Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Jiří Rachůnek; Filip Švrček
MV-algebras with additive closure operators

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 39 (2000), No. 1, 183--189

Persistent URL: http://dml.cz/dmlcz/120408

Terms of use:

© Palacký University Olomouc, Faculty of Science, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

MV-Algebras with Additive Closure Operators

Jirí RACHƯNEK, Filip ŠVRČEK
Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic
e-mail: rachunek@risc.upol.cz

(Received February 2, 2000)

Abstract

In the paper, closure $M V$-algebras (i.e. $M V$-algebras with additive closure operators) as generalizations of topological Boolean algebras are introduced and studied. In particular, closure $M V$-algebras determined by idempotent elements, connections between closure $M V$-algebras and induced topological Boolean algebras and closed ideals in connection with congruences of $M V$-algebras are examined.

Key words: Closure $M V$-algebra, additive closure operator, topological Boolean algebra.

1991 Mathematics Subject Classification: 03B50, 03G20, 06F05

The topological Boolean algebras (or closure algebras) have been introduced and studied (see e.g. [6]) as natural generalizations of the topological spaces defined by topological closure and interior, respectively, operators. The $M V$ algebras which have been introduced by C. C. Chang in [1] and [2] are algebraic counterparts of the Lukasiewicz infinite valued logic similarly as the Boolean algebras are for the classical two-valued logic. Every $M V$-algebra \mathcal{A} contains the greatest Boolean subalgebra $B(\mathcal{A})$ which is formed by the additively idempotent elements. Moreover, the operations " \oplus " and " \odot " in $B(\mathcal{A})$ coincide with the lattice operations " V " and " \wedge ", respectively. Hence the Boolean algebras can be considered as special cases of $M V$-algebras. Therefore, in the paper we introduce the additive closure and multiplicative interior, respectively, operators on $M V$ algebras that in the case $\mathcal{A}=B(\mathcal{A})$ are exactly the topological closure and interior, respectively, operators.

In the paper, the closure $M V$-algebras determined by the idempotent elements of $M V$-algebras are studied, connections between the additive closure operators of $M V$-algebras and the topological closure operators of the Boolean algebras of idempotent elements are shown and connections between the congruences and the closed ideals of $M V$-algebras are described. Recall the notion of an $M V$-algebra.

Definition 1 An algebra $\mathcal{A}=(A, \oplus, \neg, 0)$ of signature $\langle 2,1,0\rangle$ is called an $M V$-algebra if it satisfies the following identities:
(MV1) $x \oplus(y \oplus z)=(x \oplus y) \oplus z ;$
(MV2) $x \oplus y=y \oplus x$;
(MV3) $x \oplus 0=x$;
(MV4) $\neg \neg x=x$;
(MV5) $x \oplus \neg 0=\neg 0$;
(MV6) $\neg(\neg x \oplus y) \oplus y=\neg(x \oplus \neg y) \oplus x$;
If \mathcal{A} is an $M V$-algebra, set $x \odot y=\neg(\neg x \oplus \neg y), x \vee y=\neg(\neg x \oplus y) \oplus y$ and $x \wedge y=\neg(\neg x \vee \neg y)$ for any $x, y \in A$, and $1=\neg 0$. Then $(A, \odot, 1)$ is, among others, a commutative monoid, $(A, \vee, \wedge, 0,1)$ is a bounded lattice, and $(A, \oplus, 0, \vee, \wedge)$ and $(A, \odot, 1, \vee, \wedge)$ are lattice ordered monoids. For further necessary results concerning $M V$-algebras see [3] or [7].

The following definition of an additive closure operator on an $M V$-algebra generalizes that of a topological closure operator on a Boolean algebra.

Definition 2

a) Let $\mathcal{A}=(A, \oplus, \neg, 0)$ be an $M V$-algebra and $C l: A \rightarrow A$ a mapping. Then $C l$ is called an additive closure operator on \mathcal{A} if for each $a, b \in A$:

1. $C l(a \oplus b)=C l(a) \oplus C l(b)$;
2. $a \leq C l(a)$;
3. $C l(C l(a))=C l(a)$;
4. $C l(0)=0$.
b) If $C l$ is an additive closure operator on \mathcal{A} then $\mathcal{A}=(A, \oplus, \neg, 0, C l)$ is called a closure $M V$-algebra and $C l(a)$ is called the closure of an element $a \in A$. An element a is said to be closed if $C l(a)=a$.

Lemma 1 Let \mathcal{A} be a closure $M V$-algebra. Let $\operatorname{Int}(a)=\neg C l(\neg a)$ for each $a \in A$. Then for any $a, b \in A$ we have $\operatorname{Cl}(a)=\neg \operatorname{Int}(\neg a)$ and

$$
\begin{aligned}
& \text { 1'. } \operatorname{Int}(a \odot b)=\operatorname{Int}(a) \odot \operatorname{Int}(b) ; \\
& \text { 2'. } \operatorname{Int}(a) \leq a ; \\
& \text { 3'. } \operatorname{Int}(\operatorname{Int}(a))=\operatorname{Int}(a) ; \\
& \text { 4. } \operatorname{Int}(1)=1 .
\end{aligned}
$$

($\operatorname{Int}(a)$ will be called the interior of a and Int: $A \rightarrow A$ is a multiplicative interior operator on \mathcal{A}. An element $a \in A$ is called open if $\operatorname{Int}(a)=a$.)

Proof

1'. $\operatorname{Int}(a \odot b)=\neg C l(\neg(a \odot b))=\neg C l(\neg a \oplus \neg b)=\neg(C l(\neg a) \oplus C l(\neg b))=$ $\neg C l(\neg a) \odot \neg C l(\neg b)=\operatorname{Int}(a) \odot \operatorname{Int}(b) ;$

2'. $\operatorname{Int}(a)=\neg C l(\neg a) \leq \neg \neg a=a ;$
3. $\operatorname{Int}(\operatorname{Int}(a))=\operatorname{Int}(\neg C l(\neg a))=\neg(C l(C l(\neg a)))=\neg C l(\neg a)=\operatorname{Int}(a) ;$

4'. $\operatorname{Int}(1)=\neg C l(\neg 1)=\neg C l(0)=\neg 0=1$.

Lemma 2 For any $a, b \in A, a \leq b$ implies $C l(a) \leq C l(b)$ and $\operatorname{Int}(a) \leq \operatorname{Int}(b)$.
Proof Let $a \leq b$. Then $C l(a \vee b)=C l(b)$, hence $C l((b \odot \neg a) \oplus a)=C l(b)$. Therefore $C l(b \odot \neg a) \oplus C l(a)=C l(b)$, and so $C l(a) \leq C l(b)$.

Similarly, from $a \leq b$ we get $\operatorname{Int}(a)=\operatorname{Int}(a \oplus \neg b) \odot \operatorname{Int}(b)$, hence $\operatorname{Int}(a) \leq$ $\operatorname{Int}(b)$.

Remark 1

a) It is known ([1]) that any Boolean algebra can be considered as a special case of an $M V$-algebra in which the operations " \oplus " and " \odot " coincide with the lattice operations " \vee " and " \wedge ", respectively. It is then obvious that the closure Boolean algebras (by Definition 2) are exactly the topological Boolean algebras in the sense of the book [6], chapter III. Hence, closure $M V$-algebras are natural generalizations of topological Boolean algebras.
b) If \mathcal{A} is any $M V$-algebra then the set $B(\mathcal{A})=\{a \in A ; a \oplus a=a\}$ of additive idempotents in \mathcal{A} is a sublattice of the lattice (A, \vee, \wedge) that is, moreover, the greatest Boolean sublattice ([1], Theorem 1.17). Note that $B(\mathcal{A})$ is, at the same time, the set of multiplicative idempotents in \mathcal{A}.

Lemma 3 If \mathcal{A} is an $M V$-algebra and $a \in B(\mathcal{A})$ then
a) $y \odot a=y \wedge a$,
b) $a \odot(x \oplus y)=(a \odot x) \oplus(a \odot y)$,
for each $x, y \in A$.

Proof

a) Let $y \leq a$. Then $a \leq y \oplus a \leq a \oplus a=a$, thus $y \oplus a=a$, and hence, by [1], Theorem 1.15, $y \odot a=y=y \wedge a$.

Let now $y \in A$ be an arbitrary element. Obviously $y \odot a \leq y, a$. Let $z \in A, z \leq y, a$. Then, by the preceding, we have $z=z \odot a \leq y \odot a$, and hence $y \odot a=y \wedge a$.
b) Since $(a \wedge x) \oplus(a \wedge y)=(a \oplus a) \wedge(x \oplus a) \wedge(a \oplus y) \wedge(x \oplus y)$, by a), $a \odot(x \oplus y)=(a \odot x) \oplus(a \odot y)$.

We will show that any idempotent element a in a closure $M V$-algebra \mathcal{A} determines a closure $M V$-algebra on the interval $[0, a]$.

Theorem 4 Let $\mathcal{A}=(A, \oplus, \neg, 0, C l)$ be a closure $M V$-algebra and a be an idempotent element in \mathcal{A}. If we put

$$
x \oplus_{a} y=x \oplus y, \quad 0_{a}=0, \quad \neg_{a} x=\neg(x \oplus \neg a)=\neg x \odot a, \quad C l_{a}(x)=a \odot C l(x)
$$

for any $x, y \in[0, a]$, then $I(a)=\left([0, a], \oplus_{a}, \neg_{a}, 0_{a}, C l_{a}\right)$ is also a closure $M V$ algebra. In $I(a), x \odot_{a} y=x \odot y$ and $\operatorname{Int}_{a}(x)=a \odot \operatorname{Int}(x \oplus \neg a)$ are satisfied for any $x, y \in[0, a]$.

Proof

a) Obviously, $\left([0, a], \oplus_{a}, 0\right)$ is a commutative monoid. We will verify the remaining axioms of an $M V$-algebra.
$($ MV4 $) ~ \neg a \neg a x=\neg(\neg a x \oplus \neg a)=\neg(\neg(x \oplus \neg a) \oplus \neg a)=(x \oplus \neg a) \odot a=x \wedge a=x$.
(MV5) $x \oplus \neg_{a} 0=x \oplus a=a$.
(MV6) $\neg_{a}(\neg a x \oplus y) \oplus y=\neg(\neg a x \oplus y \oplus \neg a) \oplus y=\neg(\neg(x \oplus \neg a) \oplus y \oplus \neg a) \oplus y=$ $((x \oplus \neg a) \odot a \odot \neg y) \oplus y=((x \wedge a) \odot \neg y) \oplus y=(x \odot \neg y) \oplus y=x \vee y$.
Similarly $\neg_{a}\left(x \oplus \neg_{a} y\right) \oplus x=x \vee y$.
b) We will show that $C l_{a}$ is an additive closure operator on the $M V$-algebra $\left([0, a], \oplus_{a}, \neg a, 0\right)$. Let $x, y \in[0, a]$.

1. By Lemma 3 we get
$C l_{a}(x) \oplus C l_{a}(y)=(a \odot C l(x)) \oplus(a \odot C l(y))=a \odot(C L(x) \oplus C l(y))=$ $a \odot C l(x \oplus y)=C l_{a}(x \oplus y)$.
2. $x=x \wedge a \leq C l(x) \odot a=C l_{a}(x)$.
3. $C l_{a}\left(C l_{a}(x)\right)=a \odot C l(a \odot C l(x)) \leq a \odot C l(C l(x))=a \odot C l(x)=C l_{a}(x)$, hence by 2 we obtain $C l_{a}\left(C l_{a}(x)\right)=C l_{a}(x)$.
4. $C l_{a}(0)=a \odot C l(0)=a \odot 0=0$.

Therefore $I(a)=\left([0, a], \oplus_{a}, \neg_{a}, 0, C l_{a}\right)$ is a closure $M V$-algebra.
At the same time, we have for any $x, y \in[0, a]$:
$x \odot_{a} y=\neg_{a}\left(\neg_{a} x \oplus_{a} \neg_{a} y\right)=\neg_{a}(\neg(x \oplus \neg a) \oplus \neg(y \oplus \neg a))=\neg(\neg(x \oplus \neg a) \oplus$ $\neg(y \oplus \neg a) \oplus \neg a)=(x \oplus \neg a) \odot(y \oplus \neg a) \odot a=(x \wedge a) \odot(y \wedge a)=x \odot y ;$
$\operatorname{Int}_{a}(x)=\neg_{a} C l_{a}(\neg a x)=\neg((a \odot C l(\neg(x \oplus \neg a))) \oplus \neg a)=(\neg a \oplus \neg C l(\neg(x \oplus$ $\neg a)) \odot a=(\neg a \oplus \operatorname{Int}(x \oplus \neg a)) \odot a=a \wedge \operatorname{Int}(x \oplus \neg a)=a \odot \operatorname{Int}(x \oplus \neg a)$.

Definition 3 A subalgebra \mathcal{C} of a closure $M V$-algebra \mathcal{A} is called a closure subalgebra if $C l(x) \in C$ for every $x \in C$.

Note Obviously, a subalgebra \mathcal{C} is a closure subalgebra if and only if $\operatorname{Int}(x) \in C$ for every $x \in C$.

Theorem 5 The Boolean algebra $B(\mathcal{A})$ of additive idempotents of a closure $M V$-algebra \mathcal{A} is a closure subalgebra of \mathcal{A}. That means, $B(\mathcal{A})$ endowed with the restriction of the operator $C l$ on $B(\mathcal{A})$ is a topological Boolean algebra.

Proof Let $a \in B(\mathcal{A})$. Then $C l(a) \oplus C l(a)=C l(a \oplus a)=C l(a)$, hence $C l(a) \in B(\mathcal{A})$.

Let us now show that in the case of complete $M V$-algebras (i.e. such $M V$ algebras which are complete lattices with respect to the induced orders), every topological closure operator on the Boolean algebra of additively idempotent elements can be extended to a closure operator on the whole $M V$-algebra.

Theorem 6 Let \mathcal{A} be a closure $M V$-algebra and φ be a topological closure operator on the Boolean algebra $B(\mathcal{A})$. Then there is an additive closure operator $C l_{\varphi}$ on \mathcal{A} such that its restriction on $B(\mathcal{A})$ is equal to φ.

Proof Firstly we will show that $B=B(\mathcal{A})$ is a complete sublattice of \mathcal{A}. If $y_{i} \in B, i \in I$, and $y=\inf _{A}\left\{y_{i} ; i \in I\right\}$, then $y \oplus y=\bigwedge_{i \in I} y_{i} \oplus \bigwedge_{i \in I} y_{i}$, hence $y \oplus y \leq y_{j} \oplus y_{j}$ for every $j \in I$, and thus $y \oplus y \leq y_{j} \oplus y_{j}=y_{j}$ for every $j \in I$. Therefore $y \oplus y \leq \bigwedge_{i \in I} y_{i}=y$, that means $y \in B$.

Dually for suprema.
Now, let $\varphi: B \rightarrow B$ be a topological closure operator on the Boolean algebra B. Let $\bar{\varphi}(x)=\varphi(\bigwedge(a ; a \in B, x \leq a))$ for any $x \in A$. We will verify that $\bar{\varphi}$ is an additive closure operator on \mathcal{A}. Let $x, y \in A$.

1. $\bar{\varphi}(x \oplus y)=\varphi(\bigwedge(a ; a \in B, x \oplus y \leq a))$,
$\bar{\varphi}(x) \oplus \bar{\varphi}(y)=\varphi(\bigwedge(b ; b \in B, x \leq b)) \oplus \varphi(\bigwedge(c ; c \in B, y \leq c))$.
It is clear that for any $a \in B$ satisfying $x \oplus y \leq a$, we have $\wedge(b ; b \in B, x \leq$ $b) \leq a$ and $\bigwedge(c ; c \in B, y \leq c) \leq a$, hence $\bigwedge(b ; b \in B, x \leq b) \oplus \bigwedge(c ; c \in$ $B, y \leq c) \leq a \oplus a=a$, therefore $\bigwedge(b ; b \in B, x \leq b) \oplus \bigwedge(c ; c \in B, y \leq c) \leq$ $\wedge(a ; a \in B, x \oplus y \leq a)$.
Conversely, $x \oplus y \leq \Lambda(b ; b \in B, x \leq b) \oplus \bigwedge(c ; c \in B, y \leq c)$, and thus $\bigwedge(a ; a \in B, x \oplus y \leq a) \leq \bigwedge(b ; b \in B, x \leq b) \oplus \bigwedge(c ; c \in B, y \leq c)$.
From this we get $\bar{\varphi}(x \oplus y)=\bar{\varphi}(x) \oplus \bar{\varphi}(y)$.
2. $x \leq \bar{\varphi}(x)$ by the definition of $\bar{\varphi}$.
3. $\bar{\varphi}(\bar{\varphi}(x))=\bar{\varphi}(\varphi(\bigwedge(a ; a \in B, x \leq a)))=\varphi(\varphi(\bigwedge(a ; a \in B, x \leq a)))=$ $\varphi(\bigwedge(a ; a \in B, x \leq a))=\bar{\varphi}(x)$.
4. $0 \in B$, hence $\bar{\varphi}(0)=\varphi(0)=0$.

Let us denote $C l_{\varphi}=\bar{\varphi}$. Then $C l_{\varphi}$ is an additive closure operator on \mathcal{A} and its restriction on B equals φ.

Let us recall that if \mathcal{A} is an $M V$-algebra and $\emptyset \neq I \subseteq A$ then I is called an ideal of \mathcal{A}, if
(i) $a \oplus b \in I$ for any $a, b \in I$ and
(ii) $x \leq a$ implies $x \in I$ for any $x \in A, a \in I$.

It is known ([1], Theorem 4.3, [3], Proposition 1.2.6) that ideals in $M V$-algebras are in a one-to-one correspondence with congruences. If I is an idea! in \mathcal{A} then for the congruence θ_{I} corresponding to $I,(x, y) \in \theta_{I}$ if and only if $(x \odot \neg y) \oplus$ $(\neg x \odot y) \in I$, for any $x, y \in A$. Denote by $\mathcal{A} / I=\mathcal{A} / \theta_{I}$ the factor $M V$-algebra of \mathcal{A} by θ_{I} and let \bar{x} denote the class of A / I containing x.

Definition 4 Let \mathcal{A} be a closure $M V$-algebra and I be an ideal of \mathcal{A}. Then I is called a c-ideal if $C l(a) \in I$ for every $a \in I$.

If \mathcal{A} is a closure $M V$-algebra and I is an ideal of \mathcal{A}, set $C l(\bar{x})=\overline{C l(x)}$ for every $x \in A$.

Theorem 7 If \mathcal{A} is a closure $M V$-algebra and I is a c-ideal of \mathcal{A} then the factor $M V$-algebra \mathcal{A} / I endowed with $C l$ is a closure $M V$-algebra.

Proof Let $x, y \in A, \bar{x}=\bar{y}$. Then $(x, y) \in \theta_{I}$, hence $(x \odot \neg y) \oplus(\neg x \odot y) \in I$. Thus also $x \odot \neg y, \neg x \odot y \in I$, and therefore $C l(x \odot \neg y), C l(\neg x \odot y) \in I$. At the same time, $C l(y) \oplus C l(x \odot \neg y)=C l(y \oplus(x \odot \neg y))=C l(x \vee y) \geq C l(x)$, and since \mathcal{A} is by [4], [5] a $D R l$-monoid, we obtain $C l(x \odot \neg y) \geq C l(x)-C l(y)=C l(x) \odot \neg C l(y)$. And since $C l(x \odot \neg y) \in I$, we also have $C l(x) \odot \neg C l(y) \in I$.

Similarly $\neg C l(x) \odot C l(y) \in I$, and hence $(C l(x) \odot \neg C l(y)) \oplus(\neg C l(x) \odot C l(y)) \in$ I. That means $(C l(x), C l(y)) \in \theta_{I}$, and so the definition of the unary operation $C l$ on A / I is correct. (Therefore we have shown that θ_{I} is also a congruence of the closure $M V$-algebra.) Moreover, $C l: A / I \rightarrow A / I$ satisfies all four conditions of additive closure operators.

Corollary 8 There is a one-to-one correspondence between the c-ideals and congruences of closure $M V$-algebras.

Definition 5 Let \mathcal{A}_{1} and \mathcal{A}_{2} be closure $M V$-algebras and let $h: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ be a homomorphism of $M V$-algebras. Then h is called a c-homomorphism (or a homomorphism of closure MV-algebras) if

$$
h(C l(x))=C l(h(x))
$$

for each $x \in A_{1}$.

Note It is obvious that a homomorphism h of $M V$-algebras a c-homomorphism if and only if

$$
h(\operatorname{Int}(x))=\operatorname{Int}(h(x))
$$

for each $x \in A_{1}$.
Theorem 9 Let \mathcal{A} be a closure $M V$-algebra, a an open idempotent element in \mathcal{A} and $h: A \rightarrow I(a)$ the mapping such that $h(x)=a \odot x$ for every $x \in A$. Then h is a surjective c-homomorphism of \mathcal{A} onto $I(a)$.

Proof Let $x, y \in A$. Then

$$
\begin{aligned}
h(x \odot y) & =a \odot(x \odot y)=(a \odot x) \odot(a \odot y)=h(x) \odot h(y)=h(x) \odot_{a} h(y), \\
\neg_{a} h(x) & =\neg(h(x) \oplus \neg a)=\neg((a \odot x) \oplus \neg a)=\neg(\neg a \vee x)=a \wedge \neg x,
\end{aligned}
$$

and hence by Lemma $3, \neg_{a} h(x)=a \odot \neg x=h(\neg x)$. Moreover, $h(0)=a \odot 0=0$.
Hence h is a homomorphism of $M V$-algebras, and since $x=a \odot x=h(x)$ for each $x \in[0, a], h$ is surjective.
We will show that h is a c-homomorphism. Since a is open,

$$
h(\operatorname{Int}(x))=a \odot \operatorname{Int}(x)=\operatorname{Int}(a) \odot \operatorname{Int}(x)=\operatorname{Int}(a \odot x)=\operatorname{Int}(h(x)) .
$$

Let $y \leq a$. Then $\operatorname{Int}(y)=\operatorname{Int}(a \wedge y)=\operatorname{Int}(a \odot(y \oplus \neg a))=\operatorname{Int}(a) \odot \operatorname{Int}(y \oplus \neg a)=$ $a \odot \operatorname{Int}(y \oplus \neg a)=\operatorname{Int}_{a}(y)$.

From this we get $\operatorname{Int}(h(x))=\operatorname{Int}_{a}(h(x))$, and thus $h(\operatorname{Int}(x))=\operatorname{Int}_{a}(h(x))$ for each $x \in A$.

References

[1] Chang, C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490.
[2] Chang, C. C.: A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80.
[3] Cignoli, R. O. L., Mundici, D., D'Ottaviano, I. M. L.: Algebraic Foundations of Manyvalued Reasoning. Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
[4] Rachůnek, J.: DRl-semigroups and MV-algebras. Czechoslovak Math. J. 48, 123 (1998), 365-372.
[5] Rachůnek, J.: MV-algebras are categorically equivalent to a class of $D R l_{1(i)}$-semigroups. Math. Bohemica 123 (1998), 437-441.
[6] Rasiova, H., Sikorski, R.: The Mathematics of Metamathematics. Panstw. Wyd. Nauk., Warszawa, 1963.
[7] Turunen, E.: Mathematics Behind Fuzzy Logic. Springer Physica-Verlag, HeidelbergNew York, 1999.

