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Abstract 
This paper deals with a nonlinear periodic second order boundary 

value problem, which is at resonance. We will search assumptions for the 
right side of the equation, which will lead to the existence of a solution of 
the boundary value problem. We will use properties of the Fourier series, 
the method of a priori estimates and the topological degree arguments. 
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1 Introduction 

Let us consider a boudary value problem in the form 

(1) x" +ux = /(*,ar,a?'), 

(2) x(0) = X{2TT)J X'{0) = x'{2ir), 

where u € R, / is continuous function on the set J x R 2 , J = [0,27r]. 

By a solution of (1), (2) we will mean every function u with the continuous 
second derivative, which fulfils (1) for alH € J and which satisfies the condition 
(2). First we will consider the homogeneous linear differential equation 

(3) x" 4- OJX = 0, where u £ R, 

51 



52 Jan DRAESSLER 

with the periodic condition (2). Let us recall, we say that the problem (1), (2) 
is at resonance, if the problem (3), (2) has a nontrivial solution. 

We can distinguish three cases: 

UJ < 0: In this case the homogeneous periodic problem (3), (2) has only the 
trivial solution and then the problem (1), (2) is not at resonance. 

u = 0: In this case each constant x = c G R is a solution of the problem (3), 
(2). Therefore the problem (1), (2) is at resonance. This kind of a 
boudary value problem is described in [1], [2]. 

u > 0: We can write every solution of the differential equation (3) in the form 

x(t) = A cos \/ujt + B sin \fujt. 

The problem (3), (2) has eigenvalues UJ = 1 ,4 ,9 , . . . , k2,... where k G N , and 
there is a corresponding linear space of eigenfunctions x(t) = A cos kt + B sin kt 
with the base {sin kt, cos kt} for each eigenvalue k2. In this case the problem 
(1), (2) is at resonance, as wrell. 

In this paper we will study the resonance problem 

(4) x" +m2x = f(t,x,x'), 

(2) x(0) = x(2ir), x'(0) = x'(2ir), 

where m G N . 
We will present new results on the Leray-Schauder topological degree of an 

operator associated to (4), (2). These results generalize and extend those of [1] 
and imply the existence of a solution of (4), (2) in the case that / can cross 
eigenvalues higher than m2. 

2 Definitions and Lemmas 

In this part we recall some notions and relations, which will be used later. 
We will work with the following Banach spaces: 
C(J) is the space of continuous functions on J, where we define the norm 

\\x\\c = max{|#(£)| : t G J} for each x G C(J). 
Ch(J) is the space of functions, which have continuous k-th derivatives on 

J for k G N. In Ck(J) we define the norm 

X> : 
Иlc- = 2 Ј I X Hc 

i=0 

for each function x G Ck(J). 
LP(J) is the space of functions x with xp Lebesgue integrable on J for 

p G [1, oo). For each function x G LP(J) we define in LP(J) the norm 

\Mp=(^r\x(t)\pdt) 
i/p 
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W1,2(J) is the space of functions #, derivatives x' of which are defined almost 
everywhere on J and (x') 2 are Lebesgue integrable on J. For x G VV1,2(J) we 
define the norm | |a?| | l f 2 = (| |_| |2 + \\x'\\2) in Wh2(J). 

For p = 2 we define the scalar product 

" 2тr У 0 

(x,yh = g- / x(t)y(t)dt 

in the space L 2 ( J ) and then we get the Hilbert space. 
Moreover we will work with the Hilbert space 

H = {x£Wh2]x(0) - X ( 2 T T ) } , 

where we define the norm \\X\\H — (INI! + Ik ' l l l )2 f° r e a c n x £ H and the 
scalar product 

(x, y)n = ^ J [x(t)y(t) + x'(t)y'(t)] dt 

for each x,y € H. 

Definition 2.1 We say that a normed linear space X with the norm || • \\x is 
continuously imbedded to a normed linear space Y with the norm || • | |y, if 

(a) X C F , 

(b) there exists a constant k > 0 such that each u G l fulfils \\u\\y _ k|M|x-

Definition 2.2 We say that a Banach space X is compactly imbedded into a 
Banach space Y, if 

(a) X C r , 

(b) every sequence { w n } ^ ! of elements from X, which converges weakly in K 

to the element t/o, converges strongly in Y to uo. 

L e m m a 2.1 I/ a Banach space X is compactly imbedded into a Banach space 
Y, then X is imbedded into Y continously ([4], P. 205). 

L e m m a 2.2 The space IV1,2(J) is compactly imbedded into the space C(J) 
([4], P. 206). 

L e m m a 2.3 The space H is compactly imbedded into the space C(J) and there 
exists k > 0 such that each u G H fulfils 

(5) \\u\\c < k\\u\\H. 

Proof We can also use the norm || • ||i.2 in H, which is equivalent with the 
norm || • | |# . (see [5], p. 348). Therefore the space H is also VV1,2 and then, with 
respect to Lemma 2.2, it is compactly imbedded into C(J) . Then from Lemma 
2.1 and Definition 2.1, there is k > 0 such that (5) is fulfiled for each u G H. • 
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Lemma 2.4 (Mean value theorem) Let m , M G R and f,g G C(J) satisfy 
f(x) > 0 and m < g(x) < M for all x G J. Then there exists a mean value 
g G [m, M] such, that 

r2n r27T 

/ f(x)g(x)dx = g f(x)dx 
Jo Jo 

Lemma 2.5 (Sobolev inequality) Let u G H be 2-K-periodic and let 

p2n 

/ u(t)dt = 0. 
.Io 

27ien 

(6) IH|2
C< Jllu'lH-

L e m m a 2.6 Let X be a Banach space, r > 0 and B(r) — {u G X; \\x\\x < r}. 
Let I be the identical operator on B(r). Let F be a completely continuous 
operator, which is defined on B(r) with values in X and such that Fu •=£ u for 
each u G dB(r). Then there exists an integer number 

d[I-F;B(r)] 

(which we call the Leray-Schauder topologic degree) such that: 

a) d[I;B(r)] = l 

b) If d[I — F; B(r)] ^ 0, then there exists UQ G B(r) such that Fuo = UQ. 

c) If G is also a completely continuous map on B(r) with the values in X and 
if (I — F — tG)u / 0 is fulfilled for each u G dB(r) and for each t G [0,1], 
then 

(7) d[I - F; B(r)] =d[I-G-F; B(r)]. 

d) If the operator F is odd, then the degree d[I — F; B(r)] is an odd number. 

([41 p. 245, Th. 30.140 

3 Fourier Series 

In the whole section suppose that m G N and that x G H is an arbitrary 
27r-periodic function. Let us consider Fourier series 

CO 

(8) x(t) — CLQ + 22 ak cos kt + bk sin kt, 
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with Fourier coefficients with respect to the scalar product in Z/2(J). Let as put 

(9) 

x(t) = a 0 4- X] аk cos kt 4- b/c sin kt 
fc=0 

x° (í) = аm cos m/: 4- Ь m sin mt 
oo 

я(£) = Y2 аk cos fc£ 4- Ьk sin feí 
fc=m+l 

and 

(10) x ± ( t ) = x ( 0 - x ° ( t ) . 

Lemma 3.1 There is a real number S\ > 0 swc/i tlia^ 

(11) 5 i l N | 2
f f < m 2 | | x | | l - | | x ' | | l . 

Proof Every x G H fulfils 

-i /»2TT m - l 2 

INIl = 7T" / ( ao + ^ afc cosfct 4- 6fcSinfc£) dt 
27TJo K ti J 

1 /.2TT m - 1 m - x ^ 2 

== 9~~ / (a0 + 5Z a^ C ° s 2 fc* + 6* Sln2 fe0d* = a0 + ]C ~ 
^ ^ ° fc=l fc=l 

a! + Й 

аnd 

r2ҡ m - 1 

| | x ' | | | = — / ( 7 — kaksinkt + kbk cosfet) dt = 
2 7 r ^ o v ^ I 

-1 p2ir m —1 m —1 2 

= 2^ / ( - C fc2afcsin2 k t + f c 2 6 * c o s 2 fcf)dt = £fc2— 

Hence 
P'lll<(m-l)2||x||l. 

Then for <SX = 1+
2

(m-i)S we get 

(l + 5 1 ) | | x ' | | 2 < ( m 2 - 5 1 ) | | x | | 2 , 

SXIIZTH = W i l l + W i l l < m2 | |x| |l - Hx'lll. 
Lemma 3.2 Let 7 G [0,2m 4-1). T/ien ttere exzsts 0*2 > 0 swc/i £/m£ 

(12) P'lll-(m2 +7)11̂ 111 ><52p||2H-

Proof Like in the proof of Lemma 3.1 we can prove 

0 0 2 r 2 OO 2 1 ^2 

Pll= £ ^ and ||x'||l= £ fc2^p. 
fe=r:m+l fe = 77l+l 
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Then 

(13) \W\\l>(m + l)2\\x\\l 

Hence for S2 = ffim+ife we get 

(l-S2)\\x'\\2
2>(m2 + 7 + S2)\\x\\2, 

P'lll ~ (m2 + 7)Plll > W i l l + S2\\xf2 = 62\\x\\H. 

Lemma 3.3 The following statements are valid: 

a) m>\\x% = WTP'WI; 

b) xA-X°; xLx; x°±.x; X'JLX'; 

c) (x",x)2 = -Wx'Wi; (x°",x°)2 = -\\x°'\\l (x",x)2 = - | | " | | j j . 

Proof 
a) 

D 

1 f2lT 
x°\\í — 7T i (am cosmt+ bm sinmt)2dt 27r Jo 

i - f\a2
m cos2 mt + bm sin2 mt)dt = ^ ± _ _ _ , 

2- J0 2 

. 1 r27r fl2 _j_ ß2 
0 ||2 _ — / m

2 ( _ Q m s i n m t + bmcosmr)2dl: = m2 m m = m 2 | | 
2-J0 2 m ~ 

b) 
2тr г m _ 1 

1 /»_Í7Г Г 1 * 

(x, x°)2 = — / ao + / (a^ cos fcč + 6& sin fcč) (am cos m£ + 6m sin m£) d£ 

-j л27r -j m-1 r « 2 7 Г 

= — / ao (a m cos mŕ + 6m sin mť) dt + — V^ / akam cosktcos mtdt 
2ҡ Jo 2ҡ £ґľ Uo 

p2ҡ r2ҡ 

+ bkam sin Ы cos mtdt+ / a^ bm cos Ы sin m£ dt 
Jo Jo 

ç2ҡ 

+ bk bm sin Ы sin mt) dt 
Jo 

= 0 

i.e. x±x°. We can prove 5_La:0, xLx and x'JLx' analogously. 
c) 

(x",x)2 = 

r2ir r m —1 -i r m —1 1 /«.г7r г ' ~ 1 Г " ~ "| 

= — / - ~Г̂  (-k2ak cos fcй—fc26yfc sin fcč) ao+ V* (a^ cos fcć + 6& sin Ы) 
2Ҡ J° L * _ 1 Ј L fe=l 

1 m—1 «2л- m—1 

= — — Vj fc2 / (aд; cos Ы + bk sin Ы)2dt = — Уj fc 
~ fe=l ^ 0 Ä ; = l 

tfó 

2___L__ — _ll^'ll2 
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We can prove the statements (x ;/,.r)2 = —ll '̂lli a n d (x° ix°h — — ||x° | |2 in the 
same way. • 

Lemma 3.4 Let 7 6 [0,2m + 1). Then there exists 6 > 0 depending on 7 such 
that the inequality 

(14) -Hx'll2 + P ' | l ! + m 2 | |x | |I - (m2 + 7 ) | | J | | ! > 6\\x±\\H 

is valid. 

Proof From (8), (9), (10) and Lemma 3.3 it follows 

\\xx\\l = \\x-x°\\2
2 = \\x + x\\2

2 = (x + x,x + x)2 

= ||x| |! + 2(5f,x)2 + | |J | | 2 = ||x||22 + | | i | | ! , 

\\x^f2 = | |*' - *°'||2 = | |*' + * ' | | 2 = (*' + * ' ,* ' + * ' ) 2 

= 11*11 + 2(x',x')2 + \\x'\\i = \\x'\\l + \\x'\\l 

Hence 

\\X±\\H = \\x-x°\\i + \\x'-x°'\\l = | | * | | I + | |* | | i + | | * ' | | I + | |* ' | | I = | | * | | 2 H + | |*| |2
H. 

Using (11) and (12) we get 

- I M + P'III + ™2\\nl - (m2 + 7)PII! > S1\\x\\H + ó2\\x\\H 

>S\\x\\H + ó\\x\\H = 6\\x1-\\H, 

where 
• rr c , • í 2 m - 1 2m + l - 7 1 

(15) (5 = mm{(5i;r52} = min <̂  — — rxo^T—T -777 ř-
[ 1 + (m — I)1 l + (m + l ) 2 J D 

Lemma 3.5 Let 7 G [0,2m — 1). Then there exists 6 > 0 depending on 7 snc/i 
that 

(16) ^ - / ^[x" +- (m2 -f- T ) ^ ] [ ^ + x° - ^ ] ^ > 5| |xx | |^. 
27T J0 

Proof We will rearrange the left side of (16) using (14) and Lemma 3.3. 

1 f2n 

— / [x" + (m2 + "f)x][x + x° - x]dt = 
2?r Jo 

1 f2n 

= TT~ / W'{x + x° - x) + (m2 + j)x{x + a;0 - 2)]<ft 
27T Jo 

1 f2n 

= — / [x"x - x"x + m2x2 - m2x2 + jx(x + x° - x)]dt 
2TT J0 

> -Wx'Wl + P'lll + m2\\x\\l - (m2 + 7 ) P | | 2
2 > 511x^11 ,̂ 

where 6 is the constant given by (15). D 
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Lemma 3.6 Let e G (0,2m - 1), e0 € (0,e), 71,72 G C(J) be such that 

(17) 
0 < 71 (*) < 2m + 1 - є,0 < 72(í) for all t Є J, 

Then there exists 5* G (0, €0) satisfying 

(18) 
2тr 

/•27T 

/ [ar" + (m 2 + 7 l ( í ) + 72(t))x][x + x° -x]dt> S^x^jj. 
Jo 

Proof Following the proof of Lemma 3.5 we have 

1 f2n 

— / [x" + (m2 + 71(f) + j2(t))x][x + x° - x]dt > 
2TT Jo 

> _||̂ ||2 + m
2|N|2 + H^g _ m

2p||2 _ j _ j ^ ~2(7i {f) + ^ W)cft< 

By Lemma 2.4 there is a mean value 71 G [0,2m + 1 — e] fulfilling 

(19) ^- [^x2jx(t)dt = ^- rx2dt<(2m + l-e)\\x\\2. 
^ Jo 2 ? r Jo 

Further, using (17) and the Sobolev inequality (6), we get 

(20) èГ^2 7 2^-"^1^! 2 1 1 2 ( б -€ 0 ) 
< e-є0 j ~/112 

+ (m + l ) 2 - l + ( m + l )2"~ "2* 

Then, by (19), (20) and (14) with 7 - 2m + 1 - e, we obtain 

r2n 

e - e 0 

1 t-2" 
— / [x" + (m 2 + 7 l ( ŕ ) + ъ(t))x][x + x° - Щdt > 
27Г J0 

> - X 
~f\\2 1 ™ 2 i i — 1 | 2 , | i ~ / | | 2 i + m2\\x\\i + \\x'\\i - (m 2 + 2m + 1 - e ) p | | 2 - - , "" 2 11 112 11 112 v ;n 112 i + ( m + i) 2 11^112 

>Í |KII 2 H-Y 
€ - б 0 

+ ( m + l ) 2 І N І 2 -

бo 

<5-
€ - € 0 

l + (m + l ) 2 
lr-Чl2 

\x \\н 

1 + (m + I ) 2 

Here we have used the fact that 

I -Ml 2 

\x
 WH-

. f 2 m - 1 € _ _ _ ! _ ( 

~ m m 1 1 + (m + l ) 2 ' 1 + (1 + m) 2 J 1 + (1 

So, for 5* — 1+/4°+i)^ ^ (0>€o) the inequality (18) is true. 

+ m) 2 ' 

D 
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4 A priori Estimates 

Now, let us consider the equation (4) and suppose that 

f(t, x, y) = 0i (t, x, y) + g2(t, x), 

where 01,02 are continuous. Then (4) has the form 

(21) x" + m2x = pi (£,£,#') +g2(t,x). 

L e m m a 4.1 Suppose that 71,72 £ C(-7) satisfy (17) and that for Mi,M2,F? G 
(0, 00) £lie conditions 

(22) |0i(č,£,H)| < Mi na J x R2, 

(23) |02(*,aO + ( 7 i ( 0 + 7 2 ( 0 ) ^ l < M2 for all t € J and \x\ > B 

are valid. Then there exists a 6 (0,00) such that each solution of the problem 
(21), (2) satisfies the inequality 

(24) 

Proof Put 

(25) 

Then 

(26) 

IkHlH < a + v
/ a 2 + 2 a | | x ° | | / / . 

V = m a x { | 7 i ( 0 | + | 7 2 ( 0 h * e j > ' 
0* =max{|02(r,a:) | :teJ,\x\< H}, 

k M * =max{M 2 , 0* + 7 * £ } . 

\92it, x) + (7 l(t) + f2(t))x\ < M* onJxR. 

Let a; be a solution of (21),(2). Then 

(27) «" + {m2 + 7l(t) + l2(t))x = gi{t,x,x') +g2(t,x) + (ji(t)+j2(t))x. 

If we multiply (27) by ^(x + x° — x) and integrate, we get by (18) 

8*\\xHKMl + M* ' ! • ' \H ^ 2тг L x + x — x\dt. 

Let us put M = Mi + M* and a = -¥r, where k is the constant from (5). Then 

M í2lr / 1 /"27r 

**ll* IIH < -r- / |ž + £ ° - í | d í < M W — / |a7 + a r ° - í | : 

27T j 0 y 27T y 0 

= M ^ | | x + a ; 0 -2 | | 2 = My/\\x + x°\\l + \\x\ 

•dt 

1^112 
112 

< M(| |x x | | 2 + ||x°||2) < M{\\x^\\H + \\x°\\H), 
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l 2 ^ Mk„ | „ Mfc„ 0 l l 
|2я < -gг\\*X\\н + -ӯгlk°l|я, 

|æx|& - 2o | |x x | | я - 2o||a:0 | |я < 0, 

( | | x x | | я - a ) 2 < 2 o | | г 0 | | я + o 2 , 

a - v 4 2 + 2 a | | x 0 | | / r < 0 < \\x±-\\H < a + yjo2 + 2a||x°||//. 

Since the norm ||«ri"||^r is nonnegative then the negative solution 

a - \/a2 + 2a||x0||/L 

is not important for the restriction of ||a?-L||iy. Hence we can write 

IkMltf < a + v/a2 + 2a||x°||Lr. D 

Lemma 4.2 Lei the conditions (17), (22) and (23) be fulfiled. Further, let 
{xn}^°=1 be a sequence of solutions of the problem (21),(2) and 

(28) lim \\xn\\H = oo. 
n—>oo 

Then there exists (prospectively for a convergent subsequence) a function v such 
that 

(29) -r-^ • v in C(J), 
FnllH 

(30) TT^1T--*V inC(J), 
\\xn\\H 

where v is an eigenfunction of (3), (2) with UJ = m2. 

Proof Firstly we prove that the sequence { p ^ / ^ i i s bounded in H and 
hence there is a subsequence, which is convergent in C(J). Since 

WxnWn < \\xi\\H + \\XI\\H < II4IIH + « + v/«2 + 2 a | | < | | i f , 

then using (28) we obtain limn->oo WXI\\H = °°- T h e inequality 

WxnU , \\X0JH + \\X^\\H < 1 , q , i/f_g_V + 2 , . j _ 

K k - " iKiiH - ii^iiIJ VviKiiiJy i i4ik 

implies limn->oo flffff = *> L e - t h e sequence is bounded in H and hence with 
respect to Lemma 2.3 there is a subsequence, which is convergent in C(J). 

Then there exists a function v € C( J) such, that 

i . xn (W) Aim ,, n n — = v. 
1 } rx-^oo \\X%\\H 
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From 

we get 

U m ^ < I i m M k < A = . i m f e Í f c 
n->oo \\Xn\\H ™-*°o \\xn\\H 

lim r Á - = lim X",X" =v -0 = v, 

V Xn , . \\XI\\H V 

lim -—-— = lim Y^J.— = — = v. 
n-*oo \\Xr) WH n—»OO lFn|[H 1 

11 " IKIIu 
Since {i^oji } is the sequence of functions from a linear space 5 with the base 

{cos mt, sin mi), then v G S. • 

L e m m a 4.3 Let (17), (22) and (23) be fulfilled and moreover 

r2ir 

(32) / 7 i(*)<ft>0. 
Jo 

Then there exists r* G (0, oo) such that 

(33) \\x\\B < r* 

for each solution x of (21), (2). 

Proof On the contrary, we suppose that (33) is not valid, i.e. there is a sequence 
{xn}n

<L1 of solutions of (21),(2), which fulfils (28). Thus xn fulfils the equation 

xn+m2xn + (ji(t)+j2(t))xn = gi(t,xn,x'n) + g2(t,xn) + (ji(t) + j2(t))xn 

for each n G N. If we multiply these equations by rorV- a n d integrate, we get 

2TT 

0 

2TT 

/ X° 
= / [gi(t,xn,x'n) + g2(t,xn) + (j±(t) + 72(t))xn] Q

n dt. 
J ll^nllH 0 

Since the sequences {vr$r\ }n
<Li a n d {u^li }??=! a r e uniformly convergent on 

J , we can exchange the order of limit and integration. Then with respect to 
(29) and (30) 

2TT 

!im / ( j ^ + m 2 i ^ + (^( i) + ^ ( ^iSr- )* = 

n-yooj VlFnlltf iFnll" IKIIW 
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27T o 

0 

2TT Q 

= lim \\xn\\H [ Hm (7 lW+7aW)] j^ | | ^ r* 
n->oon J n->oo iFnllH iFnIIIl 

0 
2TT 

= lim | |4 |U [(ji(t)+y2(t))v
2dt. 

n-»oo J 
0 

Since v G 5 i.e. v2(£) > 0 for almost all £ G J and 7i(£) is nonnegative on J 
and positive on I, where I C J is the set with the positive Lebesgue measure, 
then 7i(£)^2(£) i s nonnegative on J and positive on the set with the positive 
Lebesgue measure. 

Using (28) we get 

«-Wo VlralH IRIIH IralH/ 

= lim \\x°n\\H / \ji(t)+j2(t))v
2dt = <x>. 

n->°° Jo 

Simultaneously, putting M from the proof of Lemma 4.1 we have 

f2lx x° 
lim / [gi(t,xn,x'n) +g2(t,xn) + (7i(t) + 72(t))xn]T^rdt < 2irM\\v\\Hl 

n^°°J0 iFnllLI 
which leads to a contradiction. D 

Since we use the method of the topological degree in the next part, we need 
to study the system of equations with a parameter 

(34) x" + (m2 + ci)x = \[g!(t,x,x') + g2(t,x) +ax], A G [0,1], 

where c\ — 2m + 1 - e, e G (0,2m - 1). 

L e m m a 4.4 Let the asumptions (17), (22), (23) and (32) be fulfilled. Then 
there exists r* G (0, oo) such that for any A G [0,1] each solution x of the 
problem (34), (2) fulfils (33). 

P r o o f Let for some A G [0,1] a function x b e a solution of (34),(2). Then x 
fulfils 

(35) x" + (m2 + Cl)x + \(ji(t) + 72(t) - *)z = 

= \[gi(t,x,x')+g2(t,x) + (71W +72W)-r]-

The left-hand side of (35) can be written in the form x" + (m2 + 71 (t) + J2(t))x, 
where 71 (t) = (1 - \)cx + A71OO, j2(t) = A72(£). We can see that 71,72 satisfy 
(17). 
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So, by Lemma 3.6, we can find 5* > 0 such that (18) is true. Therefore, 
following the proof of Lemma 4.1, we can find a > 0 such that (24) is valid for 
any A G [0,1] and any solution of (34), (2). 

Now, consider a sequence of parameters {An}n
<L1 C [0,1] and a correspond

ing sequence of solutions {xn}n=:1 of (34), (2). We can choose a convergent 
subsequence from {An}n

<^:1 and hence we can suppose without loss of generality 
that there is A0 G [0,1] such that 

lim An = A0. 
n—>oo 

Following the proof of Lemma 4.3 we assume that (28) is valid. Then we can 
prove (29) and (30) in the same way as in the proof of Lemma 4.3. Substituting 

0 

An and xn in (34), multiplying by ho7!, and integrating, we have 

í 
Jo 

m^+m'&;+^-x")m-B
+XMt)+''M)m; 

2TT 

f X° 
= / Ki\gi(t,xn,x'n) + g2(t,xn) + (li(t) + 72(t))xn]

 n dt 
o 

<(MX + M*) / jr^r-dt, 
Jo IralH 

where M* is given by (25). Therefore, by (29), (30), 

r27r r * „o 

dt = 

dt lim / * \ ( l - X n ) C l ^ + Xn(7l(t)+l2(t))^ 
n - > ° % L iFnlltf I K I I H 

[ p2n p2n 

d ( l - A o ) / v2(t)dt + X0 / (li(t)+i2(t))v2(t)dt 
Jo Jo 

p2n 
<(Mi + M*) / \v(tj\dt. 

Jo 
Since f**(l - \0)Clv

2(t)dt + A0 ̂  (li(t) + i2(t))v
2 (t)dt = D > 0, we have 

limn->oo H^nll/fÎ  = oo, a contradiction. O 

We can write the problem (34),(2) in the form of an operator equation 

(36) Lx = XNx, AG [0,1], 

where 
L : domL -> C(J\x*-> x" + (m2+Cl)x, domL = {x G C2(J)\x fulfils (2)}, 
N : Cl(J) -» C(J);x H> ^ ( . . x O , *'(•)) +»(-,*(•)) + <**(•), 
KerL = {x G domL; Lx = 0}. 
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Since m2 -f- cr G (m2, (m + l ) 2 ) , then KerL = {0} and hence there exists 
the inverse operator L~l : C(J) -> C2(J). We can write equation (36) in the 
equivalent form 

(37) (I - \iL~xN)x = 0, AG [0,1], 

where I : Cl(J) -> ^ ( J ) is the identical operator and i : C2(J) -> Cl(J), 
x H> x is the operator of compact imbedding. 

Lemma 4.5 Let the assumptions (17), (22), (23) and (32) be fulfilled. Then 
there exists p* G (0, oo) such, that 

(38) ||:c||ci < p* 

is valid for any AG [0,1] and all solutions of (37). 

Proof Lemma 4.4 implies that every solution of (37) for A G [0,1] is bounded 
by r* in H. Then 

IMIc < k\\x\\H < kr\ 

where k is the constant from (5). 
The conditions (2) imply the existence of to G J such that x'(to) = 0. 

Integrating (34) we get 

x'(t) — x'(t0) = / \[gi(t,x,x') + g2(t,x) — c i ( l - \)x - m2x] dt 
Jt0 

and hence 

\\x'\\c < 2TT[MI + max{|£2(*,x)\ : t E J, \x\ < kr*} + (m + l)2kr*] = M 3 . 

Therefore (38) is valid for p* = M3 + kr*. • 

5 Main Results 

Theorem 5.1 Let the assuptions (17), (22), (23) and (32) be fulfilled. Then 
there is p* such, that 

d[I~iL-1N,K(p*)] = l, 

where K(p*) = {x G Cl(J); \\x\\Ci < p*}. 

Proof We will use the properties of the Leray-Schauder topological degree. 
It will be sufficient, if L~l : C(J) -r C2(J) is bounded. We can write the 

operator L~l : C(J) -> C2(J) in the form 

r2ir Г-ZЋ 

L~ľx(t) = / G(tђs)x(s)ds, 
Jo 
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where 
, c°y(«- t-'0 for 0 < t < s < 2TT 

QU g\ — ) 2 r smj r r - - -
C°7rZÍ+rn) for 0 < s < t < 27T 

2r sin 7rr — — — 
is the Green function of (34),(2) for A = 0 and where r = \/Vn2 + Ci € (ra, ra+1). 
Since r ^ N then sinTrr ?- 0 and hence there is K € R such that |G(t, s)\ < K. 

Furthermore 

and 

дG(t,s) 
дt 

д2G(t,s) 
дt2 

- S Í " ^ r ) f o r O < í < S < 2 7 T 

- S Í n ; l ^ r ) f o rO< S <í< 2 7 r 

-rcм

aІŁ"łîг~') f o r O < í < S < 2 7 г 

-r C O S

2 t^г + , Г ) f o r O < S < í < 2 ^ ' 

than there exist konstants K\, K<i < oo such that 

ðG(í,s) 

öŕ 
< i í i and 

д2G(t,s) 

дt2 <K2 

Therefore 

||L~1x||c2 = ||L--x||c + ll(L~-x)'||c + ||(L--xrilo 

f2n í2n i dG(t s) i 
<max / |G(ť,s)||x(s)|ds + max / —~^-\\x(s)\ds+ 
~ teJ J0 ' teJ J0 I <9ť I1 

4 *|ö2G(t,в)| 
+ max / [ —„Y ' \\x(s)\ds + max 

t€J J0 I дt1 I t є J 

|ðG(t, t-) дG(t,t+) 
дt дt 

\x(t)\ + 

Ç2Ћ 

L 
d2G(t,s)\ 

+ max / I' ; ' '\\x{s)\ds<[2it(K + Kl+K2) + l\\\x\\c. 

We can see that the map L _ 1 is bounded. 
Further we prove that N is continuous i.e. if for every e > 0 there is 6 > 0 

such that for each x,y € Cl(J), which fulfil 

||x - y||c- - max{|x(t) - y(t)| + |x'(t) - y'(t)|, t e J} < 5, 

the expression ||JV# - iVy||c < e is valid. 
Put g(t,x,y) = gi(t,x,y) + 02 (t, a;) + cix. Since g(t,x,y) is continuous on 

J x R2 and x,y € CX(J) then the function ^(t,x(t),x'(t)) - g(t,y(t),y'(t)) is 
also continuous on J and it has a maximum in J. Hence there exists to € J 
such that 

max\g(t,x(t),x'(t)) - g(t,y(t),y'(t))\ = \g(t0,x(t0),x'0(t)) - fl(-o,»(*o)»»'(*o))l-
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Further for every e > 0 we can search S > 0 such that if \x(t0)-y(t0)\-\- \x'(t0) -

y'(t0)\ < 6 then 

\g(t0,x(t0),x0(t)) - g(t0,y(t0),y'(t0))\ < e. 

Therefore if \\x - yllc1 < * then |x(*0) - 2/(*o)| + \x'(t0) - y'(t0)\ < 8 is valid, 
thus 

\g(t0,x(t0),x'0(t)) -g(to,v(to),v'(to))\ <e 

and hence \\Nx - Ny\\c < e. 
Let us prove that the map iL~xN : Cl(J) -» Cl(J) is compact. Since L~l : 

C(J) -> C2(J) is a linear bounded operator and i : C2(J) -> Cl(J) is compact 
then iL~l : C(J) -> C ^ J ) is compact. The operator N : C(J) -> Cl(J) is 
continuous. Therefore the operator iL~xN : Cl(J) —> CX(J) is compact. 

Lemma 4.5 implies that there exists p* £ (0, oo) such that for any A £ [0,1] 
every solution of (37) lies in the interior of K(p*). Thus for any A £ [0,1] and 
x £ dK(p*) we get x / XiL~xNx. 

Then the map F = iL~lN fulfils the assumptions of Lemma 2.6. Let us put 
G = -F. From Lemma 2.6 d[I, K(p*)] = 1 and using (7) we get 

d[I - iL~lN, K(p*)] = d[I - F, K(p*)] -d[I-F-(l- A)G, K(p*)] 

= d[I - AF, K(p*)] = d[I, K(p*)] = 1. • 

T h e o r e m 5.2 Le£ the assumption (17), (22), (23) and (32) be fulfilled. Then 
the problem (21), (2) has at least one solution. 

Proof In view of Theorem 5.1 we have d[I — iL~xN,K(p*)] = 1 and with 
respect to the Lemma 2.6 there is u £ K(p*) such that u = iL~xNu, i.e. u is a 
fixed point of iL~lN. Since the equation (37) with A = 1 is equivalent to the 
problem (21),(2), then u(t) is a solution of (21),(2). D 
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