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Abstract 

This paper investigates the existence of a globally exponentially stable 
solution which is bounded and periodic (or almost periodic) for a class of 
fifth-order non-linear differential equations of the forms (1.1) and (1.2). 
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1 Introduction 

We shall be concerned here with the differential equations of the form: 

a>> + ax^iv) + bx'" + f{x") + g{x') + ex = p{t) (1.1) 

and 

x{v\ + ax{iv) + hxm + y/yt) + gi(xy + ex = p^ ^ 2) 

where a, b, e are positive constants and / , O, Gi, and p are continuous functions 
which depend only on the arguments displayed explicitly. 

The problem of interest here is to determine conditions on these functions 
under which all solutions of (1.1) and (1.2) are bounded, globally exponentially 
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stable and periodic (or almost periodic). Many authors have worked on these 
properties of solutions for various kind of fifth order non-linear differential equa
tions using Lyapunov's direct method (see, e.g., [1, 10, 15] and the references 
therein). However, our purpose here is to use frequency-domain method (see, 
eg., [2-9, 16-19] and [14, pp. 84-88]) to study the above mentioned properties 
for the solutions of (1.1) and (1.2). 

In [6], Afuwape and Adesina recently initiated the use of the frequency-
domain method to investigate these properties of solutions for (1.1) and (1.2) 
when f(x ) = ex . The results obtained in this work generalize the results in 
[6] and also generalize to fifth order non-linear differential equations the results 
of Afuwape [4] and Barbalat [9]. The frequency-domain conditions obtained 
for equations (1.1) and (1.2) are necessary conditions for the existence of a 
positive definite Lyapunov function of the Lure-Postnikov form with a negative 
sign derivative. Our work shall utilize substantially, the generalized theorem of 
Yacubovich [7] represented by the following : 

Theorem A Consider the system 

X' = AX -B<p(cr) + P(t), (J = C'kX, (1.3) 

where A is an n x n real matrix, B and C are n x m real matrices with C* as 
the transpose of C, <p(o~) = colcpj(aj), (j = 1,2, . . . , m) and P(t) is an n-vector. 

Suppose that in (1.3), the following assumptions are true: 

(i) A is a stable matrix; 

(ii) P(t) is bounded for all t in R; 

(Hi) for some constants flj > 0. $ = 1,2, . . . , m) 

0 < ^ > - ^ > < A j , ( c r . ^ ) , (1.4) 

(iv) there exists a diagonal matrix D > 0, such that the frequency-domain 
inequality 

7r(u) = MD + ReDG(iuj)>0 (1.5) 

holds for all to in R, where G(iu) = C*(io;I - A)~1B is the transfer 
function and M = diag(^), (j = 1,2,. . . ,ra,). Then, system (1.3) has 
the following properties. 

(I) existence of a bounded solution which is globally exponentially stable; 

(II) existence of a solution which is periodic (almost periodic). 

Definition Following [7], we shall say that system 

X' = AXX - Bwfa) + Pi(*), <Ti = CSX (1.6) 

is a dual to system (1.3) if Ax = A, B1=C,C1 = B and Pi(£) = TP(t), where 
T is a non-singular matrix transformation. 

Theorem B ([7]) The frequency-domain inequalities for dual systems are 
equivalent. 
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Formulation of Results 

We introduce the following: The Routh-Hurwitz conditions for stability of so
lutions of the linear homogeneous equation of (1.1) and (1.2) are: 

(2.1) 
a > 0, (ob — c) > 0, (ob — c)c — (ad — e)a > 0, 

(ab - c)(cd - be) - (ad - e)2 > 0, e > 0 

and the consequences of these conditions are: 

b > 0, c > 0, cd - be > 0, ad - e > 0. (2.2) 

The following notations shall be basic throughout this work. Equations v2a — 
vc + e = 0 and v2 — vb -f d = 0 have two real positive roots given by ui, v2 and 
n3, D4 respectively, where 

vi = Ya[C-{c2~iae)i] (2'3) 

^ 2 - ^ [ c + ( c 2 - 4 a e ) ^ ] (2.4) 

v3 = \[b-(b2-4d)i} (2.5) 

v4 = ^[b+(b2-4d)i] (2.6) 

such that b2 - 4d > 0, c2 - 4ae > 0 and 0 < V\ < v$ < v2 < v±. 
The main objective of this paper is to prove the following: 

Theorem 2.1 Consider (1.1) where the functions f, g, and p are continuous 
with f(0) = g(0) = 0 and p(t) bounded in R. Suppose that there exist positive 
parameters c, d, fi± and \i2 such that inequality 

(M1M2)2 < 16(d/z2 ~ eLti)(cLii - bfi2) (2.1) 

is satisfied and the functions f and g satisfy respectively the following inequali
ties 

c </(*) - / ( -0 <C + Ml; ( z # 2 ) (2.8) 
z — z 

d^g{z)-g{z) < r f + M2; ( ^ - } ( 2 9 ) 

z — z 
Then equation (1.1) has property (I) and if in addition p(t) is periodic (or 
almost periodic), then it has property (II). 
Theorem 2.2 Let the functions f, g±, and p be continuous in (1.2) with 
f(0) = gi(0) = 0. Suppose that there exist positive parameters c, d, [i\ and \i2 

such that inequalities (2.7), (2.8) and 

1 r 
d<- 9i(s)ds < d + H2, (x^0) (2.10) 

x Jo 
are satisfied, then equation (1.2) has property (I) and if in addition p(t) is 
periodic (or almost periodic), then it has property (II). 
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3 Preliminary Results 

The main tool in the proof of our theorems is the function TT{UJ) defined by 
inequality (1.5). For us to determine the function TC{UJ), we shall, by setting 
xi = x, reduce (1.1) to system (1.3) with 

X = 

P(t) = 
(° \ 

o 
o 
o 

\p(t)J 

* - > - т а 
(3.1) 

The transfer function G{iu) = C*{iioI — A) lB for system (3.1) becomes 

G(iш) 
1 / ІШ ІШ 

Д I - w 2 - w 2 (3.2) 

where A = {uj4a — u2c-\-e) + iuj{u4 — buj2 -\- d). In order for us to get the function 
7r(cj), we shall make use of the generalised Theorem of Yacubovich as given in 
the introduction and this requires the existence of strictly positive numbers T\ 
and T2 such that D = diag(rj) and M = diag( —) {j = 1,2,). After some 
calculations, we obtain 

Ж(ш) = ( Ҡ n Ҡl2)>0 
' 7Г21 T22 

(3.3) 

where 

тгц = П \џг 

2{oj4a — UJ2C-{- e] 

|Дľ 

- i , 2 ( ^ 4 - w2г> + d) 

*a + " ľ^p " 

7Гi2 = щ^pr{(o;2Г2(w4 - w 2 6 + d) -n(ш4a-ш2c + e)) 

+ iш (т2(ш4a — ш2c + e) — nш2(ш4 — ш2b + d))} = 7Г21 

(3.4) 

(3.5) 

(3.6) 
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with 7T2i as the complex conjugate of 7r~2 and |A | 2 = AA. We shall employ 
Sylvester's criterion to verify inequality (3.3) and this requires that TTH, 7^2 
and det7r(u;) be positive for all u in R. These shall now be proved in a series of 
lemma. 

Lemma 1 Let 

(v2a - vc + e) (v2 - vb + a1)2 

Si(v) 
v (v2a — vc+e) 

where UJ2 — v. Then, TTH(UJ) is positive for all v > 0 provided that 

Mi < M1(c) = Si (Do) = min Si(v) 
v\<v<V2 

and 

5i(«0) = S1(v3) = (ab - c) - ~ ^ - ^ ~ 
(b - (b2 - Ad) 2 

where Do is the unique real root of A\(v) = 0 with Di < Do < D2 and Mi(c) is 
the minimum value of Si(D) and attainable at say v = Do-

Proof For TTH(U) to be positive, we shall have from equation (3.4); 

,, ^ (v2a~vc + e) (v2 -vb + d)2 

Ml < 1" 7-0 1—\ K6'1) 
v [vza — vc + e) 

Let 
-, , x (D 2 a-Dc + e) (D 2 -Db + d) 2

 / r t rtN 

Mi < Si{v) - i i + i-5 -Ar 3.8 
D (D^a — Dc + e) 

On differentiating the right hand side of inequality (3.8), we get 

Ai(v) - S[(v) • (D2a - Dc - + e ) 2 

= D(2aD - c){(v2a - Dc + e) 2 - D(D2 - Db + d) 2 } 
+ (D2a - Dc + e){2D2(2D - b)(D2 - Db + d) - (D2a - Dc + e) 2} 

Thus, S\(v) can be zero in the interval (Di,D2) if 

Aг(v) = ЗaD7 + (a 3 - 2ab - 5c)D6 + (2a2c + 8ad + Aab + 4e)D5 

+ (a2e + Зac2 + 2abd - b2c - бbe - 2cd)D4 

+ (5ace - 4ad2 + 2bc - 2bcd + c 3 + 4de)D 
+ (~ae2 - 2bde + c2e - 2c2 + cd2)v2 + ce2D - e 3 = 0 

2 _i_ Ohn _ Oh^ _i_ ^3 1 AJ0\nč (3-9) 

On sketching the graph of S\(v) against D, we note that there are asymptotes 
at Di and D2- Furthermore, 

Sx(vz)~(ab-c)- 2(°d~e> (3A0) 
o — ( 0 - — 4c() 2 

and 

5 i ( « 4 ) = - ( a 6 - c ) ( } 1 (3.11) 
1 { 4 ) ' b-(b2+4d)i V ; 
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On substituting v = ^ into Si(v), we note that S i ( ^ ) < 0. Obviously, Si(^3) 
and S i ^ 4 ) are positive with Si(v3) > Si(D4) Hence, Mi(c) = S(v0) < Si(v3) 
with A\(v0) = 0. D 

L e m m a 2 Let 

n / \ / 2 , 7 ,x (^2^ ~ VC + e ) 2 

S2(v) = ( - i r + u6-d)-1- t;( —1>2 _|_ v £ _ ^ 

w/iere a;2 = v. Then, TT22(U) is positive for all v > 0. provided that 

and 

M2 < M2(d) = S2(v0) = min S2(v) 
Vз<V<V4 

SÁv0) = S2{v2) = l ( b - l ) ( c + ^ - 4 a e ý ) - ( d - l ) 

where VQ is the unique real root of A2(v) = 0 with v% < VQ < v\ and M2(d) is 
the minimum of S2(v) and attainable at say v = v0. Furthermore, if v2 7̂  | . 
then, S2(v2) > S2(§) and ifv=\ with e = 2bc-fa and e < 2b(b2 - 4d)(b - f ) , 
e > 0 , then, S2(v2) > S2(§). 

Proof For TT22(OJ) to be positive for all w e R , the following inequality must be 
valid; (u2 = v) 

M 2 < ( - , 2
+ ^ - d ) + y a

2 - ; c + e ) ; . (3.12) 

v(-vz +vc-d) 

Let 
M2 < S2(v) = (-v2 + vb - d) + i ^ Q - ^ + e ) 2

 ( 3 .1 3 ) 
v(—Dz + vc — d) 

On differentiating S2(v), we have; 

A2(U) = S2(v).v2(-v2 + vb-d)2 

= (b - 2v){v2(-v2 + Ub - d)2 - v(v2a - vc + e)2} 
+ (U2a - vc + e)(U2a - vc - e)(-U2 + Ub - d) 

Obviously, S2(v) can be zero in the interval (V2>,VA) if 

A2(v) = 2v7 + 7(a2 - 5b) v6 + (4b2 - 6a2b - 12ac + 4d)v5 

+ (5a2d - b3 + 5c2 + lOabc - 2ae - 4bd)v4 

+ (4b2 d - 4acd + 4bc2 + 4ce + 5 d 2 ^ 3 

+ (4d2 - 3c2d - 2ade - 2bce - 3e)v2 - (2be + d3 - cde)v + de 
= 0 

(3-14) 
We also note that, on sketching the graph of S2(v) against v, there are asymp
totes at vs and V4. On substituting v = | into S 2 ^ ) , we shall have; 

sJb\_b*-4d HaP_-2bc + 4ef 
S2{2)-—r~ + —w:rW~ ( ] 
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Similarly, we obtain 

s^ = i(b-l)(c-^-4a^)-(d-l) (3-16) 
and 

^^K'-Dh^-^-^-l) (3-17) 
Let us consider the following cases with the relation: 

26c - b2a 
e = 

Case I 

2 If v2 = §, then, 
b2 - ĄH Һ 

S2{V2) = °—^L=sĄ) (3.18) 

Therefore, S2{v2) = S2 (§) . 
Case II 
If t/2 > | , then for some e > 0, v2 = | + e, Thus, 

5 2 ( V 2 ) = ^ i _ + ( 6 - ^ ) £ (3.19) 

and 
_ fb\ b2-Ad 2e2 ,„ __. 52(2J=-T-+6(^4d) (3-20) 

Case III 

If t!2 < | , then for some e > 0, v2 = | — e. Thus, 

5 2 M _ £ _ Z _ _ _ ( 6 _ £ ) e (3.21) 

and 
/ 6 \ _ b2-4d 2_2 

H-J-"---"+ .(t--4d) (3-22) 

On choosing e < 2b(b2 - Ad) (b - ~ ) , we obtain the inequality S2(v2) > S2(~). 
Hence, M2(d) = S(v0) < S2(v2) with A2(v0) = 0. This completes the proof of 
Lemma 2. • 

Lemma 3 For all v > 0. det7r(u.) > 0 (u.2 = v) 

Proof 

det7r(co>) = 7rn7r22 - |TTI_>|2 

I ______ _i_ u (_______+_• __ ̂ 2 Q—fc+e _ ~ 2 2 + I > T I 2 \ A V * / 
~ T - T 2 Vp ip 2 "•" | A P V Ml p2 4riT2 jy 
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This will be positive for all v > 0 in R, if 

v5 + (a2 - 2b)D4 + (b2 - 2ac ~ 2d + /x2 - afii)v3 

+ ^2ae - c2 - 2bd - bM2 + c/n ~ 11!£~) v2 

+ (d2 - 2ac + dfi2 - em - T2^2 J T; + e
2 > 0 (3.24) 

If n = 0, then det7r(a;) > 0. But if v 7-= 0, then by our choice of /xi, /i2 and the 
following inequalities; 

a2 > 2b, b2 > 2(ac + d), c2 < 2(ae - bd), d2 > 2ac (3.25) 

we have 
M1M2 < 72 < 4(d/x2 - e / i i ) 2 6 

4(c/xi - 6ti2) n /xi/x2 

Thus, ^22^33 - 1̂ 231 > 0 for all v in R, if 

(M1M2)2 < 16(d/x2 ~ e/xi)(c/ii - 6/z2)
 D 

4 Proofs of the Main Results 

We shall now give the proofs of the theorems stated in Section 2. 

Proof of Theorem 2.1 
Let f(z) = cz + f(z) and g(z) = dz + ^(z) where c and d are positive 

parameters. By setting X\ = x, the equation; 

x{v) + axM + &x'" + f{x") + g(x') + ex = p(t) 

reduces to the equivalent form: 

x[ = x2 

X'2 = ^ 3 

Xo —— X4. 

x^ — x§ 

x'5 = —ex\ — dx2 — cxs — bx4 — ax± — f(x%) — g(x2) + p(t) 

and in vector form 

X' = AX- B<p{a) + P(t), a = C*X 

with K, A, H, C, P and tp(cr) as given in system (3A). The frequency-domain 
condition reduces to the matrix inequality (3.3) which is satisfied for all u in R. 
This is true by using Lemmas 1, 2 and 3. The conclusions of Theorem 2.1 thus 
follow from the generalized theorem of Yacubovich. 
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Proo f of Theorem 2.2 

Let f(z) = cz + f(z) and / * gi(s)ds = dx + gi(x) with c and d as positive 

parameters. Then equation (1.2): 

x{v) + axW + 6*"' + /(&") + gi(x)x' + ex = p(t) 

or its equivalent form: 

x\ = -~ex5 

xf

2 = «! - dx 5 - g(rr5) + p(*) 
^3 = #2 - cx5 - f(Xs) 
X'A

 = ^3 — bxs 

Xe. — Q?̂  O.X5 

is a dual to system (3.1) with a non singular matrix transformation given by 

/0 0 0 0 1\ 

0 0 0 1 0 
T = 0 0 1 0 0 

0 1 0 0 0 
\ 1 0 0 0 o / 

The conclusions to the proof thus follow from Theorem B and the proof of 
Theorem 2.1. 
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