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Abstract 

In this paper we introduce a concept of topological essentiality for mul
tivalued weighted mappings. Topological essentiality can be defined on a 
large class of mappings than topological degree. Topological essentiality 
was systemmaticaly studied in [5], [8], [6], [15]. 
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0 Introduction 

First we recall some well known notions and introduce necessary notations. All 
the considered topological spaces are assumed to be metric. A space X is called 
an absolute retract (X G AR) if for each space Y and for any homeomorphism 
h : X —> Y such that h(X) is a closed subset of Y, the set h(X) is a retract of 
Y; that is, there exists a continuous map r : Y -> h(X) such that r(y) = y for 
every y G h(X). 

Let X and Y be two spaces and assume that for every point x £ X a 
nonempty finite subset <p(x) of Y is given; in this case we say that <p : X —<> Y 
is a multivalued map. The symbol / : X -> Y is reserved for singlevalued 
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132 Robert SKIBA 

mappings. A multivalued map ip : X —o Y is called upper semicontinuous 
(u.s.c.) or lower semicontinuous (l.s.c.) provided for any open V C Y the set 

ip-\v) = {xex\ip(x) cv} 

or the set 
^l(V) = {xex\ip(x)f)V^$}, 

respectively, is open. We say that <p is continuous when it is both l.s.c. and 
u.s .c . See [7] for more details concerning multivalued mappings. 

We shall say that two mappings (D, ip : X —o Y have a coincidence if there 
exists a point x G l such that (p(x) fl ip(x) 7- 0. 

This paper is organized as follows. Section 1 is devoted to weighted map
pings. In section 2 we give the definition and the most important properties of 
topological essentiality for w-maps. Section 3 is concerned with applications of 
the topological essentiality 

1 Weighted mappings 

Definition 1.1 A weighted mapping from X to Y with coefficients in a com
mutative ring with unity Q, (or simply a uj-map) is a pair ip = (O^, w^) satisfying 
the following conditions: 

• ay : X —o y is a multivalued upper semicontinuous mapping; 

• w; : I x 7 -> 0 is a function with the following properties: 

- w(p(x,y) = 0 for every y g a(p(x); 
- if U is an open subset of Y and x G X is such that aip(x) 0 dU = 0, 

then there exists an open neighbourhood V of the point x such that 

yeu yeu 

for every z G V. 

N o t e 1.1 For our comfort a multivalued weighted mapping from X to Y, i.e. 
ip = (O^,^;^), we shall denote by ip : X —o Y. So, by ip(x) we shall mean 
o<p(x) for every x G X. The mapping a^ from the above definition will be 
called a support of ip. By a weight of ip we shall understand a function uj^, i.e. 
Wp : X x y —> fi. Moreover, each continuous map f : X -^ Y can be considered 
as a weighted one by assigning the coefficient 1 to each f(x). 

Now we shall give some examples of weighted maps. 

Example 1.1 Let ip : X -o Y be a continuous map such that for all x G X 
ip(x) consist of 1 or exactly n points (with n fixed). A weight w^ : X x Y —> Z 
we define by the formula: 

0 if y fí ҷ>(x) 
n if {y} = ҷ>(x) 
1 otherwise. 
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It is easy to see that a pair ip = (O^ = (D, w^) is a w-map. 

Example 1.2 let / : X -> S P 7 ^ be a singlevalued map and let II : S P n Y -o 
Y be a multivalued map which is defined by 

n(.Lf -•xk/) = {xu...,xa}, 

where SPnY denotes the n-th symmetric product of Y and x\l • • • x{?s denotes 
an equivalence class in SPnY (see [11]). Then / induces a iv-map ip = (O^/u;^), 
where 

o^ : X —o y and m^ : Ar x y —» Z 

are defined as follows: 

and 

w^x>V>-\0 ify?<rv(x). 

Now we recall the notion of the iv-homotopy. 

Definition 1.2 Let ip : X —o Y and ip : X —o Y be uj-maps. We say that (D is 
uj-homotopic to ^ (</? ^ ^ ^) if there exists a uj-map Hi : X x [0,1] —o Y such 
that: 

wH((x,0),y) = w<p(x,y) 

and 

wH((x,l),H) =wff,(x,y). 

Let us underline that we do not demand in order to 

crm(x,0) = O^(x) and <TH(£, 1) = cr^(x). 

Below we shall list important and well known properties of uj-maps. 

Propos it ion 1.1 If if>,(p : X —° Y are w-maps, then ip U ip = (O^u^'^u*/?) is 
also one, where 

a^U(f : X ~o y ana7 iv̂ u<p ' K x y -> 0 

are defined by the formulas: 

°il>\jip(x) = ^vXx) U ^ ( x ) 

ana7 

w^u<p(x,y) =w^(x,y) + w(p(x,y), 

for every x e X and y eY. 
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Proposit ion 1.2 If (D : X —o Y is a w-map and A G 0 , then A(D = (OA</>,̂ A )̂ 
is also One, where 

crxtp (x) = o> (x) and wA(/? (#, y) = A • w<p (x, y), 

for every x G l and y £ Y. 

Propos i t ion 1.3 If ip : X —o Y and cp : Y —o Z are w-maps, then ipoip . X —o 
Z is a w-map, where its support Ocpo^ is £/ze composition of a^ and a^ and a 
weight w^oip ' X x Z —» Q is defined by the formula: 

w(p0^(x,z) = 22^(XJV) "w<p(y,z), 
y£Y 

for every x G X and z G Z. 

Propos i t i on 1.4 If ip \ X\ —oY\ and tp \ X2 —o Y2 are w-maps, then ip x ip = 
(o~ipxip^lpxip) is also one, where 

o-yxip ' Xi x X2 -o Yi x Y2 

and 
w^pxip : (Xi x X2) x (Yi x Y2) -+ 0 

are defined as follows: 

o-^px^(xi,x2) = O^^i) x a^(x2) 

and 
^ x ^ ( ( ^ i , x 2 ) , (2/1,2/2)) =u)(p(xuy1) •wi,(x2yy2)1 

for every xx G Ki, x2 G K2, y\ G Yi, 2/2 G Y2. 

Now we shall consider some algebraic properties of w-maps. They will play 
a crucial role in topological essentiality. 

Defini t ion 1.3 Let E be a normed space and let ip, ip \ X —o E be two w-maps. 
By ip + (p \ X —o E we shall understand a pair ip + ip = (O^+< ,̂ H;^,+(/?), where 

O^+^ : I ^ > £ and w^,+v? : X x E -» 0 

are defined as follows: 

O^+^(x) = {u + v I u G V>(#) a n d v G (D(x)}; 

uj^+v?(x,u) = X ^ ^ x , u ~~ e) ' ^V(x>e)-
eGE 

Due to our definition we obtain the following: 

Propos it ion 1.5 TTze above pair ip + ip = (O^+^^^+y?) is a w-map. 
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Proof It is sufficient to show that 0 + <D can be represented as the composition 
of some i/j-maps. Let 

A : X -> X x X, f :ExE-±E 

be uj-maps, where 

A(x) = (XVT), /(w,v) = u + L», 

for every x G X, u,D G E. From Proposition 1.3 and 1.4 it follows that 

/ o (-0 X (D) o A 

is a t/j-map. We show that i/> + <D = / o ( ' 0 x < D ) o A . Indeed, it is not difficult 
to see that 

Now, it remains to show that for every x G X, u G F 

uj^,+V3(a:,u) = W(/O(I/;X</>))OA0E,W). 

So, let a: G X and u G F, then 

^ ( / o ^ x ^ j o A f e ^ ) = 

= ] C ^A(-C, (a:i,x2)) •^ /o(^x(P)((^i^2),w) 

= WA(X, (x,x)) 'Wfo^X(p)((x,x),u) 

= l - [ Y2 w/((ei ,e 2) ,u) *^xv,((a:,x),(ei,e2))J 
(ei,e2)€ExE 

= Y^ wxj,(x,ei)'Wip(x,e2), 
(ei,e2)e/~1(w) 

because (ei,e2) G f~x(u) if and only if ex + e2 = u. Consequently 

= Y2w7j,(x,u-e)'Wip(x,e). 
eeE 

This completes the proof. ---

Definition 1.4 Let £ be a normed space and let 0, <D : X —o F be two uj-maps. 
By t/j — (D : X —o 12 we shall understand a pair ip - ip = (O^-^, w^-cp), where 

O^_cp : X —o E and iv^-^ : X x E -> 0 

are defined as follows: 

a^-ip(x) — {u-v \u e ij>(x) and v G VKX)JS 

w^-ip(x,u) = ^ i i t y ( x , u + e) -w(p(x,e). 
eGE 
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Now, reasoning exactly as in the proof of Proposition 1.5 (of course, a func
tion / : E x E -» E we have to define by the formula: f(u,v) = u — v) we 
obtain: 

Propos it ion 1,6 i pair ip — ip = (o^-^^W-^-^) is a w-rnap. 

Definition 1.5 Let E be a normed space and ip : X —o E and let s : X —» E be a 
continous function. By sip : K —o E we shall understand a pair sip = (crS(p,wsip), 
where 

osp : X —o E and njS(/9 : X x E -> ft 

are defined as follows: 

vs<p(x) = {s(x)H | u G <D(x)} 

and 
r ^ ( x , ^ y ) i f s ( x ) / 0 

u;S(p(x,H) = < E e € E ^ ( x ' , e ) if s(x) = 0 , H = 0 
[ 0 if s(x) = 0, u ^ 0. 

Now we shall prove the following: 

Propos it ion 1.7 A pair sip = (oS(p,wS(p) defined above is a w-map. 

Proof We show that 
Sip = f o (s x ip) o A, 

where / : E x E —> E is defined by the formula: 

/ ( a , e ) = cr-e, 

for every a G E, e G E. We can easily verify that 

0"s<^(x) — c r /o (sxcp)oA( a : ) -

To complete the proof of the proposition, it suffices now to prove that for any 
x G K, u e E 

Wf0(sx<p)oA(xiU) = ? i jS ( p (x ,H ) . 

Indeed, let x G K and H G'E, we obtain 

= ^2 ^A (X, (.Xi, X2))wfo{sXip) ((.Xi, X2), U) 

(xux2)exxx 

= H;A (x, (x, x))uj/o(SXv?) ((x, x), H) 

^ wSX(p((x,x),(a,e))wf((a1e)1u) 
(a,e)GKxE 

= ^ ujs(a;,a)uj(/?(x,e)uj/((cY,e),u) 
(Q,e)ElRxE 

(*) = 7 ^ iv8(x, s(x))w(p(x, e)wf((s(x), e),u) = 
e<5E 
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Now we distinguish three cases: 
Case 1 (s(x) / 0) Then we get 

(•) = Ws(x,s(x))w(p (x, ^ ~ y j Wf U x ) , - ^ y j , U J = Wv \x, -—• . , 

because /((s(.T),e)) = H if and only if e = -fa. 

Case 2 (s(-c) = 0, H = 0) Let us observe that s(x) -e = u holds for all e G E. 
Therefore 

(•) = ^m^(.r,e)w /((,s(.x-),e),H) = ^ ^ ( x , e ) . 
eEE e€E 

Case 3 (s(x) = 0,u ^ 0) Since s(x)e = u does not hold for any e G E, we 
get that 

M = E u ' ^ x ' c ) - 0 = 0-
eGE 

This ends the proof. • 

Remark 1.1 Let ip,i/j : X —o E be two m-maps. It is easy to see that the 
following equation: 

wip+1p(x,u) = W(p(x,u) + w^(x,u) 

is not true in general. 

Let us recall now the notion of the index of the uj-map. 

Definition 1.6 Let tp : X —o Y be a iv-map and let a space X be connected. 
Then the sum 

yev 

is called the index of the weighted mapping, where x G X. We shall denote it 

by Iw(<p)-

R e m a r k 1.2 The above definition is correct because the sum 

y 

does not depend on x G X if the space X is connected (see lemma 2.3 in [9]). 

Proposition 1.8 The above index has the following properties (see [10]). 

(a) If tp,ip : X —o Y are w-homotopic, then 

Iw(<P) = IwW-
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(b) If <p : X —o Y and %p :Y —o Z are w-maps, then 

Iw(lp°P) = Iw(lp) -Iw(<P)-

(c) If <p : X\ —oYi and xj) : K2 —° Y<2 are w-maps, then 

Iw(<p x ip) = I^((D) - Iw(ip)-

(d) If f : X -> F 25 a continuous map, then Iw(f) — 1 fsee NO£e I.I/ 

In view of the above Propositions we obtain: 

Proposit ion 1.9 Let <p,xp : X —o E be two w-maps and let s : X -> R be 
continuous map. Then: 

(a) Iw(<p + xp) = /^((D) • 4 ; ( ^ ) ; 

(b) Iw(<p - ip) = J™((D) • JU;(^); 

^ Iw(s-<p) = JW((D). 

Finally this section, we recall the Schauder fixed point theorem for uj-maps. 

Theorem 1.1 If X € AR, then any w-map <p : X -o X with Iw(<p) ^ 0 has a 
fixed point. 

2 Topological essentiality 

Now we are in a position to define a notion of topological essentiality for weighted 
mappings. In what follows E, F are two real normed spaces and U is an open 
connected bounded subset of E. By U we shall denote the closure of U in E. 
From now on we consider only i/j-maps <p with Iw(<p) / 0. Moreover, we assume 
that 0 is the field. We let: 

J, F) = {<p : U -o F | <p is a uj-map and 0 £ <p(dV)}; 

J,F) = {(D : U —o F | (D is a i/j-map and compact}; 

W0(U,F) = {<p : U -o F | (D G WC(U,F) and <p(x) = {0} for every x G dU} 

Definition 2.1 A uj-map <p G Wau(U,F) is called essential (with respect to 
W0(U,F)) provided for any xp G W0(U,F) there exists a point x G U such that 
<p(x) nip(x) ^ 0. 

Let us observe that if E = F then the notion of essentiality can be rein-
tepreted as Z2 topological degree. We give now some examples of essential 
uj-maps. 
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Example 2.1 Let ip G Wau(B, R), where B is an open ball at 0 6 E with radius 
r > 0. If there exist x 0 ,x i E 9B such that 

u < 0 for every u G <D(#o) 

and 
D > 0 for every v G <D(xi), 

then ip is an essential uj-map. 

To see this, we shall need the following lemma: 

Lemma 2.1 ([1]) Let ip : [a,b] —o R be a tu-map from, the interval [a, b] to 
with Iw(ip) ^ 0 
some x G [a,b]. 

Let V; € Wn(B,R) and suppose to the contrary that ip(x) D ^(x) = 0 for 
every x G B. We define rj : B -o R by the formula: 

7](x) =tp(x) -ip(x). 

In view of Proposition 1.6 and 1.9 we obtain that i] is a uj-map with Iw(rj) / 0. 
Moreover, 0 ^ rj(x) for every x G B. Let 7 : [0,1] ~» B be a path between x0 

and xi and let r] = 77 o 7 . It is easy to see that fj has the following properties: 

(a) fj is a uj-map with Iw(rj) ^ 0, 

(b) 77(0) C E~ and 77(1) C E + , 

(c) 0 £ fj(x) for every x G [0,1]. 

But this contradicts Lemma 2.1. This ends the proof of essentiality of <p. 

Example 2.2 (Essentiality of homeornorphism) Let U be an open and 
bounded subset of E such that U G AR, and let / : U -» f(U) be a homeo
rnorphism such that f(U) is a closed subset of F. In addition assume that f(U) 
is an open subset of F and 0 G f(U). Then / is an essential uj-map. 

Indeed, let ip G W0(U, F). Since f(U) G AR there exists a retraction r : F -> 
/ (U ) . Let us denote by g : /(U) —> U an inverse function of / . Consider 

B = {x G U I / (x) G (* • ^(x)) for some t G [0,1]}. 

It is easy to see that B is closed in U and nonempty (since 0 G f(U)). Let 
s : F —•> [0,1] be an Urysohn function such that s(y) = 1 for ?y G /(B) and 
5(2/) = 0 for y G F \ f(U). A definition of s is correct because /(B) is closed in 
F and /(B) C f(U). Define 77 : F -o F by the formula: 

V(y) = s(y)^(g(r(y))), 

for every y G F. It is easy to see that n is a compact uj-map. Moreover, 
Iw(rj) / 0. Indeed, 

Iw(n) =Iw(so^ogor)= Iw(s)Iw(*P)Iw(g)Iw(r) = 1 • /„(</>) - 1 - 1 / 0 . 
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Hence, in view of Theorem 1.1, we have a fixed point: y E rj(y). If y E F\/(U), 
then s(y) = 0 and u = 0 but 0 E /(U) so we get a contradiction. Therefore 
we deduce that y E f(U). It follows that there exists a point x E U such 
that / (x) = H. Consequently f(x) E s(f(x))i/j(x). Then x E B and hence 
/ (x) E ip(x). This completes the proof of essentiality of f. In particular we 
obtain: 

Example 2.3 (Essentiality of linear isomorph ism) Let L : E -» F be a 
continuous linear isomorphism and let U be an open bounded subset of the 
origin in E such that U E AR. Then the restriction L : U -» F of L to U is 
essential. 

Let us enumerate several properties of the topological essentiality 

Propos it ion 2.1 (Ex istence) If (p E Wau(U,F) is essential, then there exists 
x E U such that 0 E y?(x). 

Proof Indeed, let ip : U —o F be defined by the formula: ^(x) = 0, for every 
x E U. It is easy to see that ip E W0(U, F). Now our claim follows from 
Definition 2.1. • 

Propos it ion 2.2 (Compact perturbat ion) / / ip E Wau(U,F) is essential 
and rj E Wo(U,F), then (p + rj E Wou(U,F) is an essential w-map. 

Proof Let i/> £ W0(U,F) and consider the map Vfi : U —o F given by 

ipx(x) = ip(x) ~rj(x). 

In view of Proposition 1.6 we get that ipi is a iv-rnap. Moreover, it is easy to 
see that tpi £ Wn(U,F). Since p E Wau(U,F) is essential, there exists a point 
x E U such that: 

ip(x) f l^ i (x) 7- 0. 

Hence we obtain that there exists a point x E U such that 

(ip(x) +rj(x)) Hip(x) / 0. 

This completes the proof. • 

Propos it ion 2.3 (Coincidence) Assume that ip E Wau(U, F) is an essential 
w-map and rj E Wc(U,F). Let 

B = {x E U | p(x) fl (^(x)) / 0 for some t E [0,1]}. 

/ / B C U. £lien (D ancl r; haue a coincidence. 
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Proof First observe that the essentiality of (p implies that B is nonempty. 
Moreover, it is easy to see that B is closed. Let s : U ~» [0,1] be an Urysohn 
function such that s(x) = 1 for x G B and s(x) — 0 for x G <9U (we recall that 
due to our assumption: B Pi dV = 0). We define the m-map ip : U —o F as 
follows: 

ip(x) = s(x)rj(x), 

for every x G U. It is clear that ij> G W0(U,E) and since <D is an essential w-map 
we get that for some XQ G U: 

(D(.T0) H (s(Xo)7](Xo)) = tp(x0) H 11>(XQ) / 0. 

This implies that XQ G B and hence S(XQ) — 1. Consequently, we get: 

ip(x0)r\r)(xo) ^ 0 . 

This completes the proof. • 

P ropos i t i on 2.4 (Normal iza t ion) Assume that 0 £ <9U, U G AR. Then the 
inclusion map is an issential w-map if and only if 0 G U. 

Proo f (=>) It follows immediately from the existence property. 
(<=) Let xp G W0(U,E). Define the set B as follows: 

B = {x G U | x G (tt/>(x)) for some t G [0,1]}. 

Then B is a closed nonempty subset of U such that 0 G B and B C U. We 
consider an Urysohn function s : E —> [0,1] such that s(x) = 1 for x G B and 
s(x) = 0 for E\U. Since E D U G AR, there exists the retraction map r : E -> U. 
Next, let ip : E -o E be defined as follows: 

ip(x) = s(x)4>{r(x)). 

In view of Proposition 1.3 and 1.7 we obtain that ip is a uj-map with Iw((p) / 0. 
Hence the Schauder fixed point theorem implies that ip has a fixed point; i.e. 
there exists x*0 G E such that XQ G ^>(XQ). If XQ ̂  U, then S(XQ) = 0 and .x0 = 0 
but 0 G U so we get a contradiction. Hence we obtain that XQ G U. Therefore 

^o G s(x0)ip(x0). 

So, XQ G B and hence XQ G <P>(XQ). This completes the proof. • 

Propos i t ion 2.5 (Localization) Let <D G Wau(U, F) be an essential w-map. 
Assume that V is an open subset of V such that (p^1({0}) C V and ¥ G AR. 
Then the restriction ip\y of cp toV is an essential w-map. 
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Proof It is easy to see that <p\y is a uj-map. Next, from the existence property 
it follows that <DJ1({0}) is nonempty. Let i/> G W0(V,F) and let A be defined 
as follows: 

A = {x G V | ip(x) fl (tip(x)) ^ 0 for some t G [0,1]}. 

It is clear that A C V. Again let s : U -> [0,1] be an Urysohn function such 
that s(x) = 1 for x G A and s(x) = 0 for x ^ V. Since V G AJt, there exists the 
retraction r : U -» V such that r(u) = u for every u G V. We define the map 
r/ : U —o F by the formula: 

rj(x) = s(x) -il>(r(x)), 

for every x G U. In view of Proposition 1.3 and 1.7 we get that rj is a uj-map. 
Obviously rj G W0(U, F). Since (D is essential, there is a point x0 G U such that 

(p(xo)nr,(x0) 7̂  fl

it is easy to see that x0 G V. Consequently 

s(x0) = 1 and r(:T0) = x0 

and hence 

v?I^Mn^OTo)^0. 
This completes the proof. • 

Proposit ion 2.6 (uj-homotopy) Let cp G Wau(U, F) be an essential w-map. 
IfW : U x [0,1] —o F is a compact w-map such that: 

(i) M(x, 0) = {0} for every x G dV, 

(ii) {x G U | <p(x) H M(x, t) / 0 /Or ;sOme t G [0,1]} C U. 

Then the map (p(-) — 1H(-, 1) is an essential w-map. 

Proof First let us observe that from the compact perturbation property we 
get that </?(•) - H(-,0) is an essential uj-map. Let xj> G W0(U, F). We let: 

B = {x G U | tp(x) H (\l)(x) + H(x, t)) ^ 0 for some 6 G [0,1]}. 

Since (t/!(-) + H(-, 0)) G W0(U, F)_and (D is an essential uj-map we obtain that B 
is a nonempty closed subset of U. It is clear that B C U. Let s : U -> [0,1] be 
an Urysohn function such that s(x) = 1 for x G B and s(x) = 0 for x G <9U. We 
define rj : U -o F as follows: 

r)(x) =%l>(x) +M(x,s(x)). 

Notice that rj is a uj-map and rj G W0(U, F) (see section 1). Since (p is essential, 
there exists a point xo € U such that 

(p(xo)nrj(xo) ^ 0 . 
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Notice that x0 £ B and therefore 

(D(xo)n(^(xo) + IHI(xo,l))^0. 

Consequently 

(tp(xo) -M(xoA)) n*l>(x0) ^ <b. 

This completes the proof. • 

Proposit ion 2.7 (Continuation) Let ip £ Wau(U, F) be an essential w-map. 
Assume that tp is proper, i.e. ip+l(K) is compact for every compact K C F. 
Assume further that rj : U x [0,1] —° F is a compact w-map such that rj(x, 0) = 
{0} for every x £ <9U. Then there exists e > 0 such that the mapping ip(-) — 
r/(-, A) : U —o F is an essential w-map for every A £ [0,e). 

Proo f According to the uj-homotopy property it is sufficient to show that there 
exists e > 0 such that: 

ip(x) nn(x,\) = 0, 

for every A £ [0,6:) and x £ <9U. This condition it is easy to verify by contra
diction. So, suppose to the contrary that for every e > 0 there exists A £ [0,e) 
and x £ d\] such that 

ip(x)C\ri(x,\) 7- 0. 

Let en — ~, n = 1, 2 , . . . Then there exist sequences £n,Hn, An such that: 

An £ [0, - ) , yn £ (D(xn) n n(xru \n) / 0, xn £ <9U, 

for n = 1,2,... Since (D is compact and proper we may assume without loss of 
generality that 

lim.xn = XQ £ <9U and limun = no-

It is clear that lim An = 0. In view of the upper semicontinuity of cD and i] we 
get that no £ <p(xo) anc^ Vo £ T/(^o?0). But r/(xo,0) = {0} because xo £ dU. 
Consequently y0 = 0 and hence 0 £ (D(xo)—a contradiction. This completes the 
proof. Proo f 

3 Applications 

The topological essentiality has many applications in fixed point theory, analysis 
and other fields. In this paper we give a few examples. 

Proposit ion 3.1 Let ip £ Wau(U, F) be an essential w-map and proper. If ED 
is connected component of¥\ (p(d\J), which contains 0, then D C ^(U). 
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Proof The set ip(dU) is a closed subset of F, because any proper map is 
closed. Let v G P . We shall show that v G </>(U). Since F \ ip(dU) is open, its 
components are open, and for open set in F connectedness is the same as arcwise 
connectedness. So, let O : [0,1] -> UD be a continuous curve with O(0) = 0 and 
O(l) = v. Define uj-homotopy rj : U x [0,1] —o F by the formula: 

r](x,t) = a(t), 

for every (x,t) G U x [0,1]. Now we can apply the u>homotopy property to 
deduce that: 

( D ( - ) - I K - , l ) : U x [ 0 , l ] - o F 

is an essential u>map. Notice that 

(p(x) - r ? (x , l ) =ip(x) - {?;}, 

for every x G U. Hence from the existence property we obtain that v G </>(U). 
This ends the proof. D 

Propos it ion 3.2 Let ip G Wau(U,F) be an essential w-map and I/J G Wc(U, F). 
If(p(x)Dip(x) = 0 for every x G <9U, then at least one of the following conditions 
holds: 

(1) there exists x G l i such that (p(x) D ifi(x) ^ 0; 

(2) there exists X G (0,1) and x G <9U .swc/z that (p(x) f\ (Xip(x)) ^ 0. 

To see this it is enough to apply the uj-homotopy property for ip and VA 
where H(x, t) = t • xj)(x) for x G U and t G [0,1]. Let us observe that if E = F, 
then from the above Proposition and the normalization property we obtain the 
following: 

Propos it ion 3.3 (Nonlinear alternative) Let ip G WC(U,F) and 0 G U. 
then at least one of the following conditions is satisfied: 

(1) Fix(i>) # 0, 

(2) there exists x G <9U and X G (0,1) such that x G XI/J(X). 

Finally we would like to underline that also some other results remain true. 
For example we can prove the version of the Birkhoff-Kellogg theorem and 
Borsuk's theorem on antipodes. The proofs are similar to those obtained using 
the topological degree technique and therefore we leave them to the reader. 
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