{\uparrow \downarrow}$ is a closure of any subset $X \subseteq G$ in \mathcal{G}. A set $A \subseteq G$ is independent in \mathcal{G} if $a \notin(A-\{a\})^{\uparrow \downarrow}$ for all $a \in A$.

In what follows we denote $A_{a}:=A-\{a\}$.
If $A \subseteq G$, then we put $X^{A}(a):=A_{a}^{\uparrow}-a^{\uparrow}$ for $a \in A$. Then $X^{A}(a)=\emptyset$ iff $A_{a}^{\uparrow} \subseteq a^{\uparrow}$ iff $a \in A_{a}^{\uparrow \downarrow}$. Hence the set A is independent in \mathcal{G} if and only if $X^{A}(a) \neq \emptyset$ for all $a \in A$.

Let the subset $A \subseteq G$ be independent in \mathcal{G}. Then we put $\mathcal{X}=\left\{X^{A}(a) \mid a \in\right.$ $A\}$. For every choice $Q^{A}=\left\{m_{a} \in X^{A}(a) \mid X^{A}(a) \in \mathcal{X}\right\} \subseteq M$ from the set \mathcal{X} we define a map $\alpha: A \rightarrow Q^{A}$ by the formula $\alpha(a)=m_{a}$. This map is called an A-norming map.

If we put $\mathcal{P}_{M}=\left\{B \subseteq M \mid B=B^{\downarrow \uparrow}\right\}$, then $\mathcal{M}=\left(M, \mathcal{P}_{M}\right)$ is a closure space again. A set $B \subseteq M$ is independent in \mathcal{M} if $m \not \ddagger(B-\{m\})^{\downarrow \uparrow}=B_{m}^{\downarrow \uparrow}$ for all $m \in M$. If $m \in B$, then we put $Y^{B}(m)=B_{m}^{\downarrow}-m^{\downarrow} . B$ is independent in \mathcal{M} if and only if $Y^{B}(m) \neq \emptyset$ for all $m \in B$.

Let B be independent in \mathcal{M}. Then we put $\mathcal{Y}=\left\{Y^{B}(m) \mid m \in B\right\}$. For every choice $Q^{B}=\left\{a_{m} \in Y^{B}(m) \mid Y^{B}(m) \in \mathcal{Y}\right\} \subseteq G$ we consider a map $\beta: B \rightarrow Q^{B}$ given by the formula $\beta(m)=a_{m}$. It will be called a B-norming map.

Theorem 1 Let $A \subseteq G(B \subseteq M)$ be an independent set in $\mathcal{G}(\mathcal{M})$. Then each norming map $\alpha: A \rightarrow Q^{\bar{A}}\left(B \rightarrow Q^{B}\right)$ is injective and the set $Q^{A}\left(Q^{B}\right)$ is independent in \mathcal{M} (G). (See [3].)

If $\alpha: A \rightarrow B$ is a map norming an independent set A of \mathcal{G}, then $\alpha^{-1}: B \rightarrow A$ is a map norming an independent set B of \mathcal{M}. Moreover, from $\alpha(a)=m_{a}$ for $a \in A$ we get $a \in Y^{B}\left(m_{a}\right)$.

Theorem 2 Let $\mathcal{J}_{1}=\left(G_{1}, M_{1}, I_{1}\right)$ be a substructure of an incidence structure $\mathcal{J}=(G, M, I)$ and $\mathcal{G}_{1}=\left(G_{1}, \mathcal{P}_{G_{1}}\right), \mathcal{M}_{1}=\left(M_{1}, \mathcal{P}_{M_{1}}\right)$ be corresponding closure spaces in \mathcal{J}_{1}. A set $A \subseteq G_{1}\left(B \subseteq M_{1}\right)$ is independent in $\mathcal{G}_{1}\left(\mathcal{M}_{1}\right)$ if and only if $X^{A}(a) \cap M_{1} \neq \emptyset$ for all $a \in A\left(Y^{B}(m) \cap G_{1} \neq \emptyset\right.$ for all $\left.m \in B\right)$.

Remark 1 If a set $A(B)$ is independent in $\mathcal{G}_{1}\left(\mathcal{M}_{1}\right)$, then it is independent in $\mathcal{G}(\mathcal{M})$.

Definition 3 Let us consider an incidence structure $\mathcal{J}=(G, M, I)$ and a natural number $p \geq 2$. Let G^{p} and M^{p} be the sets of all independent sets of \mathcal{G} and \mathcal{M} of cardinality p, respectively. Then $\mathcal{J}^{p}=\left(G^{p}, M^{p}, I^{p}\right)$ is an incidence structure of independent sets of \mathcal{J}, where $A I^{p} B$ iff there exists an A-norming $\operatorname{map} \alpha: A \rightarrow B$ for $A \in G^{p}, B \in M^{p}$.

Remark 2 If $G^{p}=M^{p}=\emptyset$, then $\mathcal{J}^{p}=(\emptyset, \emptyset, \emptyset)$. In this case we will write $\mathcal{J}^{p}=\emptyset$. Since each subset of an independent set is independent, from $G^{p} \neq \emptyset$ we obtain $G^{q} \neq \emptyset$ for $2 \leq q \leq p$.

Remark 3 Let $A \in G^{p}$. Then $X^{A}(a) \neq \emptyset$ for all $a \in A$ and there exists a set $B \in M^{p}$ and a norming map $\alpha: A \rightarrow B$. Similarly for an arbitrary subset $B \in M^{p}$. Thus $A^{\uparrow} \neq \emptyset, B^{\downarrow} \neq \emptyset$ for all $A \in G^{p}, B \in M^{p}$.

Theorem 3 If $\mathcal{J}_{1}=\left(G_{1}, M_{1}, I_{1}\right)$ is a substructure of $\mathcal{J}=(G, M, I)$, then $\mathcal{J}_{1}^{p}=\left(G_{1}^{p}, M_{1}^{p}, I_{1}^{p}\right)$ is a substructure of \mathcal{J}^{p}.

Proof Let $A \in G_{1}^{p}$. It means that A is independent in \mathcal{G}_{1} and $|A|=p$. By Theorem 2, A is also independent in \mathcal{G} and thus $A \in G^{p}$. Hence $G_{1}^{p} \subseteq G^{p}$. Similarly $M_{1}^{p} \subseteq M^{p}$.

Assume that $A I_{1}^{p} B$ for $A \in G_{1}^{p}, B \in M_{1}^{p}$. There exists a norming map $\alpha: a \mapsto m_{a}$ in \mathcal{J}_{1}, where $m_{a} \in{ }^{\dagger} A_{a}-\uparrow a$ (we write the operators \uparrow, \downarrow to the left in \mathcal{J}_{1}). Since ${ }^{\top} A_{a}-{ }^{\uparrow} a=X^{A}(a) \cap M_{1}$, we get $m_{a} \in X^{A}(a)$ and α is also norming map in \mathcal{J}. This yields $A I^{p} B$.

Let $A I^{p} B$ for $A \in G_{1}^{p}, B \in M_{1}^{p}$. Then there exists a map $\alpha: a \mapsto m_{a}$ norming the set A in \mathcal{J}, where $m_{a} \in X^{A}(a) \cap M_{1}$. Thus $m_{a} \in{ }^{\uparrow} A_{a}-{ }^{\dagger} a$. Therefore α is a norming map in \mathcal{J}_{1} and $A I_{1}^{p} B$.

Theorem 4 Let $\mathcal{J}_{1}^{p}=\left(G_{1}^{p}, M_{1}^{p}, I_{1}^{p}\right)$ be a substructure of $\mathcal{J}^{p}=\left(G^{p}, M^{p}, I^{p}\right)$ such that ${ }^{\uparrow} A \neq \emptyset, \downarrow B \neq \emptyset$ for all $A \in G_{1}^{p}, B \in M_{1}^{p}\left(\uparrow, \downarrow\right.$ are operators in $\left.\mathcal{J}_{1}^{p}\right)$. If $\mathcal{J}^{\prime}=\left(G^{\prime}, M^{\prime}, I^{\prime}\right)$ is a substructure in \mathcal{J} such that

$$
G^{\prime}=\bigcup_{A \in G_{1}^{p}} A \quad \text { and } \quad M^{\prime}=\bigcup_{B \in M_{1}^{p}} B
$$

then \mathcal{J}_{1}^{p} is a substructure of $\mathcal{J}^{\prime p}=\left(G^{\prime p}, M^{\prime p}, I^{\prime p}\right)$.
Proof Consider $A \in G_{1}^{p}$. Because of ${ }^{\uparrow} A \neq \emptyset$ there exists $B \in M_{1}^{p}$ such that $A I_{1}^{p} B$. Since \mathcal{J}_{1}^{p} is a substructure in \mathcal{J}^{p}, we get $A I^{p} B$. Hence there exists a norming map $\alpha: A \rightarrow B$ in \mathcal{J} assigning to every $a \in A$ an element $m_{a} \in X^{A}(a) \cap M^{\prime}$. This implies $X^{A}(a) \cap M^{\prime} \neq \emptyset$ and (by Theorem 2) A is independent in \mathcal{J}^{\prime}. Thus $A \in G^{\prime p}$ and we obtain $G_{1}^{p} \subseteq G^{\prime p}$. Similarly $M_{1}^{p} \subseteq M^{\prime p}$.

Suppose that $A \in G_{1}^{p}, B \in M_{1}^{p}$, i.e. $A \subseteq G^{\prime}, B \subseteq M^{\prime}$ If $A I_{1}^{p} B$, then $A I^{p} B$ and there exists a norming map $\alpha: A \rightarrow B$ in \mathcal{J} which is at the same time norming in \mathcal{J}^{\prime}. Thus $A I^{\prime p} B$. Conversely, consider $A I^{\prime p} B$. According to Theorem $3, \mathcal{J}^{\prime p}$ is a substructure in \mathcal{J}^{p} which implies $A I^{p} B$. Because of \mathcal{J}_{1}^{p} is a substructure in \mathcal{J}^{p}, we obtain $A I_{1}^{p} B$.

Remark 4 Let the assumptions from Theorem 4 be satisfied. If $\mathcal{J}^{+}=$ $\left(G^{+}, M^{+}, I^{+}\right)$is a substructure in \mathcal{J} such that $\mathcal{J}^{+p}=\mathcal{J}_{1}^{p}$, then $G^{+p}=G^{p}$ and $M^{+p}=M^{\prime p}$.

Example 1 Let us show an example of a substructure \mathcal{J}_{1}^{p} in \mathcal{J}^{p} such that there exists no incidence structure \mathcal{J}^{+}embedded into \mathcal{J} with the property $\mathcal{J}^{+p}=\mathcal{J}_{1}^{p}$.

I	m_{1}	m_{2}	m_{3}
g_{1}		-	-
g_{2}	-		-
g_{3}	-	-	
g_{4}	-		-
g_{5}		-	-

Table 1

I^{3}	M
A_{1}	-
A_{2}	-
A_{3}	-
A_{4}	-

Table 2

An incidence structure $\mathcal{J}=(G, M, I)$, where $G=\left\{g_{1}, \ldots, g_{5}\right\}$ and $M=$ $\left\{m_{1}, m_{2}, m_{3}\right\}$ is given by the incidence table (Table 1). Let us consider an incidence structure $\mathcal{J}^{3}=\left(G^{3}, M^{3}, I^{3}\right)$. Then $G^{3}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}, M^{3}=\{M\}$, where $A_{1}=\left\{g_{1}, g_{2}, g_{3}\right\}, A_{2}=\left\{g_{1}, g_{3}, g_{4}\right\}, A_{3}=\left\{g_{2}, g_{3}, g_{5}\right\}, A_{4}=\left\{g_{3}, g_{4}, g_{5}\right\}$ and $A_{1}, A_{2}, A_{3}, A_{4} I^{3} M$ (see Table 2).

If we denote $G_{1}^{3}=\left\{A_{1}, A_{4}\right\}, M_{1}^{3}=\{M\}$, then $\mathcal{J}_{1}^{3}=\left(G_{1}^{3}, M_{1}^{3}, I_{1}^{3}\right)$ is a substructure in \mathcal{J}^{3}, where $A_{1}, A_{4} I_{1}^{3} M$. Let us assume that $\mathcal{J}^{+}=\left(G^{+}, M^{+}, I^{+}\right)$ is an incidence structure embedded into \mathcal{J} such that $\mathcal{T}^{+3}=\mathcal{J}_{1}^{3}$. Thus $G^{+3}=G_{1}^{3}$ and $A_{1}, A_{4} \in G^{+3}, A_{1} \cup A_{4} \subseteq G^{+}$.

From this $G^{+}=G$ and $\bar{M}^{+}=M$. Since \mathcal{J}^{+}is embedded into \mathcal{J}, we obtain $I^{+} \subseteq I$. If $I^{+}=I$, then $\mathcal{J}^{+}=\mathcal{J}$ and $\mathcal{J}^{+3}=\mathcal{J}^{3}$. Hence $\mathcal{J}_{1}^{3}=\mathcal{J}^{3}$ and that is a contradiction.

Assume that $I^{+} \neq I$. Then there exist elements $g_{i} \in G, m_{j} \in M$ such that $g_{i} I m_{j}$ but not $g_{i} I^{+} m_{j}$. Obviously $g_{i} \in A_{1}$ or $g_{i} \in A_{4}$. However, it means that A_{1} or A_{4} is not independent in $\mathcal{G}^{+}=\left(G^{+}, \mathcal{P}_{G^{+}}\right)$. Therefore both $A_{1} \notin G^{+3}$ or $A_{4} \notin G^{+3}$ and from that $\mathcal{J}^{+3} \neq \mathcal{J}_{1}^{3}$ follows. Obviously ${ }^{\uparrow} A_{i} \neq \emptyset$ for all $i \in\{1,2,3,4\}$ and ${ }^{\downarrow} M \neq \emptyset$. For a substructure \mathcal{J}^{\prime} described in Theorem 4 we get $\mathcal{J}^{\prime}=\mathcal{J}$ and \mathcal{J}_{1}^{3} is a substructure in $\mathcal{J}^{\prime 3}$.

Definition 4 An incidence structure $\mathcal{J}=(G, M, I)$ is said to be a disjoint union of its substructures $\mathcal{J}_{t}=\left(G_{t}, M_{t}, I_{t}\right), t \in T$, if $\bar{G}=\left\{G_{t} \mid t \in T\right\}$, $\bar{M}=\left\{M_{t} \mid t \in T\right\}$ and $\bar{I}=\left\{I_{t} \mid t \in T\right\}$ are decompositions of the sets G, M, I. We will write $\mathcal{J}=\dot{U}_{t \in T} \mathcal{J}_{t}$.

An incidence structure \mathcal{J} is called reducible if there exists a disjoint union $\mathcal{J}=\dot{\bigcup}_{t \in T} \mathcal{J}_{t}$ for $|T|>1$. In other case \mathcal{J} is irreducible. If $\mathcal{J}=\dot{\bigcup}_{t \in T} \mathcal{J}_{t}$, then the substructures \mathcal{J}_{t} are decompositions components of \mathcal{J}.

Theorem 5 Let $\mathcal{J}=\dot{\bigcup}_{t \in T} \mathcal{J} t,|T|>1$. We will write the operators \uparrow, \downarrow to the right in \mathcal{J} and to the left in \mathcal{J}_{t}. Then the following statements are valid:

1. If a set $A \subseteq G$ is not contained in any subset G_{t}, then $A^{\uparrow}=\emptyset$ and $A^{\uparrow \downarrow}=G$.
2. Let $A \subseteq G_{t}$ for certain $t \in T$.
(a) If $A \neq \emptyset$, then $A^{\uparrow}={ }^{\uparrow} A$. Moreover, $A^{\uparrow \downarrow}={ }^{\downarrow \uparrow} A$ if and only if $A^{\uparrow} \neq \emptyset$.
(b) If $A=\emptyset$, then $A^{\uparrow \downarrow}={ }^{\downarrow \uparrow} A$ if and only if ${ }^{\downarrow} M_{t}=\emptyset$.

Analogous statements are valid for subset $B \subseteq M$. (See [2].)

Theorem 6 Let an incidence structure $\mathcal{J}=(G, M, I)$ be reducible. If for a natural number $p>2$ there exists at least two different components of some decomposition of \mathcal{J} containing independent sets of cardinality p, then the incidence structure $\mathcal{J}^{p}=\left(G^{p}, M^{p}, I^{p}\right)$ is reducible.

Proof Let A be a subset of G of cardinality $p>2$. Then A is independent in \mathcal{G} if and only if there exists $t \in T$ such that $A \subseteq G_{t}$ and A is independent in $\mathcal{G}_{t}=\left(G_{t}, \mathcal{P}_{G_{t}}\right):$ Consider $t \in T$ and a substructure $\mathcal{J}_{t}=\left(G_{t}, M_{t}, I_{t}\right)$ in \mathcal{J}. Let $A \subseteq G_{t}$ be an independent set in \mathcal{G}_{t}. Then A is independent in \mathcal{G} by Theorem 2 and Remark 1.

Conversely, let A be independent in \mathcal{G}. At the same time we suppose that A is not contained in any subset $G_{t}, t \in T$. Since $p>2$, there exists such element $a \in A$ that the set A_{a} is not contained in any subset G_{t} too. According to (1) from Theorem 5 we get $A_{a}^{\uparrow \downarrow}=G$ and $a \in A_{a}^{\uparrow \downarrow}$. That is a contradiction. Hence $A \subseteq G_{t}$ for certain $t \in T$. We know that $X^{A}(a)=A_{a}^{\uparrow}-a^{\uparrow} \neq \emptyset$ for all $a \in A$ because A is independent in \mathcal{G}. Since $A_{a} \neq \emptyset$, we obtain $A_{a}^{\uparrow}={ }^{\uparrow} A_{a}$ by Theorem 5 (we write the operator \uparrow to the left in \mathcal{J}_{t}) and $X^{A}(a) \subseteq M_{t}$. Thus A is independent in \mathcal{G}_{t} by Theorem 2.

Similarly we can prove: Let B be a subset of $M,|B|=p>2$. Then B is independent in \mathcal{M} if and only if there exists $t \in T$ such that $B \subseteq M_{t}$ and B is independent in $\mathcal{M}_{t}=\left(M_{t}, \mathcal{P}_{M_{t}}\right)$.

Consider a subset $T^{\prime} \subseteq T$ such that $k \in T^{\prime}$ iff $G_{k}^{p} \neq \emptyset$. If $A \in G^{p}$, then $A \in G_{k}^{p}$ for certain $k \in T^{\prime}$ and $\overline{G^{p}}=\left\{G_{k}^{p} \mid k \in T^{\prime}\right\}$ is a decomposition of G^{p}. We show that $\overline{M^{p}}=\left\{M_{k}^{p} \mid k \in T^{\prime}\right\}$ is also a decomposition of M^{p} : Take an arbitrary $k \in T^{\prime}$. Then (by the assumption) there exists a set $A \in G_{k}^{p}$ and (by Remark 3) ${ }^{\uparrow} A \neq \emptyset$ in \mathcal{J}_{k}^{p}. Moreover, there exists $B \in M_{k}^{p}$ and thus $M_{k}^{p} \neq \emptyset$. If $B \in M^{p}$, then there exists $t \in T$ such that $B \subseteq M_{t}$ and $B \in M_{t}^{p}$. This yields (by Remark 3 again) that ${ }^{\downarrow} B \neq \emptyset$ in \mathcal{J}_{t}^{p} and there exists $A \in G_{t}^{p}$. It means that $G_{t}^{p} \neq \emptyset$ and $t \in T^{\prime}$. Obviously $\overline{I^{p}}=\left\{I_{k}^{p} \mid k \in T^{\prime}\right\}$ is a decomposition of I. We have obtained that $\mathcal{J}^{p}=\dot{U}_{k \in T^{\prime}} \mathcal{J}_{k}^{p}$. Since $\left|T^{\prime}\right|>1$ (by our assumption), the incidence structure \mathcal{J}^{p} is reducible.

Example 2 Let us show an example of an irreducible incidence structure $\mathcal{J}=$ (G, M, I) such that the structure $\mathcal{J}^{p}, p>2$, is reducible: An incidence structure $\mathcal{J}=(G, M, I)$, where $G=\left\{g_{1}, \ldots, g_{5}\right\}, M=\left\{m_{1}, \ldots, m_{4}\right\}$ is given by its incidence table (Table 3) and incidence graph (Figure 1).

I	m_{1}	m_{2}	m_{3}	m_{4}
g_{1}	-		-	
g_{2}	-	-		
g_{3}		-	-	
g_{4}	-		-	-
g_{5}		-		-

Table 3

Figure 1

Obviously, \mathcal{J} is irreducible. Consider the incidence structure of independent sets $\mathcal{J}^{3}=\left(G^{3}, M^{3}, I^{3}\right)$. Then $G^{3}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $M^{3}=\left\{B_{1}, B_{2}, B_{3}\right\}$, where $A_{1}=\left\{g_{1}, g_{2}, g_{3}\right\}, A_{2}=\left\{g_{2}, g_{3}, g_{4}\right\}, A_{3}=\left\{g_{3}, g_{4}, g_{5}\right\}, A_{4}=\left\{g_{2}, g_{4}, g_{5}\right\}$, $B_{1}=\left\{m_{1}, m_{2}, m_{3}\right\}, B_{2}=\left\{m_{2}, m_{3}, m_{4}\right\}, B_{3}=\left\{m_{1}, m_{2}, m_{4}\right\}$. Obviously $A_{1} I^{3} B_{1}, A_{2} I^{3} B_{1}, A_{3} I^{3} B_{2}$ and $A_{4} I^{3} B_{3}$. See the incidence table of the structure \mathcal{J}^{3} (Table 4).

I^{3}	B_{1}	B_{2}	B_{3}
A_{1}	-		
A_{2}	-		
A_{3}		--	
A_{4}			-

Table 4
Let us consider substructures $\mathcal{J}_{1}^{3}=\left(\left\{A_{1}, A_{2}\right\},\left\{B_{1}\right\}, I_{1}\right), \mathcal{J}_{2}^{3}=\left(\left\{A_{3}\right\},\left\{B_{2}\right\}, I_{2}\right)$, $\mathcal{J}_{3}^{3}=\left(\left\{A_{4}\right\},\left\{B_{3}\right\}, I_{3}\right)$ in \mathcal{J}^{3}. Then $\mathcal{J}^{3}=\mathcal{J}_{1}^{3} \dot{\cup} \mathcal{J}_{2}^{3} \dot{\cup} \mathcal{J}_{3}^{3}$ and the incidence structure \mathcal{J}^{p} is reducible.

Remark 5 Let \mathcal{J} be an incidence structure. If the incidence structure \mathcal{J}^{p} is irreducible, then the structures $\mathcal{J}^{p-1}, \mathcal{J}^{p+1}$ can be reducible.

References

[1] Ganter, B., Wille, R.: Formale Begriffsanalyse. Mathematische Grundlagen, SpringerVerlag, 1996.
[2] Machala, F., Slezák, V.: Disjoint Unions of Incidence Structures and Complete Lattices. Acta Univ. Palacki. Olomuc., Fac. rer. nat., (to appear).
[3] Machala, F., Slezák, V.: Independent Sets in Incidence Structures. Mathematica Slovaca, (1999) (to appear).

[^0]: *Supported by the Council of Czech Government J14/98:153100011.

