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Abstract 

Let JrT*,aM be the r-th jet prolongation of the cotangent bundle with 
weight a of an n-dimensional manifold M. If n > 2 and a < 0, then all 
natural affinors on (JrT*,aM)* are the constant multiples of the identity 
affinor only. 

K e y words : Bundle functors, natural transformations, natural affi­
nors. 
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0. Let n and r be natural numbers and a be a real number. We consider 
a linear action aa : GL{n,r) x R n -> R n by aa{B,x) = \det{B)\a{B~1)*x 
and let T*'a be the corresponding vector natural bundle over n-manifolds. We 
recall that T*,aM = LM xaa R n for any n-manifold M, and T*'a(D = Ltp xaa 
idRn : T*,aM -> T*'aN for any embedding <p : M -> N between n-manifolds, 
where LM is the principal fibre bundle over M of linear frames. T*'a is called 
the cotangent bundle of weight a over n-manifolds. Let JrT*,a be the r-jet 
prolongation of T*'a. We recall that JrT*,a is a vector natural bundle over 
n-manifolds such that JrT*,aM = {fxa | a is a section of T*,aM, x <E M} 
and JrT*'a(D : JrT*,aM -> JrT*'aN, JrT*'a(D(jrO) - j;(a:)(T*'a<D o a o (D"1), 
jra E JrT*,aM, where M and <p are as above. Let (J rT*'a)* be the dual (to 
JrT*'a) vector natural bundle over n-manifolds, i.e. (J rT*'°)*M = (J rT*' aM)* 
and (JrT*'a)*v? = (JrT*'a(D-x)* for any M and ip as above. 

In general, a natural affinor jl on a natural bundle F over n-manifolds is 
a system of affinors AL : TFM -> TFM (i.e. tensor fields of type (1,1) on 
FM) for any n-manifold M which is invariant with respect to local embeddings 
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between n-manifolds. For example, the family id = idrFM ' TFM —•> TFM for 
any n-manifold M is a natural affinor on F. 

The main result of this short note is the following classification theorem. 

T h e o r e m 1 If n > 2 and r are natural numbers and a < 0 is a negative real 
number, then all natural affinors on (J rT*'a)* over n-manifolds are the constant 
multiples of the identity natural affinor id only. 

For a = 0 the classification is different. In [9], we proved that if r and n > 2 
are natural numbers, then the vector space of natural affinors A on ( j r F*)* is 

2-dimensional. 
In Item 1, for natural numbers n > 2 and r and a negative real number a 

we present a classification of all natural transformations (JrF*>a)* _>. (J rT*'°)* 
over n-manifolds. In Item 2, using similar arguments as in Item 1, for n, r 
and a as above we present a classification of all linear natural transformations 
T(J rT*' a)* -> (J rT*' a )* over n-manifolds. In Item 3, as a corollary of the result 
from Item 2, we present a classification of natural affinors of vertical type on 
(J rT*'a)* for n,r and a as above. In Item 4, for n, r and a as above we present a 
classification of all natural transformations T(J rT* , a)* -» T over n-manifolds. 
In Item 5, using the results of Items 3 and 4, we prove Theorem 1. In Item 6, we 
remark the same results for (JrF*>a)* instead of (J rT*'a)*, where T*'a is given 
by a linear action G L ( n , r ) x R n -> R n , (B,x) -> sgn(det(B))\det(B)\a(B~1)*x. 

Natural affinors on F play a very importrant role in the differential geometry. 
For example, they can be used to define torsions of a connection on F, see [5], 
That is why classifications of natural affinors on some natural bundles have been 
studied in many papers, see e.g. [l]-[3] and [6]-[9]. 

Throughout this note the usual coordinates on R n are denoted by x1,..., xn 

and di = ^fr, i = l,...,n. 
All manifolds and maps are assumed to be of class C°°. 

1. In this item we prove the following proposition. 

Proposit ion 1 If n > 2 and r are natural numbers and a is a negative real 
number, then every natural transformation B : (jrT*>a)* -» (J rT*'a)* over 
n-manifolds is proportional (by a real number) to the identity natural transfor­
mation. 

Proof From now on the set of all pairs (a,i), where a G (N U {0})n is such 
that |a | < r and i = 1 , . . . , n, will be denoted by P(r, n). 

Clearly, sections of T*' aRn are 1-forms on R n satisfying respective new 
transformation rules. Then any element v from the fibre (J r T*' a ) 0 R n is a linear 
combination of the (jl(xadx1))* for all (a,i) G P(r,n), where the (jl(xadx1))* 
form the basis dual to the basis JQ(xadxl) G (J rT*'°) 0R n . From now on we 
denote the coefficient of v corresponding to (Jo(xadxt))* by [v]a,i 

Of course, any natural transformation B as iri the proposition is uniquely 
determined by the values <B(u),Jl(xadxl)> € R for u G (JrT*'a)*,Rn and 
(a,i) G P(r,n), where j^(xadxl) G (J r T*' a ) 0 R n . 
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Since B is invariant with respect to the coordinate permutations, it is de­
termined by the <B(u))j0(x

adx1)>. We are going to prove that B is deter­
mined by the values <B(u),jr

Q(dx1)> for u G (J rT*' a)^Rn , where ^(dx1) G 
(J r T*' a ) 0 R n . 

For any T G R and any a G (NU{0})n with |a| < r the local diffeomorphism 
ipr,a = (x\ • • • ,xn-\xn + -^+iTXa+ln) sends the section dx1 of T*' aRn into 
the section (1 -f Txa)adxx near 0 G R n , i.e. it sends ^(dx1) G (J r T*' a ) 0 R n 

into j0(dxx) +Taj0~(xadx1) +T2(...) (we consider the Taylor expansion at T = 0 
of (1 + Txa)a for any x), where the dots is the element from (J r T*' a ) 0 R n 

depending polynomially on r . By the naturality of B with respect to x/V,cn the 
values <B(u),Jl(dx1) + Tajr(xadx1) + T2(...)> for u G (JrT*'a)*,Rn and V G R 
are determined by the values <B(u)Jr(dx1)> for u e (J rT*' a ) 0R n . Clearly, 
<B(u),Jl(dx1) -f TaJQ(xadxx) + T2(...)> depends polynomially on T for any u. 
The coefficient on r of the above polynomial is a<B(u),j0(x

adx1)>. Hence 
(since a / 0) the values <H(n),jJ(a:ad tx

1)> for u G (JrT*>a)*,Rn are fully 
determined by the values <B(u)J£(dx1)> for u G (JrT*'a)*,Rn. That is why 
B is fully determined by the values <B(u)Jr(dx1)> G R for it G (J rT*'a)*,Rn. 

We continue the proof of the proposition. For any t G R + and any (a, i) G 
P(r,n) the homothety at = ( t o 1 , . . . , ton) sends Jl(xadxl) G (J r T*' a ) 0 R n into 
^ - I « l - i j 5 ( x a d x * ) , i.e. ( j 0 (£ aaV))* into r l a l + 1 - n a ( j r ( x a J ^ ) ) * . Then (since 
a < 0) by the naturality of B with respect to at and by the homogeneous function 
theorem, [4], we deduce that given u G (J r T*' a ) 0 R n we have <B(u),j0(dx1)> = 
]Cr=i A [̂u](o),i- Similarly, for any t G R+ the homothety bt = (jc1, to2,..., ton) 
sends (^(da/))* into t 1 - ( n - 1 ) a ( j '5(d^))* for i = 2 , . . . , n, and it sends (^(cfo1))* 
into t~(n""1)a(j5(da:1))*. Then <B(u)J^(dx1)> is proportional to [u](0),i. 

Hence the vector space of natural transformations B : (JrT*'°)* —> (J rT*'a)* 
over n-manifolds has dimension < 1. This ends the proof of Proposition 1. • 

2. The crucial point in the proof of Theorem 1 is the following proposition. 

Proposit ion 2 If n > 2 and r are natural numbers and a is a negative real 
number, then every linear natural transformation C : T(JrT*>a)* —> (JrF*>a)* 
over n-manifolds is 0. 

Proof The linearity of C means that C gives a linear map Ty(J
rT*>a)*M -» 

(J rT*' a)*M for any H G (J rT*'a)*M, a, G M. We will use the notation as in 
the proof of Proposition 1. 

Similarly as in the proof of Proposition 1 we deduce that C is fully deter­
mined by the values <C(u)J^l(dx1)> G R for u G (T(J r T* ' a )*R n ) 0 =R n x 
(T/(J r T*' a )*R n ) 0 =R n

 x ( j ^ * ' a ) * R n x (J rT*'a)*,Rn, where = is the standard 
trivialization and the canonical identification and where j 0 (dx1) G (J r T*' a ) 0 R n . 

We continue the proof of the proposition. Similarly as in the proof of Proposi­
tion 1, by the naturality of C with respect to at and the homogeneous function 
theorem, we deduce that given u = (^1,^2,^3) G (T(J r T*' a )*R n ) 0 = R n x 
(JrT*>a)*,Rn x (J rT*'a)*,Rn, ui = K , . . . , < ) G R n , u2,u3 G (JrT*>a)*Rn 

we have <C(u), j{j(dx1)> = £ n = i Ai[u2](o),» + ^ = 1 Mt[w3](o)f» + • • -, where A*, 
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U{ are the reals and the dots denote the linear combination of monomials in 
u\,...,un of degree > 2. Since C is linear, <C(u), jl(dxx)> depends linearly 
on (^1,^3) for any u2. Then <C(u), j^(dxx)> = £ ^ 1 / ^ M ( o ) , i for the reals 
Hi. Then, by the naturality of C with respect to bt (see the proof of Proposition 
1) and a < 0, 

(*) <C(u),jr(dxx)> = /i[u3](0),i 

for the real number Lt = /j,1. In particular, if n > 2 

(**) <C(9iC |u ;) , j r(Jx1)> = <C(ei,o;,0),i0
r(J:x1)> - 0 

for any u G (J rT*' a)^Rn , where ( ) c is the complete lift to (JrT*>a)*. 
Clearly, the proof of the proposition will be complete after proving that 

M = 0, i.e. <C(0,0 , ( j r (da; 1 ) )*) , JS(^ 1 )> = 0. But (if n > 2) we have 

0 = <C(((x2)r+1d1)
C\UJ)J

r
0(dx1)> 

(* * *) = <C(0, w, (j^dx1))* + . . . ) , J o W ) > 

-<C(0 ,0 , ( j 0
r ( c lx 1 ) )* ) , j 0

r (^ 1 )> , 

where UJ = ~(Jl((x2)rdx2)Y and where the dots denote the linear combination 
with real coefficients of the (fQ(xadx1))* with (cY,i) G P(r,n) \ {((0), 1)}. 

The last equality of (***) is an immediate consequence of the formula (*). 
We prove the first equality of (***). The vector fields di and di + (x2)r+1<9i 

have the same r-jets at 0 G R n . Hence there exists a diffeomorphism ^p 
with J0

+1(V ;) = id sending di into di + (x2)r+1di near 0. Clearly, $ pre­
serves jKdx1) G (J rT*'°) 0R n because of the order argument. Then using 
the naturality of C with respect to tf from (**) it follows that <C((<9i + 
( .T2) r + 19i) c |w) , j r ( d x 1 ) > = 0 for any u G (J rT*'a)*,Rn. Next we apply the 
linearity of C and (**). 

It remains to prove the second equality of (***). The flow of (x2)r+1<9i is 
(pt = (x1 + t(x2)r+1,x2,... ,a:n) . Clearly, det(d0(r^¥?t(y) o <pt o ry)) = 1 for any 
y € R n , where ry : R n -» R n is the translation by y. Then (D_£ sends dx1 into 
d(xx o <ft) because of the Jacobian argument. Then 

<((x2y+1d1)
c
lu,f0(dxl)> = < | | t = o ( J r T * ' a ) * ( ^ ) M , i o r ( ^ 1 ) > 

at|t=o at |t=o 

= «o,f0(d(i (z1 ° ^ ) ) ) > = < W , J5(d((x 2 ) r + 1 ) )> - 1 
at\t=o 

because of the definition of UJ. Then ( ( ^ r + ^ i ) 0 ^ = (JE(dxx))* + . . • under 
the isomorphism K,(J rT*' a)*Rn = (J rT*'a)*,Rn. It implies the second equality. 
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3. From Proposition 2 we obtain the following corollary 

Corol lary 1 If r and n > 2 are natural numbers and a is a negative real num­
ber, then every natural affinor A : T(JrT*'a)*M -> V(JrT*'a)*M on (JT* ' a )* 
over n-manifolds is 0. 

Proof Define a linear natural transformation A = pr2 o A : T(J rT*' a)*M —> 
V(JrT*'a)*M-(JrT*'a)*M x M (J rT*'a)*M -> (J rT*'a)*M, where pr2 is_the 
projection onto second factor. By Proposition 2, A = 0. Then A = (TTT\A) = 
(TTT ,0) = 0. D 

4. The tangent map TTT : T(JrT*'a)*M -> TM of the bundle projection 
IT : (J rT*' a)*M -> M defines a natural transformation TTT : T(J rT*' a)* -> T 
over n-manifolds. 

P ropos i t i on 3 If r and n are natural numbers and a is a negative real number, 
then every natural transformation D : T(J rT*' a)* —> T over n-manifolds is 
proportional (by a real number) to TTT. 

Proof Clearly, any natural transformation D as in the proposition is deter­
mined by the contractions <D(u),doXl> for 

u = (uuu2,u3) G (T(J r T*' a )*R n ) 0 = R n x (J rT*'a)SRn x (J rT*'a)*,Rn. 

Using the invariancy of D with respect to the homotheties at = (tx1,., txn) 
for t G R+ and the homogeneous function theorem we deduce (similarly as in 
the proof of Proposition 1) that <D(u), dox1> for u = (ui,u2,uz) is the linear 
combination (with real coefficients) of the u\,... ,ttn and it is independent of 
u2 and W3, where u\ = (u\,..., un) G R n . Next, using the invariance of D with 
respect to the homotheties bt = (a;1, foe2,... , rxn) we see that <D(u),doxl> is 
proportional (by a real number) to u\ = <TTT(U), dox1>. D 

5. We are now in position to prove Theorem 1. Let A : T(JrT*'a)*M -> 
T(JrT*>a)*M be a natural affinor on (J^T*'a)* over n-manifolds. Then TTTO A : 
T(J rT*' a)* -> T is a natural transformation. By Proposition 3, TTT o A = \T~ 
for some A. Clearly, TTT o id = TTT. Then A - Xid is an affinor on (J rT*'a)* 
of vertical type. Now, applying Corollary 1 of Proposition 2 we end the proof. 

D 

6. Remark Starting from a linear action GL(n,r) x R n -> R n , (B,x) —)• 
sgn(det(B))\det(B)\a(B~x)*x instead of the one from Item 0, we get natural 
vector bundle T*'a. Clearly, all results presented in this note are true for 
(J rT*'a)* instead of (J rT*'°)*. We use the same proofs with ( J r f *'a)* instead 
of(J rT*' a)*. 
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