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Abstract

In this paper we introduce a concept of topological essentiality for mul-
tivalued weighted mappings. Topological essentiality can be defined on a
large class of mappings than topological degree. Topological essentiality
was systemmaticaly studied in [5], [8], [6], [15].
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0 Introduction

First we recall some well known notions and introduce necessary notations. All
the considered topological spaces are assumed to be metric. A space X is called
an absolute retract (X € AR) if for each space Y and for any homeomorphism
h: X — Y such that h(X) is a closed subset of Y, the set h(X) is a retract of
Y’; that is, there exists a continuous map r : Y — h(X) such that r(y) = y for
every y € h(X).

Let X and Y be two spaces and assume that for every point z € X a
nonempty finite subset ¢(z) of Y is given; in this case we say that ¢ : X — Y
is a multivalued map. The symbol f : X — Y is reserved for singlevalued
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132 Robert SKIBA

mappings. A multivalued map ¢ : X — Y is called upper semicontinuous
(u.s.c.) or lower semicontinuous (l.s.c.) provided for any open V C Y the set

e (V) ={z e X|p(z)CV}

or the set

e (V) = {z € X | p(a) NV #0},
respectively, is open. We say that ¢ is continuous when it is both ls.c. and
u.s.c.. See [7] for more details concerning multivalued mappings.

We shall say that two mappings ¢,? : X — Y have a coincidence if there
exists a point z € X such that ¢(z) Ny(z) # 0.

This paper is organized as follows. Section 1 is devoted to weighted map-
pings. In section 2 we give the definition and the most important properties of
topological essentiality for w-maps. Section 3 is concerned with applications of
the topological essentiality.

1 Weighted mappings

Definition 1.1 A weighted mapping from X to Y with coefficients in a com-
mutative ring with unity Q (or simply a w-map) is a pair ¢ = (0, w,,) satisfying
the following conditions:

® 0,: X — Y is a multivalued upper semicontinuous mapping;

e w: X XY — Qis a function with the following properties:

— wy(z,y) =0 for every y € o,(x);
— if U is an open subset of Y and z € X is such that o,(z) N OU = 0,
then there exists an open neighbourhood V' of the point z such that

z we(z,y) = Z wy(2,Y),

yeU yeU

for every z € V.

Note 1.1 For our comfort a multivalued weighted mapping from X to Y, i.e.
¢ = (0p,w,), we shall denote by ¢ : X — Y. So, by ¢(z) we shall mean
o,(z) for every z € X. The mapping o, from the above definition will be
called a support of . By a weight of ¢ we shall understand a function w,, i.e.
w, 1 X XY = Q. Moreover, each continuous map f : X — Y can be considered
as a weighted one by assigning the coefficient 1 to each f(z).

Now we shall give some examples of weighted maps.

Example 1.1 Let ¢ : X — Y be a continuous map such that for all z € X
@(x) consist of 1 or exactly n points (with n fixed). A weight w, : X xY — Z
we define by the formula:

0 ify¢ ()

wy(z,y) =< n if {y} = p(2)
1 otherwise.
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It is easy to see that a pair ¢ = (0, = ¢, w,,) is a w-map.

Example 1.2 let f: X — SP"Y be a singlevalued map and let II : SP"Y —o
Y be a multivalued map which is defined by

T(zh - zhe) = {2, 24},

where SP"Y denotes the n-th symmetric product of ¥ and T;” -~ zks denotes
an equivalence class in SP™Y (see [11]). Then f induces a w-map ¢ = (0, wy),
where

0p: X —Y and wy,: X xY =17

are defined as follows:
0p(@) = Tlo f(z)
and
ki ify€o,(a)
w”%y”‘{o if y & 0,(z).

Now we recall the notion of the w-homotopy.

Definition 1.2 Let ¢ : X — Y and ¢ : X — Y be w-maps. We say that ¢ is
w-homotopic to ¥ (¢ ~ ) if there exists a w-map H : X x [0,1] — Y such
that:

wH((sz)vy) = wtp(r7 y)
and
U)H((.’L',l),y) = wd)(mvy)'

Let us underline that we do not demand in order to
ou(z,0) = o,(z) and ou(z,1) = oy(z).
Below we shall list important and well ! iown properties of w-maps.

Proposition 1.1 If,¢ : X — Y are w-maps, then ) U@ = (0yuyp, Wyuep) 18
also one, where

Opup X — Y and wyup: X xY - Q
are defined by the formulas:
Tyue(T) = oy(z) Uo,(z)

and
. 1U¢U¢(:lt,y) =w¢($,y) +ww(m,y),
for everyz € X andy €Y.
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Proposition 1.2 If o : X — Y is a w-map and X € Q, then Ap = (0ry, Wry)
is also one, where

oxp (@) = 0p(x)  and wi,(z,y) = X-wy(z,y),
for everyz € X andy €Y.

Proposition 1.3 If1): X — Y and ¢ : Y — Z are w-maps, then pop : X —o
Z is a w-map, where its support opoy is the composition of o, and oy and a
weight Weoy @ X X Z — ) is defined by the formula:

wgpo’l/)(mvz) = Z UJ¢(£E,y) . ww(yaz)v
yey

for every x € X and z € Z.

Proposition 1.4 If p : X1 — Y] and ¢ : Xy —o Y are w-maps, then ¢ X ¢ =
(Tpxy, Woxy) is also one, where

wad,ZXlXJYz—O)/lX}/z

and
Wexy (X1 x X2) x (Y1 xY2) = Q

are defined as follows:
UWX’J/(J‘-17$2) = o'(p(zl) X O'zp(xz)

and
wwxw((xl,mz), (yl>y2)) = ww(xl,yl) : ww(ﬂ?z,yz),

for every x1 € X1, xo € Xo, y1 €Y1, y2 € Y.

Now we shall consider some algebraic properties of w-maps. They will play
a crucial role in topological essentiality.

Definition 1.3 Let E be a normed space and let ¢, p : X — E be two w-maps.
By ¢ + ¢ : X — E we shall understand a pair 9 + ¢ = (0y+4p, Wy+,), Where

Optp: X — E and wyiy: X X E—
are defined as follows:
Outp(a) = {u+v | u € P(z) and v € p(a)};

Wyt (T, u) = wa(x,u —e) - wy(z,e).
ecE

Due to our definition we obtain the following:

Proposition 1.5 The above pair 1 + ¢ = (0y4p, Wyty) S @ W-map.
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Proof It is sufficient to show that ¥+ ¢ can be represented as the composition
of some w-maps. Let

A:X - X xX, fExE—=E

be w-maps, where
A(z) = (z,2), flu,v) =u+w,
for every z € X, u,v € E. From Proposition 1.3 and 1.4 it follows that
fo(xp)oA

is a w-map. We show that ¢ + ¢ = f o (¢ x ¢) o A. Indeed, it is not difficult
to see that

Tyt () = Tfo(yxp)on(®):
Now, it remains to show that for every x € X, u € E

Wyt (T, U) = W(fo(yxp))on (T, ).

So, let z € X and u € E, then

W(so(pxp)on (T,u) =

= > wale, (@1,72)  Wie(yxe) (21, 32), 1)
(ml,mg)eXxX
’LUA(iL', (Zl?, :17)) . wfo(wxw)((xv 11}), U)

L [ Z 'U)f((61,62),’u)'wd,X¢(($,m),(€1,€2))]

(e1,e2)EEXE

Il

’LUw(IL’,el) : ww($,€2),
(e1,e2)€f~1(u)

because (er,e2) € f7!(u) if and only if e; + e; = u. Consequently

= Z ww(ac,u — 6) . wcp(w>e)'

eclEl

This completes the proof. o

Definition 1.4 Let E be a normed space and let ¢, ¢ : X — E be two w-maps.
By ¥ — ¢ : X — E we shall understand a pair ) — ¢ = (0y—¢, Wy—y), Where

Op—p: X —oFE and wy_,: X xE—=Q
are defined as follows:
oy—p(x) = {u—v|u€P(z)and v € p(z)};

Wy—p(T,u) = Z wy(z,u + €) - wy(z,e).
e€EE
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Now, reasoning exactly as in the prootf of Proposition 1.5 (of course, a func-
tion [ : E x EE — E we have to define by the formula: f(u,v) = v —v) we
obtain:

Proposition 1.6 A pair ) — ¢ = (0y—, Wy—yp) i ¢ w-map.

Definition 1.5 Let E be anormed spaceand ¢ @ X — Eandlet s : X — Rbea
continous function. By s¢ : X' —o [E we shall understand a pair s = (044, wse),
where

Osp 0 X —E and wsp : X X E = Q

are defined as follows:

Tsp(r) = {s(x)u | v e p(x)}

and

71@(1“(“7)) if s(z) #0
Wep(x,u) = Yoecr Wolx,e) if s(z) =0, u=0
0 if s(x) =0, u#0.
Now we shall prove the following:
Proposition 1.7 A pair sp = (05,,Ws,) defined above is a w-map.
Proof We show that
sp=fo(sxp)ol,

where f: R x E — E is defined by the formula:

flaye) =a-e,
for every a € R, e € E. We can easily verify that

Usw(m) = O’/o(sxw)oA(m)'
To complete the proof of the proposition, it suffices now to prove that for any
reXN,uelk
Wro(sxp)or (T,1) = weyp (2, u).

Indeed, let z € X and u € E, we obtain

Wo(sxp)on (T,u) =

= Z WA (2, (%1, 22) )W ro(sx ) (71, T2),u)
(w1,52)EX XX

= wa (2, (2, 2))Wro(sxy) (T, ), u)

Z wexp((2,2), (a,e))wy((a,e),u)

(a,e)ERXE

Z ws (2, 0wy (z, e)ws((a,e),u)

(a,e) ERXE

(%) = Zws(:t,s(ﬂ:))w(p(n e)wyr((s(x), e),u) =

eclk

Il
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Now we distinguish three cases:
Case 1 (s(z) #0) Then we get

because f((s(z),e)) = u if and only if e = T
Case 2 (s(x) = 0,u = 0) Let us observe that s(z)-e = u holds for all ¢ € E.
Therefore

(%) = Z’H}v(.’ﬁ,(I)’lu/((h‘(:l,‘),(:‘),U) = Z'mw(m,c)‘

[gad eclE

Case 3 (s(z) = 0,u # 0) Since s(z)e = u does not hold for any e € E, we
get that

(x) = Z wy(x,e) -0 =0.

ecl

This ends the proof. O

Remark 1.1 Let ¢, : X — E be two w-maps. It is easy to see that the
following equation:

Wepyp (T,1) = we (T, uw) + wy (2, u)
is not, true in general.
Let us recall now the notion of the index of the w-map.

Definition 1.6 Let ¢ 1 X' —o Y be a w-map and let a space X be connected.

Then the sum
E we(x,Y)
yey

is called the index of the weighted mapping, where 2z € X. We shall denote it
by I,(¥).

Remark 1.2 The above definition is correct because the sum

Z wy(z,Yy)

v
does not depend on z € X if the space X is connected (see lemma 2.3 in [9]).
Proposition 1.8 The above index has the following properties (see [10]).

(a) If o, : X — Y are w-homotopic, then

Im(‘p) = Izu('l/))-
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) If o : X =Y and ¢ : Y — Z are w-maps, then
Ly( o) = Iu(¥) - Lu(e)-
(c) If o : X1 — Y] and ¢ : Xy —o Yy are w-maps, then
Ly (¢ x §) = Ly(p) - Luw(¥)-
(d) If f : X =Y is a continuous map, then I,(f) =1 (see Note 1.1).

In view of the above Propositions we obtain:

Proposition 1.9 Let ¢, : X — E be two w-maps and let s : X — R be
continuous map. Then:

(a) Tu(p + ) = Lu(p) - Lu(¥);

(b) Tu(p =) = Lu(p) - Lu(¥);

(¢) Tu(s- @) =Tu(p).

Finally this section, we recall the Schauder fixed point theorem for w-maps.

Theorem 1.1 If X € AR, then any w-map ¢ : X —o X with [,(v) # 0 has a
fized point.

2 Topological essentiality

-Now we are in a position to define a notion of topological essentiality for weighted
mappings. In what follows E,F are two real normed spaces and U is an open
connected bounded subset of E. By U we shall denote the closure of U in E.
From now on we consider only w-maps ¢ with I,,(¢) # 0. Moreover, we assume
that 2 is the field. We let:

Woy(U,F) = {p:U —F | ¢ is aw-map and 0 ¢ ¢(9U)};
Wc(U,F) = {¢: U — F| ¢ is a w-map and compact};
Wo(U,F) = {¢:U —F|p € Wc(U,F) and p(z) = {0} for every z € U}

Definition 2.1 A w-map ¢ € Way(U,F) is called essential (with respect to
Wo(U, F)) provided for any 1 € Wy (U, F) there exists a point z € U such that
e(z) NP(z) # 0.

Let us observe that if E = I then the notion of essentiality can be rein-
tepreted as Z, topological degree. We give now some examples of essential
w-maps.
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Example 2.1 Let ¢ € Way(B, R), where B is an open ball at 0 € E with radius
r > 0. If there exist zg,z1 € OB such that

u <0 forevery u € ¢(zo)

and
v >0 for every v € p(z1),

" then ¢ is an essential w-map.
To see this, we shall need the following lemma:

Lemma 2.1 ([1]) Let ¢ : [a,b] — R be a w-map from the interval [a,b] to R
with I,(p) # 0. Suppose that p(a) C R™ and ¢(b) C RT. Then 0 € p(z) for
some z € [a, b].

Let 1) € Wo(B,R) and suppose to the contrary that ¢(z) N(z) = @ for
every z € B. We define 7 : B — R by the formula:
n(z) = ¢(z) — ¥(z).
In view of Proposition 1.6 and 1.9 we obtain that 7 is a w-map with 1,,(n) # 0.
Moreover, 0 ¢ n(z) for every z € B. Let v : [0,1] — B be a path between zg
and z; and let 7] = no~. It is easy to see that 7 has the following properties:
(a) 7 is a w-map with I,(n) #0,
(b) 7(0) C R™ and (1) C RY,
(c) 0¢7q(z) for every z € [0,1].
But this contradicts Lemma 2.1. This ends the proof of essentiality of (.
Example 2.2 (Essentiality ofllomeomorphisnl) Let U be an open and
bounded subset of E such that U € AR and let f : U — f(U) be a homeo-

morphism such that f(U) is a closed subset of F. In addition assume that f(U)
is an open subset of F and 0 € f(U). Then f is an essential w-map.

_Indeed, let 1) € Wo(U,F). Since f(U) € AR there exists a retraction 7 : F —
f(U). Let us denote by g: f(U) = U an inverse function of f. Consider

B={zecU|f(z)€ (t ¥(zx)) for some ¢t € [0,1]}.

It is easy to see that B is closed in U and nonempty (since 0 € f(U)). Let
s : F — [0,1] be an Urysohn function such that s(y) = 1 for y € f(B) and
s(y) =0fory € F\ f(U). A definition of s is correct because f(B) is closed in
F and f(B) C f(U). Define n : F — F by the formula:

n(y) = s(y)¥(g(r(y))),

for every y € F. It is easy to see that 7 is a compact w-map. Moreover,
I,(n) # 0. Indeed,

Ly(n) = Tw(sovogor) = I,(s)Ly(¥) L(g)Lw(r) = 1 Iy(3) - 1- 1 #0.



140 Robert SKIBA

Hence, in view of Theorem 1.1, we have a fixed point: y € n(y). fy € F\ f(U),
then s(y) = 0 and y = 0 but 0 € f(U) so we get a contradiction. Therefore
we deduce that y € f(U). It follows that there exists a point z € U such
that f(z) = y. Consequently f(z) € s(f(z))¢(z). Then 2 € B and hence
f(z) € ¥(x). This completes the proof of essentiality of f. In particular we
obtain:

Example 2.3 (Essentiality of linear isomorphism) Let L : E — F be a
continuous linear isomorphism and let U be an open bounded subset of the
origin in E such that U € AR. Then the restriction L : U — F of L to U is
essential.

Let us enumerate several properties of the topological essentiality.

Proposition 2.1 (Existence) If ¢ € Woy(U,F) is essential, then there exists
x € U such that 0 € p(z).

Proof Indeed, let ¢ : U — F be defined by the formula: 9 (z) = 0, for every
z € U. It is easy to see that ¥ € Wy(U,F). Now our claim follows from
Definition 2.1. O

Proposition 2.2 (Compact perturbation) If ¢ € Wyy(U,F) is essential
and n € Wo(U,F), then ¢ +1n € Wou(U,F) is an essential w-map.
Proof Let ¢ € Wy(U,F) and consider the map ¢, : U — F given by
Pi(z) = (z) —n(z).
In view of Proposition 1.6 we get that 1; is a w-map. Moreover, it is easy to

see that ¢1 € Wo(U,F). Since ¢ € Way(U,F) is essential, there exists a point
z € U such that:

p(z) Nihr(z) # 0.

Hence we obtain that there exists a point z € U such that

(p(z) +n(2)) Np(z) # 0.

This completes the proof. o

Proposition 2.3 (Coincidence) Assume that p € Wou(U,F) is an essential
w-map and n € We(U,F). Let

B={zcU| )N (tn(x)) # 0 for some t € [0,1]}.

If B C U, then ¢ and n have a coincidence.
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Proof First observe that the essentiality of ¢ implies that B is nonempty.
Moreover, it is easy to see that B is closed. Let s : U — [0,1] be an Urysohn
function such that s(z) = 1 for 2 € B and s(z) = 0 for = € JU (we recall that
due to our assumption: BN AU = §). We define the w-map ¢ : U — F as
follows:

() = s(a)n(x),

for every z € U. It is clear that v € Wo(U, F) and since ¢ is an essential w-map
we get that for some 2y € U:

e(zo) N (s(zo)n(zo)) = p(xo) N(x0) # 0.
This implies that 29 € B and hence s(zp) = 1. Consequently, we get:
@(x0) N1(xo) # 0.
This completes the proof. 0O

Proposition 2.4 (Normalization) Assume that 0 ¢ OU, U € AR. Then the
inclusion map is an issential w-map if and only if 0 € U.

Proof (=) It follows immediately from the existence property.
(<) Let ¢ € Wy (U, F). Define the set B as follows:

B={xeU|ze (t(z)) for some t € [0,1]}.

Then B is a closed nonempty subset of U such that 0 € B and B ¢ U. We
consider an Urysohn function s : E — [0, 1] such that s(z) = 1 for z € B and
s(z) = 0 for E\U. Since E D U € AR, there exists the retraction map r : E — T.
Next, let ¢ : E — E be defined as follows:

In view of Proposition 1.3 and 1.7 we obtain that ¢ is a w-map with I,,(¢) # 0.
Hence the Schauder fixed point theorem implies that ¢ has a fixed point; i.e.
there exists zo € E such that z¢ € p(z¢). If 2o ¢ U, then s(z¢) =0 and zo =0
but 0 € U so we get a contradiction. Hence we obtain that zop € U. Therefore

zo € s(xo)p(z0)-
So, ¢¢p € B and hence zp € (zo). This completes the proof. O
Proposition 2.5 (Localization) Let ¢ € Wyy(U,F) be an essential w-map.

Assume that V is an open subset of U such that ¢;'({0}) C V and V € AR.
Then the restriction ol of v to V is an essential w-map.
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Proof It is easy to see that |y is a w-map. Next, from the existence property
it follows that <pjr1({0}) is nonempty. Let ¥ € Wy(V,F) and let A be defined
as follows:

A= {z €V |p()n (t(z)) # 0 for some t € [0,1]}.

It is clear that A C V. Again let s : U — [0,1] be an Urysohn function such
that s(z) = 1 for # € A and s(z) = 0 for = ¢ V. Since V € AR, there exists the
retraction 7 : U = V such that 7(y) = y for every y € V. We define the map
7 : U —o I by the formula:

n(z) = s(z) -b(r(z)),

for every z € U. In view of Proposition 1.3 and 1.7 we get that 7 is a w-map.
Obviously n € Wo(U, F). Since ¢ is essential, there is a point 2o € U such that

@(z0) Nn(zo) # 0.
It is easy to see that zo € V. Consequently
s(zo) =1 and r(zo) = xo

and hence

elmv(@o) N(zo) # 0.
This completes the proof. O
Proposition 2.6 (w-homotopy) Let ¢ € Woy(U,F) be an essential w-map.
IfH:U x [0,1] — F is a compact w-map such that:
(i) H(z,0) = {0} for every x € 0U, -
(ii) {zx € U| p(z) NH(z,t) # 0 for some t € [0,1]} C U.
Then the map p(-) —H(-,1) is an essential w-map.

Proof First let us observe that from the compact perturbation property we
get that ¢(-) — H(-,0) is an essential w-map. Let ¢ € Wo(U,F). We let:

B={z€U]|p)n @)+ H,t)) #0 for some t € [0,1]}.

Since (¢(-) + H(-,0)) € Wo(U,F) and ¢ is an essential w-map we obtain that B
is a nonempty closed subset of U. It is clear that B C U. Let s : U — [0,1] be
an Urysohn function such that s(z) = 1 for € B and s(z) = 0 for z € 0U. We
define i : U — F as follows:

n(z) = () + H(z, s(z)).

Notice that 7 is a w-map and n € Wo(U,F) (see section 1). Since ¢ is essential,
there exists a point xo € U such that

@(wo) Nn(zo) # 0.
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Notice that zg € B and therefore

@(z0) N (Y(x0) + H(zo, 1)) # 0.

Consequently

(¢(zo) — H(wo, 1)) N1p(xo) # 0.

This completes the proof. O

Proposition 2.7 (Continuation) Let ¢ € Wyy(U,F) be an essential w-map.
Assume that ¢ is proper, i.e. w;l(K) is compact for every compact K C F.
Assume further that n: U x [0,1] — F is a compact w-map such that n(z,0) =
{0} for every x € OU. Then there exists € > 0 such that the mapping p(-) —
n(-,A) : U — F is an essential w-map for every X € [0,¢).

Proof According to the w-homotopy property it is sufficient to show that there
exists € > 0 such that:

w(x) Nz, A) =0,
for every A € [0,¢) and = € QU. This condition it is easy to verify by contra-

diction. So, suppose to the contrary that for every € > 0 there exists X € [0,¢)
and z € 90U such that

p(x) Nz, A) # 0.

Let €, = 1, n =1,2,... Then there exist sequences x,, ¥, A, such that:
n

1 .
An € [07 ’-f;)’ Yn € g&(l’n) n"}(xny)\n) # (0, Tn € 8U,

for n = 1,2,...Since ¢ is compact and proper we may assume without loss of
generality that

limz, =z0 € U and limy, = yo.

It is clear that lim A,, = 0. In view of the upper semicontinuity of ¢ and n we
get that yo € p(xo) and yo € 1(x0,0). But n(zo,0) = {0} because zo € IU.
Consequently yo = 0 and hence 0 € ¢(z¢)—a contradiction. This completes the
proof. Proof

3 Applications

The topological essentiality has many applications in fixed point theory, analysis
and other fields. In this paper we give a few examples.

Proposition 3.1 Let p € Woy(U,F) be an essential w-map and proper. If D
is connected component of F\ ¢(0U), which contains 0, then D C ¢(U).
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Proof The set ¢(0U) is a closed subset of F, because any proper map is

closed. Let v € . We shall show that v € ¢(U). Since F\ ¢(0U) is open, its
components are open, and for open set in F connectedness is the same as arcwise
connectedness. So, let o : [0,1] — D be a continuous curve with ¢(0) = 0 and
(1) = v. Define w-homotopy 7 : U x [0,1] — F by the formula:

n(z,t) = o(t),

for every (z,t) € U x [0,1]. Now we can apply the w-homotopy property to
deduce that:

¢()=n(,1):Ux[0,1] = F

is an essential w-map. Notice that

p(@) = n(z,1) = p(z) - {v},

for every z € U. Hence from the existence property we obtain that v € @(U).
This ends the proof. O

Proposition 3.2 Let ¢ € Wyoy(U,F) be an essential w-map and p € W (U, F).
If o(z)Np(z) = O for every x € OU, then at least one of the following conditions
holds:

(1) there exists x € U such that (z) N(z) # 0;
(2) there exists A € (0,1) and x € OU such that o(z) N (Ap(x)) # 0.

To see this it is enough to apply the w-homotopy property for ¢ and v,
where H(z,t) = t -4(z) for z € U and t € [0,1]. Let us observe that if E = F,
then from the above Proposition and the normalization property we obtain the
following:

Proposition 3.3 (Nonlinear alternative) Let v € W¢(U,F) and 0 € U,
then at least one of the following conditions is satisfied:

(1) Fiz() #9, _
(2) there exists x € OU and A € (0,1) such that z € Mp(x).
Finally we would like to underline that also some other results remain true.
For example we can prove the version of the Birkhoff-Kellogg theorem and

Borsuk’s theorem on antipodes. The proofs are similar to those obtained using
the topological degree technique and therefore we leave them to the reader.
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