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Abstract 

GMV-algebras are a non-commutative generalization of MV-algebras. 
In the paper we study connections between ideals of any GMV-algebra A 
and those of the corresponding underlying lattice L(,4). 
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1 Introduction 

As is well-known, MV-algebras were introduced by C. C. Chang in [2] as an alge­
braic counterpart of the Lukasiewicz infinite valued propositional logic. GMV-
-algebras introduced recently by G. Georgescu and A. Iorgulescu in [6] and [7], 
and by the author in [8], are a non-commutative generalization of MV-algebras. 
Recall that by a fundamental result of A. Dvurecenskij in [4], GMV-algebras 
are in a close connection with unital lattice ordered groups (^-groups). 

If A is a GMV-algebra then one can define by a standard method the lattice 
L(A) on the same underlying set. In the paper we study connections between 

* Supported by the Council of Czech Government J14/98: 15100011. 
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ideals of any GMV-algebra A and those of the corresponding lattice L(A). 
In particular, we deal with the cases of prime ideals. Further we characterize 
GMV-algebras A with the property that each ideal of A is a Stonean ideal of 
L(A). 

Necessary results concerning the theory of MV-algebras can be found e.g. in 
[3], the book [5] contains also the foundations of the theory of GMV-algebras. 

2 Ideals and prime ideals of GMV-algebras 
and corresponding lattices 

The following notion of a GMV-algebra has been introduced and studied by 
G. Georgescu and A. Iorgulescu in [6] and [7], and independently by the author 
in [8]. 

Definition Let A = (A, 0 , -», ~, 0,1) be an algebra of type (2,1,1,0,0). Set 
x 0 y = ^ (-»£ © -iH) for any x, y G A. Then A is called a generalized MV-
-algebra (in short: GMV-algebra) if for any x,y,z G A the following conditions 
are satisfied: 

(Al) x 0 (y 0 z) = (x 0 y) 0 z\ 
(A2) x®0 = x = 0®x; 
(A3) £ 0 1 = 1 = 1 0 a;; 
(A4) -.1 = 0 = - 1; 
(A5) - i(~ x® ~ y) = ~ (-.a; 0 -»y); 
(A6) x 0 (2/0 - x) = y 0 (xQ ~ H) = (-ij/ 0 x) 0 H = ( ^ 0 H) 0 a:; 
(A7) (~*x®y)Ox = yQ (x® ~ y); 
(A8) ~ -^x = x. 
(If the operation 0 is commutative then the unary operations -> and — 

coincide and ^4 is an MV-algebra.) 
If we put x < y if and only if -*x 0 H = 1 then u <" is an order on A. 

Moreover, (A, <) is a bounded distributive lattice in which xWy = x®(yQ) ~ x) 
and xf\y = x(D(y(B ~ x) for each x,y e A) and 0 is the least and 1 is the greatest 
element in A, respectively. We set L(A) = (A, V, A) for any GMV-algebra A. 

(The above definition is that introduced by Georgescu and Iorgulescu in [6] 
and [7], where they use the name a pseudo-MV algebra.) 

GMV-algebras are in a close connection with unital ^-groups. (Recall that a 
unital l-group is a pair (G, u) where G is an £-group and u is a strong order unit 
of G.) If G is an ^-group and 0 < u G G then T(G,u) = ( [0 ,u] ,©, - i ,~ ,0 , l ) , 
where [0, u] = {x G G; 0 < x < u}, and for any x, y G [0, u], x 0 y = (x + y) A u, 
->x = u — x, ~ x = —x -j- it, is a GMV-algebra. Conversely, A. Dvurecenskij in 
[4] proved that every GMV-algebra is isomorphic to T(G, u) for an appropriate 
unital £-group (G, u). 

Let us recall the notion of an ideal of a GMV-algebra. (See [7].) Let A be 
a GMV-algebra and 0 ^ H C A. Then H is called an ideal of 4̂ if 

(i) x 0 y G H for any x,y e H\ 
(ii) y < x implies y G H for any x e H and y £ A. 
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An ideal I of a GMV-algebra A is called normal if 
(iii) -!£ 0 y £ I if and only if y© ~ a: G I for each I , J / E A . 
If A is a GMV-algebra, denote by C(A) the set of ideals of A. Then C(A) 

ordered by set inclusion is a complete lattice. An ideal H of a GMV-algebra A 
is called prime (see [7]) if H is a finitely meet-irreducible element in the lattice 
C(A). 

Theorem 1 If A is a GMV-algebra and I £ C(A) then I is an ideal of L(A). 
Moreover, I G C(A) is a prime ideal of A if and only if I is a prime ideal of the 
lattice L(A). 

Proof If I G C(A) and x, y G I, then xV y < x © u G I, and thus x V y G I, 
and hence I is an ideal of the lattice L(A). At the same time, the prime ideals 
of A are characterized by [7], Theorem 2.17, as ideals satisfying the property 

Vx, y G A] x A y G I = > £ G I or H G I. 

The same property also characterizes the prime ideals of the lattice L(.A), hence 
the second assertion. • 

R e m a r k 1 Note that an ideal of the lattice L(A) need not be an ideal of A. 
Obviously, if x E A is not additively idempotent, i.e. x < x © x, then the 
principal ideal of the lattice L(A) is not an ideal of A. 

Theorem 2 Let A be a GMV-algebra and let I be a proper ideal of the lattice 
L(A). Set Iz = {x £ A-^xQz (£ 1} for z G A. Let K = Kt = f](Iz;z £ I). 
Then K C I and K is an ideal of the GMV-algebra A. Moreover, if I is a 
prime ideal of L(A) then K is a prime ideal of A. 

Proof Obviously 0 G If, hence K ^ 0. 
Let x,y £ K and let z £ I. Then -in 0 z $_ I, and thus also ~^(x 0 y) 0 z = 

-•# 0 (~iy O z) £ I. Therefore x£$y £ K. lfx£K,v£A, v<x and 2 ^ I, 
then ->£ 0 2; < ->f 0 z, hence -it? 0 z ^ I and so n G i\~. That means K G C(*A). 

Let x,y,z £ A and let a;AH G Iz. Then (-1.T02;) V(->H02:) = (->£V-'H)0z = 
-i(.r Ay)£)z ^ I, and since I is an ideal of L(A)> we get -^xQz $_ I or -*y(Dz $_ I. 
Therefore, if x A y G Iz then x £ Iz or y £ Iz. 

Now let us suppose that I is a prime ideal of L(A). Let a;, 2/ ^ K. Then 
there are w, v £ A\I such that x ^ Iu and y £ Iv. Obviously uA?; $_ I. We want 
to prove that x Ay ^ K. Let us suppose that x Ay £ K. Then x Ay £ IuAv, 
and thus x G IuAv or H G IuAv If # € IuAv then IuAv C In PiIv implies x £ Iu, a 
contradiction. Similarly H G IuAv gives y £ Iv, a contradiction again. Therefore 
x Ay £ K, and hence If is a prime ideal of A D 

Analogously we also obtain the following theorem. 

Theorem 3 Let A be a GMV-algebra and I be a proper ideal of the lattice 
L(A). Set Jz = {x £ A; z® ~ x <£ I}. Let L = LT = f](Jz] z <£ I). Then LCI 
and L is an ideal of the GMV-algebra A. Moreover, if I is a prime ideal of 
L(A) then L is a prime ideal of A. 
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The following assertion is a consequence of Theorem 2 and Theorem 3, re­
spectively. 

Theorem 4 If A is a GMV-algebra then the minimal prime ideals of A coin­
cide with the minimal prime ideals of L(A). 

If A is a GMV-algebra then an ideal of the lattice L(A) will be called normal 
if (analogously as in the case of a normal ideal of the GMV-algebra A) 

\/x,y G A-^xQy G I <& yQ ~ x G I. 

Proposit ion 5 Let I be a normal ideal of L(A). Then Ki = Lj . 

Proof Let x G A and let x G Ki. Then for any z <£ I we have x G Iz, and 
hence ~*x 0 z £ I. The normality of I implies zQ ~ x £ I for each z ^ I, thus 
z G Jz for each z ^ I. Therefore Iz C Jz for each z £ I. Similarly we show 
Jz Q Iz, hence Iz = Jz, and so Ki = p| z£j -^ = f l ^ / ^ = «//. D 

Remark 2 The converse implication is not valid. If I is a minimal prime ideal 
of the lattice L(A), then by Theorem 4, I is also a minimal prime ideal of the 
GMV-algebra A and I = Ki = L/. Let a GMV-algebra *>4 be not representable. 
Then by [7], Proposition 3.13, A contains a minimal prime ideal H which is not 
normal. Hence H is an ideal of L(A) satisfying KH = La, but H is not normal. 

Proposit ion 6 Let I be a proper ideal of L(A) satisfying the property 

Vx G A\x G I <==> -ix i I. (*) 

I/ £lie ideal Kf is normal then I is normal too. 

Proof Let Ki be normal. Then for every 2 <̂  I, -ix 0 H G Jz if and only if 
y® ~ x e Iz. Since 1 ^ I, we have -i(-ix 0 H) ̂  J if and only if -1(2/0 ~ x) ^ I, 
and hence by (*), ->a, 0 2/ G I if and only if 2/© ~ x G I. Therefore I is normal. 

D 

3 Stonean ideals of GMV-algebras 

If A is a GMV-algebra, denote by B(A) the set of additive idempotents of A, 
i.e. B(A) = {x E A;x®x = x}. By [7], Corollary 4.5, or [8], Corollary 18, 
B(A) is a subalgebra of A which is a Boolean algebra and x 0 y = x V 2/ for any 
x,y G 23(wA). Let us recall that if x G -B(*A), then for the complement x' of x in 
i?(*4) we have x' = -ix = ^ x. 

Further, let ^4 be an GMV-algebra and x G A. Put n • x = x © . . . © x (n 
times). If A is an MV-algebra then xEAis called archimedean ([3], Definition 
6.2.3) if there is an n G N such that n • x G JB(*4). An MV-algebra is said to be 
hyperarchimedean if every its element is archimedean. ([3], Definition 6.3.1.) 
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Let now A be a GMF-algebra and let I be an ideal of the lattice L(A). 
Then I will be called Stonean if for any x G I there exists z £ I D B(A) such 
that x < z. (For MV-algebras see [3].) 

We will show some connections between Stonean ideals of L(A) and ideals 
of A 

Theorem 7 If A is a GMV-algebra then every Stonean ideal of L(A) is an 
ideal of A. 

Proof Let / be a Stonean ideal of L(A) and let x, y G I. Then there are 
u, v G I n B(A) such that x < n, y < D, thus x®y<u®v = uVveln B(A), 
and hence x © | / G / . • 

Now we will characterize the GMV-algebras A having the property that 
every ideal of A is a Stonean ideal of L(A). 

Theorem 8 If A is a GMV-algebra then the following conditions are equiva­
lent. 

1. For every x e A there is an n G N such that ->x V n • x = 1. 
2. For every x G A there is an n G N such that ~ x V n • x = 1. 
5. FOr even/ x e i £Dere is an n G N swca £b,al; n • x G P(^4). 
^. Any ideal of A is a Stonean ideal of L(A). 
5. Any prime ideal of A is maximal. 
6. Any prime ideal of A is minimal. 
7. A is a hyperarchimedean MV-algebra. 

Proof The equivalence of conditions 1-3 is proved in [7], Proposition 4.6. 
3 => 4: Let I be an ideal of A and let x G I. Then there exists n G N such 

that n • x G B(A). Since x < n • x, we get / is Stonean. 
4 => 5: Let P be a prime ideal of A and let J G C(A) be such that P C J. 

If a; G J\P then by the assumption there exists z G J n H(>A) such that # < z. 
Since z (fc P , we have P n £(.A) C J n P(*A). If it, v G P n P(*A) then (by [8], 
Theorem 10, or [7], Proposition 4.3) u®v = uVv G PC\B(A). For w G P(.A) and 
u G P n B(A) it is obvious that w < u implies w G P n P(*4). Let s, £ G P(*4) 
and 5 A r G P n P(.4). Then, by [7], Theorem 2A7, s G P or t G P , hence 
5 G P n P(^4) or £ G P n i 5 ( 4 Thus P n B(A) is a maximal ideal of the 
Boolean algebra B(A). 

Therefore we get 1 G J n B(A), hence J = A, and therefore P is a maximal 
ideal of A. 

5 <=> 6: Obvious. 
5 =̂> 7: Recall that by Theorem 3.9 in [4], we can suppose that A = F(G, n), 

where G is an £-group and u is a strong unit in G. By [9], Theorem 2, the 
ordered sets of prime ideals of A and prime subgroups of G are isomorphic. 
Hence every prime subgroup of G is maximal, therefore by [1], Theorem 55.1, 
G is hyperarchimedean. Thus G is abelian and this implies that A is an MV-
algebra. Therefore, by Theorem 6.3.2 in [3], A is a hyperarchimedean MV-
algebra. 

7 =.> 1: Follows from [3], Corollary 6.2.4. D 
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