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Abstract 
The existence and uniqueness of solutions to the two point boundary 

value problem for ordinary linear third order differential equations in the 
Colombeau algebra are considered. 
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1 Introduction 

For a fixed j = 1,2,3 we will consider the boundary value problem 

i(x)(t) := x,"(t)+p1(t)x"(t)+p2(t)x
,(t)+p3(t)x(t) = q(t), (1.1) 

Lij(x)=du i = 1,2,3, (1.2,) 

where 
Ln(x) = a,(0), L12(x) = x(T), L13(x) = x'(T), 
L21(x) = x(0), L22(x) = x(T), L23(x) = ar'(O), 
L31(x) = x{0), L12(x) = x'(0), L13(x) = x"(T) 

and 0 < T < oo. 
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We assume that pi, i = 1,2,3, and g are elements of the Colombeau algebra 
G(R) of generalized functions, di, i = 1,2,3, are elements of the Colombeau 
algebra E of generalized real numbers, x(0), x(T), x'(0), x'(T), x"(0), x"(T) are 
understood as the values of the generalized functions x, xr and x" at the points 0 
and T, respectively. The elements pt, d{ and q are given. The multiplication, the 
differentiation, the sum and the equality are meant in the Colombeau algebra 
sense. We prove theorems on the existence and uniqueness of solutions of the 
problems (1.1), ((1.2j). In certain cases they generalize some of the results given 
in [1], [7] and [8]. 

2 Notation 

Here we recall some basic definitions which are needed later on. For more details 
concerning generalized functions and generalized real numbers as well as for the 
proofs of the assertions mentioned in this section, see [2]. 

Let V(R) be the set of all C°° functions E —> E with a compact support. 
For q e N, we denote by Aq the set of all functions <p e V(R) with the following 
properties: 

/

oo /»oo 

(p(t)dt = l, / tkip(t)dt = 0, k = l,2,...,q. 
-OO J—CO 

Furthermore, £[R] is the set of all functions R : A\ x E -> E such that R((p,.) e 
C°° for every tp e A\. 

For R e £[R], (p € A\, t e E and k e N U {0}, we define 
dk 

DkR(tp,t) = -^R(ip,t). 

(In particular, D0R(tp,t) = R(ip,t).) Furthermore, if ip e V(R) and e > 0, then 
<Pe e V(R) is defined by 

y£(t) = -^r-\ teR. 

R e £(R) is said to be moderate, if for every compact subset K of E and every 
k e NU {0} there is jN G N with the following property: for every ip e AN there 
are C > 0 and e0 > 0 such that 

sup \DkR(ip£,t)\ < Cs~N for all e e (0,e0). 
t£K 

The set of all moderate elements of £[R] is denoted by £ M M -
By T we denote the set of functions a : N -» E + which are increasing and 

such that l im^oo a(q) = oo. Furthermore, we define an ideal JV[E] in £ M M 
as follows: R e J\f[R] if for every compact subset K of E and every k e N U {0} 
there are N e N and a e T with the property: for every q > N and tp e Aq 

there are C > 0 and e0 > 0 such that 

suv\DkR(<Pe,t)\ < Cea^-N if e e (0,e0). 
teK 
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The algebra (?(E) (the Colombeau algebra) is defined as the quotient algebra 
of £M[R] with respect to JV[E], i.e. 

am - £j£J3 e(ffi) ~ AW' 
Its elements are called generalized functions. For J2 G £ M [ E ] , the corresponding 
class G e G(R) (i.e. G = i t + JV[E]) is denoted by [i?]. Vice versa, if G G 0 (1 ) , 
then its representative in £ M [ E ] is usually denoted by RG- IiG\ = [RGI] £ (5W 
and G2 = [Ifc2] € 5(E), then we define GiG 2 := [RGIRG2] (This definition does 
not depend on the choice of i?i and irV) 

£Q is the set of the functions mapping A\ into E and £M is the set of all 
moderate elements of £Q, i.e. 

£M = {R G £Q : there is N G N such that for every ip G .>4jv there are 
C > 0, 770 > 0 such that | i ? ( ^ ) | < C e~N for e G (0,770)}. 

The ideal Af of £M is defined by 

jV = {R G £0 : there are iV G N, a G F such that for any q > N, tp G ^ 

there are C > 0, 770 > 0 such that |ii(y>e)l < Cea{q)~N for e G (0,770)}. 

and 

It is known that E is an algebra, while it is not a field. The elements of E are 
called generalized real numbers. 

If R G £M[R] and G = [.R] e (5(E), then for any t G E the map Y : ip -> 
R(ip,t) G E is defined on J-ti and belongs to £ M - Furthermore, F depends 
only on G and t and we denote it by G(t). We say that G(t) is £/ie ua/^e O/ 
the generalized function G at the point t. G G (5(E) is said to be a constant 
generalized function on E if it admits a representative i?(<D, £) which does not 
depend on £. With any Z G E we associate a constant generalized function 
Z G (5(E) which admits Rz(ip,t) = Z(<p) as its representative. 

Throughout the paper [0,T] stands for the compact interval 0 < t < T. 
For a given matrix M with elements from E, its transpose is denoted by MT. 
Finally, for x G G°°(E) and n G {0,1,2,3} we put 

H-Dn-^lk = max \Dnx(t)\ and \\x\\K,n = Y^ IID{X\\K. 
t£ A 

We say that x G (5(E) is a solution of the equation (1.1) if there is 77 G 
such that for any representative Rx of x the relations 

^(Rx)(t)-Rq(^t)=r)(ip,t), (2.1) 

where 

M*k)W := ^ 3 / ^ ( ^ , 0 + ^ i ( ^ 0 ^ 2 ^ ( ^ 0 + ^ ( ^ 0 A ^ ( ^ 0 
+ Rp3(y,t)Rx(ip,t) (2.2) 

are satisfied for all cp £ A\ and £ G E . 



110 Jan LIGQZA 

3 Main results 

In this section we will formulate several theorems on the existence and unique­
ness of the solutions to the problems (1.1), (1.2j) To this aim we will need the 
following hypotheses: 

Hypothesis (Ho) For every compact subset K of E containing 0 there is 
iVGN such that for every <p G AN there are C > 0 and e0 > 0 such that 

I /•' I 
sup / \RPi(cp£,s)\ds\ <C for e G (0,e0) and i = 1,2,3. 
teK ' Jo " I 

Hypothes is (Hj) There is N G N such that for every <D G .>4jv there exist e0 

and 7 > 0 such that for all e G (0,£o) the condition 

aj-ro£(Pi,P2,P3) < 1 - 7 

is satisfied with 

/<te(Pi,P2,P3) = / ( | i ? P l ( ^ , r ) | + | ^ 2 ( ^ , 0 l + I ^ P 3 ( ^ ^ ) l ) ^ (3.1) 
Jo 

and 
f £ ( 5 V 5 _ l l ) + Z + 1 i f j = l o r j = 2, 

I 2L + T + 1 if j = 3. 

Hypothes is (Gj) There is N G N such that for every <p G AN there exist £0 

and 7 > 0 such that for all e G (0,£o) the condition 

bj Jj£ < 1 - 7 

is satisfied with 

f i i - i = l, 

J , e = / \Rp.(<pe,t)\dt and 6, = < j if J = 2, (3.3,) 

1?(5V^-H) if j = 3. 

We will also deal with the associated homogeneous problems 

l(x)(t)=Q, Lji(x) = 0, i = 1,2,3 (3.4,) 

Theorem 3.1 Le^j G {1,2,3}. Assume that (H0) is £nze and £/ia£ x = 0 is the 

only solution of (SAj). Then the problem (1.1), (1.2j) has a unique solution in 

G(R) for any q G Q(R) and any (dud2ld3)
T G R3. 

Remark 3.2 The generalized function Rs(ip,t) = ip(t), <p € *Ai, satisfies (H0). 
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Remark 3.3 Under the assumption (Ho), t h e i n i t i a l v a l u e problem (1.1), 
x(t0) = r0, x'(t0) = ru x"(t0) = r2, has for every t0 G R, q G £(E) and 
r = ( r 0 , r i , r 2 ) r G E 3 a unique solution y G </(R). Moreover, it can be expres­
sed in the form 

x = c 0 ^ 0 + ciipi + c2^2 + Q, (3.5) 

where for i G {0,1,2}, ipi is a solution of the initial value problem 

/(V*)(*) = 0, ^ ° ( t b ) = l, ^ ) ( ^ o ) = 0, * € { 0 , 1 > 2 } \ { » } > (3.6) 

Q is a particular solution of the equation (1.1) and c0, CI and c2 G E. Moreover, 
a: is the class of solutions Rx of the problems 

Z*(Rx)(t) = Rqfat), ipeAu 

Rx(v,to) = -Rr0(vO> ^ I - M V M O ) = Rn(<p)> D2Rx(if,t0) = Rr2(y)> <p G A , 

where ^ (x ) ( r ) is defined by (2.2). For the proofs, see [11, Theorem 3.3]. 

T h e o r e m 3.4 Let the assumptions of Theorem 3.1 be satisfied and let q G £/(E) 
and di G R, & = 1,2,3. TTien £be problem 

^ , W W - Rq(Ve,t), Lji(z) = Rdi(Ve)> i = 1,2,3, </? G ^/v, (3.7) 

bas /Or any NGN sufficiently large and any e > 0 sufficiently small exactly one 
solution z = z^e. If, in addition, we define z^(t) = 0 On E /Or £be remaining 
(p € A\ and 

R((p, t) = z<p(t) for (<p, t)eAiX E, 

rIien i? G £ M [ E ] ana1 £ = [1?] is a solution of the problem (1.1), (1.2^). 

Theorem 3.5 Let j G {1,2,3} and let (H0) ana7 (Hf) be satisfied. Then the 
problem (3.4j) /ias in (?(E) On/H the trivial solution x = 0. 

Theorem 3.6 Le£ j G {1,2,3} ana7 Ze£ (H0) and (Gj) be satisfied. Then the 
problem 

x'"(t) +pj(t)x^-j\t) = 0, x(0) = x(T) = x'(T) = 0 3.8,-

has in 5(E) only the trivial solution x = 0. 

Remark 3.7 If 

b3-^(5v
/5-ii)<i, RP3(^t)= rJ**®,, veAuteR, 

and P3 = [Rp3], then p3 verifies the assumptions of Theorem 3.6 for j = 3. 

T h e o r e m 3.8 Let (Ho) be true. Furthermore, assume that p% admits a repre­
sentative RP3 with the following property: there is N G N such that for every 
cp G AN there exist e0 > 0 such that 

Rpz(<Pe,t) > 0 for all t G [0, T] and e G (0, e0). 

Then the problem (3.83) has only the trivial solution in £/(E). 
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4 Proofs 

Proof of Thorem 3.1 
Let to G E, let Q be an arbitrary particular solution of (1.1) and let ^ , 

i = 0,1,2, be solutions of (3.6). Using [11, Theorem 3.3] (see Remark 3.3) and 
inserting (3.5) into (1.2j), we get that x G (5(E) is a solution to (1.1), (1.2^) if 
and only if x is given by (3.5), where c = (ci,C2,C3)r G E satisfies the following 
system of linear algebraic equations in E 

HU) c = b, (4.1) 

where 

H(j) = (L^t?)) 1-1.2.8, b = (61,62, h)T, bi = di- Lji(Q), i = 1,2,3. 

Similarly, y G £(E) is a solution to (3.4j) if and only if y = ^iCi 4- ^)2c2 + ift3c3, 
o 

where c = (ci,C2,c*3)r G E satisfies the corresponding homogeneous system 

H{j)c = 0 (4.2) 

Under our assumptions (4.2) has only the trivial solution. Furthermore, by 
3 

[12, Theorem 3.1], (4.1) has a unique solution for any b G E and this completes 
the proof of Theorem 3.L • 
Remark 4.1 Notice that under the assumptions of Theorem 3.1, det(H^) is 
invertible element of E (see [13, Corollary of Theorem 51]). 

Proof of Theorem 3.4 
Let to G E, and let R${ (<ps,t), i = 0,1,2, be solutions of the family of initial 

value problems for ordinary differential equations 

W-**«) = 0- R^_-»(<Pe,to) = I I J ^ V <peAt,e>0. (4.3) 

Then, every solution zipe of (3.7) can be expressed in the form 

zVe (t) = Ci (<£e) RipQ (<p£,t) + C2(<ps) Ril>_ (<ps,t) + C3(<pe) R^2 (<p£,t)+Q(<pe, t) 
(4.4) 

with d(<pe) £ E for i = 1,2,3, 

Q(<p€.t) = / W-1(ipe,8)U(t,8)Rq(iPe,8)d81 (4.5) 

U(t,a) = R^(<pe,t)D3l(s) + R^1(<pejt)D32(s) + R^2(^ 

W(<Pe,t) = e x p ( - J RPl(<Pe,s)ds), (4.6) 
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and 

D31(s) = RlPl(cp£,s)R^2(<p^s) _ i J f i ( ^ 5 s ) ^ 2 ( ^ , s ) , 

-O32W = R^Q(ipe,s)Ri,2(<peyS) - Rip0(cp£js)R1p;2(ip€,s), (4.7) 

^33(5) = - f y o ( ^ s ) - f y l t a , s ) - ^ 
Inserting (4.4) into the boundary conditions in (3.7) we obtain that ztPe will 
verify (3.7) for a given <p £ A\ and e > 0 if and only if 

% ) ( ^ e ) c ( ^ ) = 60.)(^) (4.8) 

is true, where 

and 

AU)(Ve) = {Lji(Rl>r-i(<Pe,t)) Í-1,2 

.ѓ=3 
&«)(¥>*) = ( ^ ( ^ e ) ~ Lji (Q(^,t) ) ) .= 1 . 

Now, since we assume that (3.4j) has only the trivial solution, it follows that 
det H(j) is an invertible element of E . From this we can deduce that there is 
NGN such that for every <p G AN there are C > 0 and £0 > 0 such that 

\detAU)(<p£)\ > CeN, for all e € (0,e0). (4.9) 

This means that for <D G A?, q > N and e G (0, e0) the problem (3.7) has exactly 
one solution z^e which is given by (4.4), where 

Ci(cp£) = (detA{j)(<p£))~l detAU)fi(<pe), i = 1,2,3, (4.10) 

and A(j)ti(ipe) denotes the matrix obtained from A(j)(<p£) by replacing its i-th 
column by b(j)(cp£). Now, if we extend the definition of C{ on the whole A\ by 
setting Ci(tp) = 0 in the cases that det Ay) ((D) = 0, we get a G £M[R], i = 1,2,3. 
Similarly, for <D G ^4i such that det .A(j-) (<D) = 0 put z<p(t) = 0 on E. It is known 
(cf. [11]), that 

R^r(<p,t) G < 5 M M for r = 0,1,2. 

Now, define 
R(cp, t) := Zy(t) for (<D, *) G A x E. 

Then R G £ M [ E ] whefrom the proof of Theorem 3.4 already follows. • 

In the proof of Theorem 3.5 we will make use of the Green functions Gj (t, s), 
j = 1,2,3, of the boundary value problems 

x"' = 0, Ln(x) = Lj2(x) = Lj3(x) - 0, 

which are respectively defined by the following presciptions: 

n n , l ^ T ^ - W - t ? i f 0 < i < s < T Gi(M) = i ,4%* " (4-n) 
I 2W if 0 < s < i < T, 

G2(t,s) = 

and 

- | ( 1 - f ) V i f 0 < ť < s < T , 

> f ( l - й , ) t - - в í + Ь - i f 0 < S < ť < Г . ( j 
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f - k 2 i f O < r < s < T 
G3{t,s) = \ 2 , , - _ _ > ( 4 1 3 ) 

The properties of the functions Gj needed later on are described by the 
following lemma-

Lemma 4.2 Letj € {1,2,3}. Then 

i BG • 
sup \Gj(t,s)\=aj0, sup — i ( t , 5 ) = a j l ? (4.14) 

ť,sЄ[0,T] í,sЄ[0,T]' 

where 

and 

s u p — Я ł - — = 1 ' 

f Ç ( 5 V 5 - П ) for j = l,2, 
^ 0 = ì Т=> , • o 

[ Ł - / o r j = 3 

f £ forj = 1,2, 
ӣji = < 

Ì Т / o r j = 3 . 

s 0 = ì ( - Т + л/5Т). 

Remark 4.3 Notice that 

aio = a 2 0 = \Gi(T -s0,s0)\ = | G 2 ( s 0 , T - s 0 ) | , 

where 

S o = 2 
Similarly, 

I d „ /„ T\\ I d „ (- T\\ 
«n = a21 = \-Gl(0,-)\ = \wG2(T,-)\, 

i BC i 
a3o = | G 3 ( T , T ) | and a31 = | - ^ ( T , 0 ) | . 

Proof of Theorem 3.5 

Let j G {1,2,3} be given and let x = [Rx] be a solution of (3.4j). Then 

tip(Rx) = rij((p,t) and Lji(Rx) = ^ M , i = 1,2,3, <p G A , 

where TTJ G JV[M] and 77̂  G JV, i = 1,2,3. Hence 

i i * 0 M ) = - / Gj(t,s)Mx(<p,s)ds + Aj(<p)t2 + Bj(v)t + Cj(<p), (4.15) 
./o 

where 

A-a.(<p,s) = -RPl(w,s)Rx»(y,s) -RP2(ip,s)Rx,((p,s) 

~ Rps (<Pi *) #*(<£> ^) - r}j(ip, s) (4.16) 
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and Aj, B5, Cj G JV. In virtue of (4.15), (4.16), (Hi) and Lemma 4.2 for 
sufficiently small e > 0, sufficiently large n G N and tp G AN we have 

ll#x(<Ar,*)ll[0,T] < aj0I0E(P l ,P2,P3) | | -R*(^^)l l [0,T] ,2 

+ «io / te(^,5)|d;5 + | ^ ( ^ ) | T 2 + \Bi{<p,)\T + | C i ( ^ ) | , (4.17) 
Io 

ll#.r'(<^,*)ll[0,T] < Oil -foe(pi,P2,P3)||-Rx(^,*)| |[0,T],2 

+ %i / \nj(<pe,s)\ds + 2\Aj(tp£)\T + \Bj(<p£)\ (4.18) 
Jo 

H-R.r"(^,0ll[O,T] < Ioe(Pl,P2,Ps) \\Rx(<Pe, *)||[0,T],2 

+ / l%(^,«)|d« + 2 1 ^ ( ^ ) 1 , (4.19) 
•10 

and 

where Ioe(Pi,P2,P3) are defined by (3.1). 
Now, taking into account the relations (4.17)-(4.19), it follows that 

Px(<A^)| |[0,T] ,2 < Ioe(Pl,P2,P3) \\Rx(<Pe, t)\\[o,T\,2+Vj(<Pe)> 

where 77* (ip) G JV. This means that there are C > 0, Ni G N and e0 > 0 such 
that 

\\Rx(<Pe,t)\\[0,n2<C2e
a^-Ni (4.20) 

is true for q > N\, <p G A , and e G (0, e0). If £0 £ (0, T), then (4.20) implies that 
Rx(n)(ip,t0) G JV for n = 0,1,2. On the other hand, 2 = Rx(<p,t) is a solution 
of 

^e(z) = Vj(<Pe,t), Z(t0) = Rx((pe,t0), 

z'(t0) = Rx'((p£,t0), z"(t0) = Rx»(lpe,t0) 

on E. So, by virtue of Remark 3.3 and [11, Theorem 3.3] we obtain 

Rx(<P,t) GJVpR] (4.21) 

and this proves Theorem 3.5. • 

Proof of Theorem 3.6. 
a) Let j = 1 and let x = [Rx] be a solution of (3.8i), i.e. 

Rx(<Pe,t) = - / Gi(t,s)(Rpi((pe,s)Rxn((pe,s) -T)(ip£,s))ds 

Jo 

+ Mip£)t
2 + Bt((f£) + Ci(^), 

where d is defined by (4.11), rj € JV[M], Au Bx and C\ G JV. For some C > 0, 
IV G N and e0 > 0 we have 

P*"(^,*)ll[o,T] < ^ W " N , q > N, <p E Aq, ee (0,e0). 
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Since 

Rx'(<Pe,t) = / -Ra.»(^e,s)d5 + i?a. '(^e,-r), 

Rx(<Pe,t) = / J?^ (^ £ , s )ds + I?x(</%,0), 
JO 

Rx>(<p,T) G fV and -Rx(v?,0) G JV, Rx(<p,t) has properties (4.20) and (4.21), 
which completes the proof of Theorem 3.6 for j = 1. 

b) Let j = 2 and let x = [Rx] be a solution of (3.82), i.e. 

Rx>"(<Pe,t) = -RP2(<pe,t)Rx>(<pe,t) +T](<Pe,t), 

and 

-&r(<f^,0) = TJi(<Pe), Rx(<Pe,T) = T)2(<Pe), Rxf(<Pe^T) = T)3(<Pe), 

where rj G JV[E], % G JV, i = 1,2,3. Hence 

-R* (<Pe,t) = - G2 (t, S) (RP2 ((p£, 5) JrV (<D£ ,s)-Tf((f£, s) ds 
Jo 

+ A2(<Ps)t2 + B2((p£)t + C2((p£), (4.22) 

where G2 is given by (4.12) and A2((p),B2((p) G JV, C2(^) € A/". According to 
(4.14) we have 

\\Rx>(<Pe,t)\\[0iT] < J2e(P2)e\\Rx>(<PeM[0,T]+V4(<Pe), (4.23) 

where 774 G yV\ By (3.6) and (4.23) there are IV G N, e0 > 0 and C > 0 such 
that for q > IV, (p G ^ and 6 G (0,£o) 

l l ^ ( ^ , * ) l l [ o , T ] < o £ a ( 9 ) - N (4-24) 

Applying the Schwarz inequality to the equality 

Rx(<Pe,t)= / Rx>((p£,s)ds + Rx((pe,0) 
JO 

we obtain that there are C\ > 0, IV1 G N and £1 > 0 such that 

||I4(^,*)ll[o,T] < C i ^ - ^ 1 for all q > Nx and e G (0,6!). (4.25) 

Similarly, the relations (4.22), (4.24) and (4.25) yield the existence of C2 > 0, 
N2 € N and e2 > 0 such that 

\\Rx"(<PeM%T]<C2e^-N-

is true for q > N2, (p G Aq and e G (0,e2) and we see that Rx has the property 
(4.20), i.e. Rx G Af[R], which completes the proof of Theorem 3.6 for j = 2. 
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c) Assume j = 3, let x G (?(M) be a solution of (3.83) and let there are 
77 G JVpR], rji G JV, i = 1,2,3, such that the relations 

Rxn,(<p,t) = -RP3(ip,t)Rx((p,t) +r)((p,t), 
(4.26) 

# * (</>, 0) = 771 ((D), Rx(ip,T) = 772 ((D), Rx>(ip,T)=r)3 ((D) 

are satisfied for all (D £ ^4i. Applying (4.15) with j = 3 and G3 given by (4.13) 
we can see that 

||I?.r(<r°£^)ll[0,T] <63^3e(P3) | | -R a . (^,*) | | [0 ,T]+^(^), 

where 77 € J\f, e > 0 is sufficiently small and b3 and J3e are defined by (3.33). 
As in the proof of Theorem 3.4 we conclude that Rx has property (4.21), which 
completes the proof of Theorem 3.6. • 

Proof of Theorem 3.8 
As in the proof of Theorem 3.6, assume that there are 77 G JV[K], 77i G JV", 

i = 1,2,3, such that the relations (4.26) and 

Rx (y>, 0) = 771 ((D), Rx(ip,T)= 772 ((D), Rx,(<p,T)=m ((D) (4.27) 

are true for all <D G *4i. Any solution Rx of (4.26) can be expressed in the form 
(4.4), where R^{, i = 1,2,3, and Q are respectively defined by (4.3) and (4.5), 
where Rq is replaced by 77, C{ G £M[R] for i = 1,2,3 and t0 = T. Consequently, 
for (D G Ai, we have 

Rx(<Pe,t) = c3((p£) R^2(ip£,t) + rj4((p£), (4.28) 

where 774 G fV[M]. 
Now, we will prove that C3 G M. Indeed, y = R^2 is a solution to 

y'" = -RP3(Ve,t)y, y(T) = y'(T)=0, y"(T) = l. (4.29) 

Multiplying the differential equation in (4.29) by y and integrating-by-parts 
from T to t, we get 

/ y'"(s)y(s)ds = - [ RP3(Ve,s)y2(s)ds = y"(t)y(t)-
JT JT 

Thus, 

y,2(t) 

v' (t) tl 

y\t)y(t)=y-^- J RP3(s)y2(s)ds>0 for*G[0,T] . (4.30) 

Hence, for <p G AN, t G [0,T] and sufficiently small e > 0, we have 

y(t) = ^ - ^ + [ {±^-RP3(Ve,s)y(s)ds > E^Jt. (4.31) 
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By virtue of (4.27), (4.29), (4.30) and (4.31) we conclude that 

2/(0) > - J (4-32) 

and 
m(<Pe) = Rx(<Pe,0) = cs(<pe)y(0)+r]4(<p£), (4.33) 

where ry4 G A/". Relations (4.32) and (4.33) imply that there are C\ > 0, N\ € N 
and £i > 0 such that for q > N\, <p € . 4 ^ and e € (0,£i) the following 
inequality is true 

M ^ ) | Y ^ Mv«)l IJ/(°)I < Cxe^-K, 

i.e. C3 G J\f, which completes the proof of Theorem 3.8. • 

5 Relations between Caratheodory's and Colombeau's 
concepts of solutions of differential equations 

In this section we denote the product of Oi and g2 G (5(E) in <5(M) by g\Gg2. If 
<7i ? #2 e C°°, then their classical product g\g2 and the product g\ © g2 in (5(E) 
give rise to the same element of (5(E). Hence we have the following assertion. 

Theorem 5.1 Let j G {1,2,3}, 

pr,qeC°°, r = 1,2,3, djt G R- 2 = 1,2,3. (5.1) 

Furthermore, assume that the problem (1.1), (1.2j) ftas a generalized solution 
x\ G (5(E) in £/ie Colombeau sense and let the zero function be the only classical 
solution of the problem (3.4j) Then the problem (1.1), (1.2j) has also a classical 
solution x2 and x\ and x2 give rise to the same element of (5(E). 

Proof The existence of the classical solution x2 of (1.1), (1-2^) is evident. In 
particular, we have 

*<pARxi)(t) = <l(t)+ri(Ve,t), Lji(RXl) = dji+rjji&e), (5.2) 

and 
£(x2) = q(t), Lji(x2) = dji, (5.3) 

where rj G Af[R], r]ji eAf, <p G A\ and i = 1,2,3 . Furthermore, for 

Rx(<Pe,t)=x2(t)-RXl(<p£,t), <peA\, teR and t = 1,2,3 (5.4) 

we get 
£(Rx(<p£,t)) = -rj(<p£,t), Lji(Rx(<p£,t)) = -7]ji(<p£), (5.5) 
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On the other hand, Rx(<fe,t) is given by (4.4) and (4.5), wrhere Rq is replaced 
with rj. Taking into account (4.4), (4.6)-(4.9) and (5.5) we deduce that cr G M 
for r = 1,2,3 and consequently 

x2-RXl €JV[R], 

as well. This completes the proof of Theorem 5.L • 

Remark 5.2 It is known that every distribution is moderate (see e.g. [3, Propo­
sition 2.2]). In general, the multiplication in f5(E) does not coincide with the 
usual multiplication of continuous functions (see [2]). As a consequence, so­
lutions of ordinary differential equations in the Caratheodory sense and in the 
Colombeau sense are different (in general). To "repair" the consistency problem 
for multiplication we give the definition introduced by J. F. Colombeau in [2]. 

A generalized function u G £/()R) is said to admit a member w G D'(R) as the 
associated distribution, if it has a representative Ru with the following property: 
for every i/> G V(R) there is N G N such that for every ip G AN we have 

/

CO 

Ru(<p£,t)ip(t)dt = w(if>). 
-co 

I f / G L t o c W , we define 

/

CO 

f(t + u)tp(v)du = (f*<p)(t), ipeAi. 
-co 

Obviously Rf G £ M [R]. 

Theorem 5.3 Let j G {1,2,3}, pr G L/ocW for r = 1,2,3,4 and let the zero 
function be the unique solution of the problem (3Aj) in the Caratheodory sense. 
Let x denote the solution of the problem (1.1), 0-2j) in the Caratheodory sense. 
Furthermore, assume that there exists a solution x of the problem (1.1), (L2j) 
generalized in the Colombeoau sense. Then x admits an associated distribution 
which equals x. 

Proof follows from the fact that pk * tp£ -* Pn and q * <pe —> q in Ljoc(E) 
as e -> 0+ for k = 1,2,3 and from the continuous dependence of x on the 
coefficients p i , p2, P3 and q. Indeed, let R^0((p£,t), R^^^t), R^2(<p£,t) be 
solutions of the problems (4.3). Then for every tp e A\ and r , i = 1,2,3, we 
have 

limR^-1
i\iPe,t) = 4ri

1)(t) (5.6) 

almost uniformly on R. This yields 

l i m | d e t A ( j > | - g ^ 0 , g G 1 , (5.7) 

for every (p G Au detA(j)e is defined by (4.9). Let Rx((p£,t) be a solution of 
the equation (3.6) satisfying the conditions 

Lji(Rx(p£,t)) = djU i = 1,2,3. (5.8) 
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Thus, by virtue of the relations (4.5)-(4.7), (4.10) and (5.6)-(5.8), for r = 1,2,3 
and for every fixed tp £ A\, we get 

lim .R j . J(r-i)(v f f l*)=« ( r"1)(*) 

almost uniformly on E and x is a solution of (1.1), (L2j) in the Caratheodory 
sense. On the other hand, x = [I?x] is a generalized solution of (1.1), (1.2j) (we 
put Rx(<Pe,t) = 0 if det J4(J)C -= 0). This proves Theorem 5.3. • 

Remark 5.4 If p* € Lj0c(K), then 

\Rpk(Ve,t)\ - / Pk(t)(f(u)du\ < \Rp{ip£,t) - / pk(t)(f(u)du\ 
' J — C O ' J—CO -0O 

roo 

< 
- 0 0 /

0O 

\Pk(t + єu) -p(t)\\(p(u)\du, 
-oo 

i.e. pk satisfy (H0). 

Corollary 5.5 Let j G {1,2,3, }, pr G L/oc(K), r = 1,2,3, anrf 

3 r T 

' < 1 , " І Ѓ E / ІPг(*)|dt) 

ivî /i aj given by (3.2). 
F/ien the problem (SAj) has only the trivial solution in the Caratheodory 

sense. 

Corollary 5.6 Let j G {1,2,3,}, Pj G Lioc(R) and 

bj [ \Pj(t)\dt<l, 

with bj given by (3.4j). Then the problem (3.8j) has only the trivial solution in 
the Caratheodory sense. 

Corollary 5.7 (cf. [8]) Letj G { l ,2,3,} .p r G Ljoc(R), r = 1,2,3, andp3(t) > 0 
a.e. on [0,T]. Then the problem (3.83) has only the trivial solution in the 
Caratheodory sense. 

Remark 5.8 The concept of generalized solutions of ordinary differential equa­
tions can be considered also in other ways. See e.g. [4], [5], [6], [9], [10], [14], 
[15], [16] or [17]. 

Remark 5.9 The definition of Colombeau generalized functions on a given 
open subinterval of E is analogous to the definition used in this paper (see [2]). 
It is not defficult to observe that if reformulated our assumptions (Ho), (Hj) and 
(Gj) in a proper way, the results of this paper would remain true also in the 
case when the generalized functions are considered on some open subinterval 
(a, b) of E. 
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