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Abstract 

We set two necessary and sufficient conditions such that any subset 
of a pseudocomplemented semilattice which satisfies these conditions is a 
kernel (i.e. a 0-class) of some congruence. 

Key words: Pseudocomplemented semilattice, congruence kernel. 

2000 Mathematics Subject Classification: 06A12, 06D15 

By a pseudocomplemented semilattice is meant an algebra S = (5; A,* ,0) of 
type (2,1,0) such that (5; A) is a A-semilattice with the least element 0 (with 
respect to the induced order) and a* denotes the pseudocomplement of a E £, 
i.e. a* is the greatest element of the set {b E 5; a A b = 0}. It is well-known 
that the class of all pseudocomplemented semiiattices forms a variety, see e.g. 
[3]. 

Let S = (5; A,*, 0) be a pseudocomplemented semilattice and it be a binary 
relation on S. Denote by [0]R = {x £ 5; (^,0) G R}. Especially, if R is 
a congruence on 5 , [0]R is called a congruence kernel (of R). The aim of our 
paper is to characterize congruence kernels in pseudocomplemented semiiattices. 
Let us note that a similar characterization (containing three conditions) was 
recently settled by P. Agliano and A. Ursini [1] based on the concept of ideal 
in universal algebra. Although our result is similar, our reasoning is based on 
different concepts. 
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Recal from [1] that a variety V is subtractive if there exists a binary term 
s(x,y) of V such that V satisfies the identities s(x,x) — 0 and s(x,0) = x. 
Of course, the variety of pseudocomplemented semilattices is subtractive since 
s(x,y) =x Ay*. 

Moreover, V is subtractive if and only if for each A G V and every 0 , $ G 
COn.4 it holds that [0]e.$ = [0]$.e; algebras satisfying the later condition are 
usually called permutable at 0. 

Let us recall the following result (Lemma 2 of [2]): 

L e m m a Let V be a subtractive variety, A = (A, F) G V and R be a reflexive 
and compatible binary relation on A. Let ©(It) be the least congruence on A 
containing R. Then 

[0]fl = [0]e(fi)-

We are able to formulate our result. 

Theorem Let S = (5; A,* ,0) be a pseudocomplemented semilattice and 0 ^ 
I C S. Then I is a kernel of some congruence on S if and only if I satisfies 
the following two conditions: 

(i) if x E I and a G S then x A a G I 
fzi) if x,y € I then (x* Ay*)* G I. 

Before the proof, let us note that (i) yields 0 G I and x G I, a < x =-> a G I 
and (ii) yields x G I = > x * * G I (taking x — y). 

Proo f If I = [0]e for some O G Con^4 and x,y e I,a e S then (x,0) G 6 
implies (x A a, 0) = (x A a,0 A a) G 0 proving (i); moreover, (x,0) G 0 and 
(y,0) G 0 thus also ((x* Ay*)*,0) = ((a* A y*)*, (0* A 0*)*) G 0 proving (ii). 

Conversely, suppose that 0 ^ I C S satisfies (i) and (ii) and define It on S 
by setting 

(x, y) G R iff x A u* G I and H A x* G I. 

Clearly, It is reflexive. Prove compatibility of It: 
if (a, b) G it then a A b* G I and b A a* G I thus, by (ii), also (a A b*)** G I 

and (bAa*)** G I, i.e. also a** A b* G I and b** A a* G I proving (a*,b*) G it. 
Suppose (a, b) G it and (c, d) G It. Then a A b* G I, b A a* G I, c A d* G I and 

d A c* G I thus, by (ii), also 

((a A b*)* A (c A d*)*)* G I and ((b A a*)* A (d A c*)*)* G J. (*) 

We have 

aAcA(aAb*)*A(cAd*)*Ab* = (aAb*)A(aAb*)*AcA(cAd*)* = 0AcA(cAd*)* = 0, 

and, analogously, 

a Ac A (a A b*)* A (c A d*)* A d* = 0. 

Thus 

a A c A ( a A b * ) * A ( c A d * ) * < b** and a A c A (a A 6*)* A (c A d*)* < d** 
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whence 
a A c A (a A b*)* A (c A d*)* < b** A d** = (b A d)** 

which yields 
a A c A (a A b*)* A (c A d*)* A (b A d)* = 0. 

It gives 
a A c A (b A d)* < ((a A b*)* A (c A d*)*)* 

which, together with (*) and (i) yields 

(a Ac) A(bAd)* G J. 

Analogously, we can show 

(6 Ad) A (a Ac)* <E / 

thus (a A c, b A d) G it*. Hence, R is reflexive and compatible relation on <S. 
If a G I then also a A 0* = a £ I and 0 A a* = 0 G i" showing (a, 0) G it, i.e. 

& € [0]R. If a G [0]^ then (a, 0) G it and hence a = a A 0* G I. We have shown 
[0]H = I. By the Lemma, I = [0]o(#), i.e. I is a congruence kernel. • 

References 

[1] Agliano, P . , Ursini, A.: On subtractive varieties III: From ideals to congruences. Algebra 
Universalis 3 7 (1997), 296-333. 

[2] Chajda, I., Langer II.: Ideals in locally regular and permutable at 0 varieties. Contribu
tions to General Algebra 13 (2001), 63-72. 

[3] Frink, O.: Pseudo-complements in semi-lattices. Duke Math. J. 29 (1962), 505-514. 


		webmaster@dml.cz
	2012-05-04T00:03:06+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




