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Abstract 

Some applications of trace decomposition in recurrence problems are 
pointed. The main result of this paper establish that the traceless part of 
a k-recurrent tensor field is also recurrent with the same order and form 
of recurrence. We apply this fact to Weyl curvature tensors and Einstein 
tensor. 
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1 Trace decompositions of tensor fields 

Let E be a real n-dimensional linear space, n > 2 and TgE the linear space 
of tensors of type (p, q) on E. By fixing a basis on E, and therefore, by ex­
tension, on T?E, a given tensor A £ T%E is identified with its components 

A — (A2-1 '"%f ). A tensor is said to be traceless if its traces are all zeros. After 
\ Jl"-JqJ 

[3], [4, p. 303] the trace decomposition problem consists in finding a decompo­
sition of a given tensor in which the first term is traceless and the other terms 
are linear combinations of Kronecker's <5-tensors. 

The following theorem of Krupka gives the solution ([4]): 
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Theorem 1 Let p,q,n positive integers, p < q and A = [A^'jj G T*E. 

There exist a traceless tensor B = (B\1'\A G T£E and tensors B\ 
\ Jl-.-JqJ H \ 

(-'Wifii'.'fci) € T^B> where l<r<P,l-<s<q, such that: 

>) 

,h...ip _ RH-..«p , i-ij R ( l ) i 2 . . . i p . rti R(l)*2.-.Jp | . rii R(l)i2.-.«p 
Aix...i, - -*ii-i, + 6hB(i)h-h + dhB(2)hh-h + ••• + dhB(i)h-h-i 

i £*2 p(2)*i*3---*p | r i2 D(2)*I*3-- -*P I | r i2 D ( 2 ) * I * 3 - - * P 

+ 0h"{l)J2...jq + 6J2B(2)hh...Jq +'" + 6UB(q)jl...Jq-l 

, r*P D ( P ) * I - * P - I I r*P D ( P ) * I — * P - I . i J\{P D ( P ) * I - - - * P - I 

+ 6hB(l)h...iq + dhB(2)jlJ3...jq +'"+ 5JqB(q)jl...Jq-l' 

The tensor B is unique. 

Let us note that Krupka's results are generalized by J. Mikes in [5], [6]. 
In the following let us restrict to the case p = 1; let us remark that this fact 

does not restricts the generalization because, usually, we work with a fixed scalar 
product on E (see the demonstration of the theorem 1 in [4, p. 306]) and then 
we low supplimentary indices with musical isomorphisms (see also the example 
were we work on a fixed Riemannian manifold). For this case the relation above 
becomes: 

An-h = Bh-h + 5hBWh-h +••• + 5iB(,)h-h-i- (1) 

If we make the contraction ( l , s ) , 1 < s < q in (1), using the traceless of B it 
results: 

J^jl...j3-iaja + l...jq ~ -B(l)J2..-J3-ljlJ3 + l.-.jq + • • • + ^(s-l)j1...j3-2J3-lJ3 + l...jq 

+ n-^(s)jl...j3-lJ3 + l...jq + -H(s+l)jl...js-ljs + ljs + 2...jq + • • • + £>(q)j1...ja-1jqja + 1...jq-1 

(2) 
i.e. we obtain a linear system in unknowns B(sy Then we have: 

Proposit ion 1 The tensors B(s), 1 < s < q, are linear combinations of the 
contractions of A. 

2 Trace decomposition and /c-recurrent spaces 

Our next framework consists in a pair (M, V) where M is a smooth n-dimensional 
manifold and V is a linear connection on M. Let us denotes C°°(M) the ring 
of real-valued functions on M, T£(M) the linear space of tensor fields of type 
(p,q) on M, Qk(M) the C°°(M)-module of k-differential forms on M. 

Recall that for a natural number fc, 1 < k < n, a tensor field A e T£(M) is 
called k-recurrent with respect to V (if A is a Riemannian tensor then see [2]) 
if there exists to G flk (M) such that: 

Vxk...Vx1A = u(X1,.::\Xk).A (3) 
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for all Ki,..., Xk G TQ1 (M) = X (M)= the C°° (M)-module of vector fields on 
M. In a local chart (3) reads: 

^:::5:.i1...ifc = «'i-u4:::S: w 
where "," denotes the covariant derivative with respect to V. We call LU the 
k-form of recurrency for A. If in (4) we make the contraction (r, s) then: 

jii ... ir_iair+i ... ip __ A\ ... i r _ i a i r + i ... ip /~\ 
^ ' i ... j a _ i a j s + i ...jq , /i ...Zfe ~~ Uh ••Afc / iii . . . i a _ia j i a + i ... jg V°j 

i.e. it follows: 

Propos it ion 2 If A is k-recurrent then every contraction of A is k-recurrent 
with the same form of recurrence. 

Then propositions 1 and 2 yields: 

Propos it ion 3 Let M be a n-dimensional manifold and A G T^(M) with q < 
n. If A is k-recurrent then the tensors L?(s) from (1) are k-recurrent with the 
same form of recurrence. 

Because the recurrency is preserved by sum and obviously the Kronecker 
tensor is parallel (so k-recurrent with tu = 0) we obtain the main result of the 
paper: 

Propos it ion 4 Let M be a n-dimensional manifold and A G T^(M) with q < 
n. If A is k-recurrent then the traceless part of A is k-recurrent with the same 
form of recurrence. 

Appl ica t ions Let g = (g^-) be a Riemannian metric on M and R = \R)ki) ^ 
P3 (M) the curvature tensor of g. The Riemannian space (M,g) is called k-
recurrent space if R is k-recurrent and is called k-symmetric space if R is k-
recurrent with to __ 0 (see [2]). In [4, p. 314] it is proved that the traceless part 
of R is exactly the Weyl projective curvature tensor and the traceless part of 
Rkl = g3SRski is exactly the Weyl conformal curvature tensor. Applying the 
proposition 4 we get: 

Propos it ion 5 In a k-recurrent (particularly k-symmetric) space the Weyl pro­
jective curvature tensor and the Weyl conformal curvature tensor are k-recurrent 
(particularly k-symmetric) with the same form of recurrence as the curvature 
tensor. 

In [5, p. 50] it is proved that the traceless part of the Ricci tensor is exactly 
the Einstein tensor. Also, is it used the notion of Ricci k-recurrent space as a 
Riemannian space with the Ricci tensor k-recurrent. Therefore: 

Propos it ion 6 In a Ricci-recurrent space the Einstein tensor is k-recurrent 
with the same form of recurrence as the Ricci tensor. 
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