Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematic

Ljubica S. Velimirović; Svetislav M. Minčić; Mića S. Stanković Infinitesimal deformations and Lie derivative of a non-symmetric affine connection space

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 42 (2003), No. 1, 111--121

Persistent URL:
http://dml.cz/dmlcz/120468

Terms of use:

© Palacký University Olomouc, Faculty of Science, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Infinitesimal Deformations and Lie Derivative of a Non-symmetric Affine Connection Space

Luubica S. VELIMIROVIĆ, Svetislav M. MINČIĆ, Mića S. STANKOVIĆ
Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Yugoslavia e-mail: vljubica@pmf.pmf.ni.ac.yu

(Received September 30, 2002)

$$
\begin{aligned}
& \text { Abstract } \\
& \text { At the present work we consider infinitesimal deformations } \\
& \qquad f: x^{i} \rightarrow x^{i}+\varepsilon z^{i}\left(x^{j}\right)
\end{aligned}
$$

of a space L_{N} with non-symmetric affine connection $L_{j k}^{i}$, expressing the deformations of geometric magnitudes by virtue of Lie derivative. Because of non-symmetry of the connection, we use four kinds of covariant derivative to express the Lie derivative and the deformations.

Key words: Infinitesimal deformation, non-symmetric affine connection, Lie derivative.
2000 Mathematics Subject Classification: 53C25, 53A45, 53B05

1 Introduction

Deformations and infinitesimal deformations have been studied by many authors. We refer to [6-11] for more details and references.

Let us consider a space L_{N} of non-symmetric affine connection $L_{j k}^{i}$ with the torsion tensor $T_{j k}^{i}=L_{j k}^{i}-L_{k j}^{i}$, at local coordinates $x^{i}(i=1, \ldots, N)$. At the beginning we are giving some basic facts according to $[4,6,7,10]$.

Definition 1.1 A transformation

$$
f: L_{N} \rightarrow L_{N}: x=\left(x^{1}, \ldots, x^{N}\right) \equiv\left(x^{i}\right) \rightarrow \bar{x}=\left(\bar{x}^{1}, \ldots, \bar{x}^{N}\right) \equiv\left(\bar{x}^{i}\right)
$$

where

$$
\begin{equation*}
\bar{x}=x+z(x) \varepsilon \tag{1.1}
\end{equation*}
$$

or in local coordinates

$$
\bar{x}^{i}=x^{i}+z^{i}\left(x^{j}\right) \varepsilon, \quad i, j=1, \ldots, N
$$

where ε is an infinitesimal, is called infinitesimal deformation of a space L_{N}, determined by the vector field $z=\left(z^{i}\right)$, which is called infinitesimal deformation field (1.1).

We denote with (i) local coordinate system in which the point x is endowed with coordinates x^{i}, and the point \bar{x} with the coordinates \bar{x}^{i}. We will also introduce a new coordinate system (i^{\prime}), corresponding to the point $x=\left(x^{i}\right)$ new coordinates

$$
\begin{equation*}
x^{i^{\prime}}=\bar{x}^{i}, \tag{1.2}
\end{equation*}
$$

i.e. as new coordinates $x^{i^{\prime}}$ of the point $x=\left(x^{i}\right)$ we choose old coordinates (at the system $(i))$ of the point $\bar{x}=\left(\bar{x}^{i}\right)$. Namely, at the system $\left(i^{\prime}\right)$ is

$$
x=\left(x^{i^{\prime}}\right) \stackrel{(1.2)}{=}\left(\bar{x}^{i}\right),
$$

where $\stackrel{(1.2)}{=}$ denotes "equal according to (1.2)".
Definition 1.2 Coordinate transformation we get based on punctual transformation $f: x \rightarrow \bar{x}$, getting for the new coordinates of the point x the old coordinates of its transform \bar{x}, is called dragging along punctual transformation. New coordinates $x^{i^{\prime}}=\bar{x}^{i}$ of the point \bar{x} are called dragged along coordinates.

In the case of infinitesimal deformation (1.1') coordinate transformation

$$
\begin{equation*}
x^{i^{\prime}}=\bar{x}^{i}=x^{i}+z^{i}\left(x^{1}, \ldots, x^{N}\right) \varepsilon \tag{1.3}
\end{equation*}
$$

is called dragging along by $z^{i} \varepsilon$.
Let us consider a geometric object \mathcal{A} with respect to the system (i) at the point $x=\left(x^{i}\right) \in L_{N}$, denoting this with $\mathcal{A}(i, x)$.

Definition 1.3 The point \bar{x} is said to be deformed point of the point x, if (1.1) holds. Geometric object $\overline{\mathcal{A}}(i, x)$ is deformed object $\mathcal{A}(i, x)$ with respect to deformation (1.1), if its value at system (i^{\prime}), at the point x is equal to the value of the object \mathcal{A} at the system (i) at the point \bar{x}, i.e. if

$$
\begin{equation*}
\overline{\mathcal{A}}\left(i^{\prime}, x\right)=\mathcal{A}(i, \bar{x}) . \tag{1.4}
\end{equation*}
$$

Remark 1.1 In this study of infinitesimal deformations according to (1.1') quantities of an order higher then the first with respect to ε are neglected.

We will now define some important notions of the theory of infinitesimal deformations, following from (1.1): Lie differential and Lie derivative, and in further considerations we will find them for some geometric objects.
Definition 1.4 The magnitude $\mathcal{D} \mathcal{A}$, the difference between deformed object $\overline{\mathcal{A}}$ and initial object \mathcal{A} at the same coordinate system and at the same point with respect to (1.1'), i.e.

$$
\begin{equation*}
\mathcal{D} \mathcal{A}=\overline{\mathcal{A}}(i, x)-\mathcal{A}(i, x), \tag{1.5}
\end{equation*}
$$

is called Lie difference (Lie differential), and the magnitude

$$
\mathcal{L}_{z} \mathcal{A}=\lim _{\varepsilon \rightarrow 0} \frac{\mathcal{D} \mathcal{A}}{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \frac{\overline{\mathcal{A}}(i, x)-\mathcal{A}(i, x)}{\varepsilon}
$$

is Lie derivative of geometric object $\mathcal{A}(i, x)$ with respect to the vector field $z=\left(z^{i}\left(x^{j}\right)\right)$.

Using the relation (1.5) for deformed object $\overline{\mathcal{A}}(i, x)$ we have

$$
\overline{\mathcal{A}}(i, x)=\mathcal{A}(i, x)+\mathcal{D} \mathcal{A},
$$

and thus we can express $\overline{\mathcal{A}}$, finding previously $\mathcal{D} \mathcal{A}$. The known main cases are:
1.1. According to (1.5) we have $\mathcal{D} x^{i}=\bar{x}^{i}-x^{i}$, i.e. for the coordinates we have

$$
\begin{equation*}
\mathcal{D} x^{i}=z^{i}\left(x^{j}\right) \varepsilon \tag{1.6}
\end{equation*}
$$

from where

$$
\mathcal{L}_{z} x^{i}=z^{i}\left(x^{j}\right) .
$$

1.2. For the scalar function $\varphi(x) \equiv \varphi\left(x^{1}, \ldots, x^{N}\right)$ we have

$$
\begin{equation*}
\mathcal{D} \varphi(x)=\varphi_{, p} z^{p}(x) \varepsilon=\mathcal{L}_{z} \varphi(x) \varepsilon, \quad\left(\varphi_{, p}=\partial \varphi / \partial x^{p}\right) \tag{1.7}
\end{equation*}
$$

i.e. Lie derivative of the scalar function is derivative of this function in direction of the vector field z.
1.3. For a tensor of the kind (u, v) we get

$$
\begin{equation*}
\mathcal{D} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=\left[t_{j_{1} \ldots j_{v}, p}^{i_{1} \ldots i_{u}} z^{p}-\sum_{\alpha=1}^{u} z_{, p}^{i_{\alpha}}\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}+\sum_{\beta=1}^{v} z_{, j_{\beta}}^{p}\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}\right] \varepsilon=\mathcal{L}_{z} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} \varepsilon, \tag{1.8}
\end{equation*}
$$

where we denoted

$$
\begin{equation*}
\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{\alpha-1}} p i_{\alpha+1} \ldots i_{u}, \quad\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=t_{j_{1} \ldots j_{\beta-1}}^{i_{1} \ldots i_{j_{j}}}{ }_{j_{\beta+1} \ldots j_{v}} . \tag{1.9}
\end{equation*}
$$

1.4. For the vector $d x^{i}$ we have

$$
\begin{equation*}
\mathcal{D}\left(d x^{i}\right)=\mathcal{L}_{z}\left(d x^{i}\right)=0 . \tag{1.10}
\end{equation*}
$$

1.5. In the same way, as for the tensors, for the connection coefficients we have

$$
\begin{equation*}
\mathcal{D} L_{j k}^{i}=\left(L_{j k, p}^{i} z^{p}+z_{, j k}^{i}-z_{, p}^{i} L_{j k}^{p}+z_{, j}^{p} L_{p k}^{i}+z_{, k}^{p} L_{j p}^{i}\right) \varepsilon=\mathcal{L}_{z} L_{j k}^{i} \varepsilon . \tag{1.11}
\end{equation*}
$$

2 The Lie derivative of a tensor

2.1. Because of non-symmetry of connection, at L_{N} we can consider two types of covariant derivatives for a vector and four types for general tensor. So, denoting by $\left.\right|_{\theta}(\theta=1, \ldots, 4)$ derivative of the type θ, we have $([1]-[3])$:

$$
\begin{equation*}
t_{\substack{j_{1} \ldots j_{v} \backslash m \\ i_{2} \\ 3 \\ i_{1} \ldots i_{u}}}^{i_{1}}=t_{j_{1} \ldots j_{v}, m}^{i_{1} \ldots i_{u}}+\sum_{\alpha=1}^{u} L_{\substack{p_{p} \\ p m \\ p m \\ i_{\alpha}}}^{i_{\alpha}}\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}-\sum_{\beta=1}^{v} L_{\substack{j_{\beta} m j_{\beta} \\ m j_{\beta} \\ j_{\beta} m}}^{p}\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} . \tag{2.1a-d}
\end{equation*}
$$

Generally, the next theorem is in the force:
Theorem 2.1 Lie derivative of a tensor $t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}$ of the type (u, v) is a tensor of the same type and can be presented in the following four ways

$$
\begin{align*}
& \mathcal{L}_{z} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=\underset{\theta}{\mathcal{L}_{z}} z_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} \equiv t_{j_{1} \ldots j_{v} \mid p}^{i_{1} \ldots i_{u}} z^{p}-\sum_{\alpha=1}^{u} z_{\theta}^{i_{\alpha}}{ }_{p}\binom{p}{i_{\alpha}} t \cdots+\sum_{\beta=1}^{v} z_{\theta}^{p}\left(\begin{array}{c}
j_{\beta} \\
j_{\beta} \\
p
\end{array}\right) t \cdots \\
& +(-1)^{\theta-1} \sum_{\alpha=1}^{u} T_{p s}^{i_{\alpha}}\binom{s}{i_{\alpha}} t \cdots z^{p}+(-1)^{\theta-1} \sum_{\beta=1}^{v} T_{j_{\beta} p}^{s}\binom{j_{\beta}}{s} t \cdots z^{p}, \quad \theta=1,2 ; \\
& \mathcal{L}_{z} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=\underset{\theta}{\mathcal{L}_{\theta}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} \equiv t_{j_{1} \ldots j_{v} \mid p}^{i_{1} \ldots i_{u}} z^{p}-\sum_{\alpha=1}^{u} z_{\mid}^{i_{\alpha}}{ }_{p}\binom{p}{i_{\alpha}} t \ldots+(-1)^{\theta-1} \sum_{\beta=1}^{v} z_{\mid}^{p} j_{\beta}\binom{j_{\beta}}{p} t_{\ldots} \\
& +(-1)^{\theta-1} \sum_{\alpha=1}^{u} T_{p s}^{i_{\alpha}}\binom{s}{i_{\alpha}} t_{\ldots} z^{p}, \quad \theta=3,4, \tag{2.3a,b}
\end{align*}
$$

where ${\underset{\boldsymbol{\mathcal { F }}}{z}}$ denotes that Lie derivative \mathcal{L}_{z} is expressed by covariant derivative of the type $\theta,(\mid), \theta=1, \ldots, 4$.

Proof We will prove only the fourth case. The others can be proved in an analogous way. According to (1.8) we have

$$
\begin{equation*}
\mathcal{L}_{z} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=t_{j_{1} \ldots j_{v}, p}^{i_{1} \ldots i_{u}} z^{p}-\sum_{\alpha=1}^{u} z_{, p}^{i_{\alpha}}\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}+\sum_{\beta=1}^{v} z_{, j_{\beta}}^{p}\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}, \tag{2.4}
\end{equation*}
$$

and we have to express partial derivatives with respect to ${ }_{4}^{\mid}$. From (2.1d) we have

$$
\begin{gather*}
t_{j_{1} \ldots j_{v}, p}^{i_{1} \ldots i_{u}}=t_{j_{1} \ldots j_{v} \mid p}^{i_{1} \ldots i_{u}}-\sum_{\alpha=1}^{u} L_{p s}^{i_{\alpha}}\binom{s}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}+\sum_{\beta=1}^{v} L_{j_{\beta} p}^{s}\binom{j_{\beta}}{s} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}, \tag{2.5}\\
z_{, p}^{i_{\alpha}}=z_{\mid p}^{i_{\alpha}}-L_{p s}^{i_{\alpha}} z^{s}, \tag{2.6}
\end{gather*}
$$

and by substituting at (2.4) we obtain:

$$
\begin{aligned}
& \mathcal{L}_{z} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=\left[t_{j_{1} \ldots j_{v} \mid p}^{i_{1} \ldots i_{u}}-\sum_{\alpha=1}^{u} L_{p s}^{i_{\alpha}}\binom{s}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}+\sum_{\beta=1}^{v} L_{j_{\beta} p}^{s}\binom{j_{\beta}}{s} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}\right] z^{p} \\
& \quad-\sum_{\alpha=1}^{u}\left(z_{\mid p}^{i_{\alpha}}-L_{p s}^{i_{\alpha}} z^{s}\right)\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}+\sum_{\beta=1}^{v}\left(z_{\mid j_{\beta}}^{p}-L_{j_{\beta} s}^{p} z^{s}\right)\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}
\end{aligned}
$$

According to

$$
\begin{gathered}
-\sum_{\alpha=1}^{u} L_{p s}^{i_{\alpha}}\binom{s}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} z^{p}+\sum_{\beta=1}^{v} L_{j_{\beta} p}^{s}\binom{j_{\beta}}{s} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} z^{p} \\
+\sum_{\alpha=1}^{u} L_{p_{s}}^{i_{\alpha}}\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} z^{s}-\sum_{\beta=1}^{v} L_{j_{\beta} s}^{p}\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1}, i_{u}} z^{s} \\
=\sum_{\alpha=1}^{u} T_{s p}^{i_{\alpha}}\binom{s}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} z^{p},
\end{gathered}
$$

the previous equation gives (2.3b).
Of course, as the same magnitude at the right side at (2.4) was expressed in different ways, we have

$$
\begin{equation*}
{\underset{\theta}{\boldsymbol{\mathcal { L }}}}_{z}=\mathcal{L}_{z}, \quad \theta=1, \ldots, 4 . \tag{2.7}
\end{equation*}
$$

Corollary 2.1 For the space $\stackrel{0}{L}_{N}$ of symmetric connection $\stackrel{0}{L}_{j k}^{i}\left(T_{j k}^{i}=0\right)$ we have
because in that case all 4 types of covariant derivatives reduce to one, which we denote by semicolon (;).
2.2. So, Lie derivative of a tensor at a space of symmetric affine connection can be obtained as a special case from the formulae for Lie derivative at a space of non-symmetric affine connection. We will investigate the way of presenting the Lie derivative of a tensor by covariant derivative with respect to symmetrical part ${\underset{0}{0}}_{i k}^{i}$ of non-symmetric connection $L_{j k}^{i}$. Let us consider a space L_{N} of nonsymmetric affine connection $L_{j k}^{i}$ and let be

$$
\begin{equation*}
L_{0}^{i}{ }_{j k}=\frac{1}{2}\left(L_{j k}^{i}+L_{k j}^{i}\right), \quad T_{j k}^{i}=L_{j k}^{i}-L_{k j}^{i} . \tag{2.9}
\end{equation*}
$$

Then

$$
\begin{equation*}
L_{j k}^{i}=L_{0}^{i}{ }_{j k}+\frac{1}{2} T_{j k}^{i} . \tag{2.10}
\end{equation*}
$$

The magnitudes ${\underset{0}{0}}_{L_{j k}}^{i}$ are the coefficients of symmetric connection associated to the connection $L_{j k}^{i}$, and $T_{j k}^{i}$ are the components of torsion tensor of connection $L_{j k}^{i}$. If we denote with $\mathcal{\mathcal { L }}_{z} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}$ the expression as on the right side at (2.8), but formed by means of ${\underset{0}{j}}_{j}^{i}$ from (2.9) instead of $\stackrel{0}{L}_{j}^{i}$ we have the next theorem

Theorem 2.2 In the non-symmetric connection space L_{N} Lie derivative of tensor $t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}$ can be expressed as

$$
\begin{gather*}
\mathcal{L}_{z} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=\mathcal{L}_{\theta} z z_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=\mathcal{L}_{\mathbf{0}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} \\
\equiv t_{j_{1} \ldots j_{v} ; p^{\prime}}^{i_{1} \ldots i_{u}} z^{p}-\sum_{\alpha=1}^{u} z_{; p}^{i_{\alpha}}\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}+\sum_{\beta=1}^{v} z_{; j_{\beta}}^{p}\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}, \tag{2.11}
\end{gather*}
$$

where the semicolon (;) denotes covariant derivative with respect to symmetric part ${\underset{0}{0}}_{L_{j k}}$ of the connection $L_{j k}^{i}$.
Proof According to (2.7), we can start from any of the $\mathcal{E}_{\theta},(\theta=1, \ldots, 4)$. Let us start from $\mathcal{L}_{4} \mathcal{L}^{2} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{v}}$ from the equation (2.3b). According to $(2.1,10)$ we have

$$
\begin{aligned}
& t_{j_{1} \ldots j_{v} \mid p}^{i_{1} \ldots i_{u}}=t_{j_{1} \ldots j_{v}, p}^{i_{1} \ldots i_{u}}+\sum_{\alpha=1}^{u}\left(L_{0}^{i_{\alpha}}+\frac{1}{2} \dot{T}_{p_{s}}^{i_{\alpha}}\right)\binom{s}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} \\
& -\sum_{\beta=1}^{v}\left(L_{0}^{s}{ }_{j_{\beta} p}+\frac{1}{2} T_{j_{\beta} p}^{s}\right)\binom{j_{\beta}}{s} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=t_{j_{1} \ldots j_{v} ; p}^{i_{1} \ldots i_{u}} \\
& +\frac{1}{2} \sum_{\alpha=1}^{u} T_{p s}^{i_{\alpha}}\binom{s}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}-\frac{1}{2} \sum_{\beta=1}^{v} T_{j_{\beta} p}^{s}\binom{j_{\beta}}{s} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}},
\end{aligned}
$$

which by substituting at (2.3b) gives

$$
\mathcal{L}_{z} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=\mathcal{L}_{4} z t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=t_{j_{1} \ldots j_{v} ; p}^{i_{1} \ldots i_{u}} z^{p}-\sum_{\alpha=1}^{u} z_{; p}^{i_{\alpha}}\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}+\sum_{\beta=1}^{v} z_{; j_{\beta}}^{p}\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}
$$

i.e. (2.11).
2.3 Comparing $(2.2,3)$ and (2.11), we can see that Lie derivative of a tensor at L_{N} can be simpler be given by means of (2.11), i.e. with respect to covariant derivative formed by symmetrical part ${\underset{0}{j}}_{i k}^{i}$ of non-symmetrical connection $L_{j k}^{i}$.

If we use at the same time different kinds of covariant derivative at the right side at $(2.2,3)$ with respect to $L_{j k}^{i}$, we can write this equations in the more condensed form (analogously to (2.11)). In connection with this the next theorem is in the force

Theorem 2.3 The Lie derivative of the tensor of type (u, v) can be expressed using covariant derivatives with respect to non-symmetric connection $L_{j k}^{i}$ in the next way

$$
\mathcal{L}_{z} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=t_{j_{1} \ldots j_{v} \mid p}^{i_{1} \ldots i_{u}} z^{p}-\sum_{\alpha=1}^{u} z_{\mu}^{i_{\alpha}}\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}+\sum_{\beta=1}^{v} z_{\mid j_{\beta}}^{p}\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}, \quad(2.12 a-d)
$$

where $(\lambda, \mu, \nu) \in\{(1,2,2),(2,1,1),(3,4,3),(4,3,4)\}$.
Proof We will prove only the first case, the others can be proved analogously. Let us start from (2.2a). We have

$$
\begin{gathered}
z_{\mid p}^{i_{\alpha} p}\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=\left(z_{, p}^{i_{\alpha}}+L_{s p}^{i_{\alpha}} z^{s}\right)\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=\left(z_{, p}^{i_{\alpha}}+L_{p s}^{i_{\alpha}} z^{s}-L_{p s}^{i_{\alpha}} z^{s}\right. \\
\left.+L_{s p}^{i_{\alpha}} z^{s}\right)\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=z_{\mid p}^{i_{\alpha}}\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}+T_{s p}^{i_{\alpha}} z^{s}\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}
\end{gathered}
$$

and analogously

$$
\underset{1}{z_{1}^{p}}\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=\underset{2}{z_{\mid j_{\beta}}^{p}}\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}+T_{p j_{\beta}}^{s}\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} z^{p} .
$$

Substituting this at (2.2a) it follows that

$$
\begin{gathered}
\mathcal{L}_{z} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}= \\
=t_{j_{1} \ldots j_{v} \mid p}^{i_{1} \ldots i_{u}} z^{p}-\sum_{\alpha=1}^{u}\left[z_{\mid p}^{i_{\alpha}}\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}+T_{s p}^{i_{\alpha}} z^{s}\binom{p}{i_{\alpha}} t_{\left.j_{1_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}\right]+\sum_{\beta=1}^{v}\left[z_{\mid j_{\beta}}^{p}\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}\right.}^{v}\right. \\
\left.+T_{p j_{\beta}}^{s}\binom{j_{\beta}}{s} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} z^{p}\right]+\sum_{\alpha=1}^{u} T_{p s}^{i_{\alpha}}\binom{s}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} z^{p}+\sum_{\beta=1}^{v} T_{j_{\beta} p}^{s}\binom{j_{\beta}}{s} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} z^{p},
\end{gathered}
$$

from where we obtain (2.12) for $(\lambda, \mu, \nu)=(!, 2,2)$.

3 Lie derivative of the connection

3.1 On the base of (1.11) for the Lie derivative of the connection we have

$$
\begin{equation*}
\mathcal{L}_{z} L_{j k}^{i}=z_{, j k}^{i}+L_{j k, p}^{i} z^{p}-z_{, p}^{i} L_{j k}^{p}+z_{, j}^{p} L_{p k}^{i}+z_{, k}^{p} L_{j p}^{i} . \tag{3.1}
\end{equation*}
$$

As it was proved at [10] Lie derivative can be written in the next way

$$
\begin{gather*}
\mathcal{L}_{z} L_{j k}^{i}=\underset{1}{z_{\mid j k}^{i}}+\underset{1}{R_{j k p}^{i} z^{p}}+T_{j p, k}^{i} z^{p}+L_{j k}^{s} T_{p s}^{i} z^{p}+L_{s k}^{i} T_{j p}^{s} z^{p}+T_{j p}^{i} z_{, k}^{p}, \tag{3.2}\\
\mathcal{L}_{z} L_{j k}^{i}=\underset{1}{\mathcal{L}_{z}} L_{j k}^{i} \equiv{\underset{1}{\mid}}_{i}^{i}+\underset{1}{R_{j k p}^{i}} z^{p}+\left(T_{j p}^{i} z^{p}\right)_{\mid k},
\end{gather*}
$$

$$
\begin{align*}
& \mathcal{L}_{z} L_{j k}^{i}=\underset{2}{\mathcal{L}_{z}} L_{j k}^{i}=\underset{z_{j}}{i}{ }_{j k}+\underset{2}{R_{j k p}^{i}} z^{p}+\underset{p j \mid k}{i} z^{p}+T_{p k}^{i} z_{\mid j}^{p} \tag{3.3}
\end{align*}
$$

$$
\begin{align*}
& \mathcal{L}_{z} L_{j k}^{i}=\underset{3}{\mathcal{L}_{z}} L_{j k}^{i} \equiv \underset{3}{z_{\mid j k}^{i}}+\underset{3}{R_{j k p}^{i}} z^{p}-T_{j k}^{p} z_{\mid p}^{i}+\underset{3}{i}+T_{j p}^{i} z_{\mid k}^{p}, \tag{3.4}\\
& \left.\mathcal{L}_{z} L_{j k}^{i}=\underset{4}{\mathcal{L} z} L_{j k}^{i} \equiv \underset{4}{z_{\mid j k}^{i}}+\underset{4}{R_{j k p}^{i}} z^{p}+\underset{4}{\left(T_{p j \mid k}^{i}\right.}+T_{s j}^{i} T_{p k}^{s}+T_{s k}^{i} T_{p j}^{s}\right) z^{p}+T_{p k}^{i} z_{\mid}^{p}, \tag{3.5}
\end{align*}
$$

where [1-3]

$$
\begin{gather*}
{\underset{1}{1}}_{R_{j k p}^{i}=L_{j k, p}^{i}-L_{j p, k}^{i}+L_{j k}^{s} L_{s p}^{i}-L_{j p}^{s} L_{s k}^{i}}^{{\underset{2}{2}}_{R_{j k p}}^{i}=L_{k j, p}^{i}-L_{p j, k}^{i}+L_{k j}^{s} L_{p s}^{i}-L_{p j}^{s} L_{k s}^{i}} \tag{3.6}\\
{\underset{3}{R}}_{j k p}^{i}=L_{j k, p}^{i}-L_{p j, k}^{i}+L_{j k}^{s} L_{p s}^{i}-L_{p j}^{s} L_{s k}^{i}+L_{p k}^{s} T_{s j}^{i} \tag{3.7}\\
{\underset{4}{2}}_{j k p}^{i}=L_{j k, p}^{i}-L_{p j, k}^{i}+L_{j k}^{s} L_{p s}^{i}-L_{p j}^{s} L_{s k}^{i}+L_{k p}^{s} T_{s j}^{i} \tag{3.8}
\end{gather*}
$$

are curvature tensors of the space L_{N}.
3.2. We have proved at Theorem 2.3. that the Lie derivative of a tensor can be expressed more concise by using several types of covariant derivatives at L_{N} simmultaneously. It is the same case for the Lie derivative of the conecction. Namely, the next theorem is in force.

Theorem 3.1 The Lie derivative of non-symmetric connection $L_{j k}^{i}$ is a tensor of the type $(1,2)$ and can be expressed with respect to covariant derivatives by equations (3.2-5), as well as by

$$
\begin{align*}
& \mathcal{L}_{z} L_{j k}^{i}=\underset{z_{1 j \mid k}}{i}+\underset{1}{R_{j k p}^{i} z^{p} .} \tag{3.10}\\
& \mathcal{L}_{z} L_{j k}^{i}=\underset{\substack{z_{k \mid j}^{i} \\
i}}{R_{2}^{i}} \underset{k j p}{ } z^{p} . \tag{3.11}
\end{align*}
$$

Proof The equations (3.2-5), (3.10) are proved at [10]. We will here prove (3.11).

Starting from the equation

$$
\begin{equation*}
\underset{1}{z_{\mid j}^{i}}=z_{, j}^{i}+L_{p j}^{i} z^{p} \tag{3.12}
\end{equation*}
$$

we get

$$
\begin{gathered}
z_{|j| k}^{i}=\left(z_{\mid j}^{i}\right)_{, k}+L_{k s}^{i} z_{1 j}^{s}-L_{k j}^{s} z_{1}^{i} \\
=z_{, j k}^{i}+L_{p j, k}^{i} z^{p}+L_{p j}^{i} z_{, k}^{p}+L_{k s}^{i}\left(z_{, j}^{s}+L_{p j}^{s} z^{p}\right)-L_{k j}^{s}\left(z_{, s}^{i}+L_{p s}^{i} z^{p}\right) .
\end{gathered}
$$

From here we substitute $z_{, j k}^{i}$ at (3.3) and we have

$$
\begin{gathered}
\mathcal{L}_{z} L_{j k}^{i}= \\
=\underset{\substack{1 \\
z_{2}}}{i}=\left(L_{k j, p}^{i}-L_{p j, k}^{i}+L_{k j}^{s} L_{p s}^{i}-L_{p j}^{s} L_{k s}^{i}\right) z^{p}+T_{j k, p}^{i} z^{p}-z_{, p}^{i} T_{j k}^{p}+z_{, j}^{p} T_{p k}^{i}+z_{, k}^{p} T_{j p}^{i} .
\end{gathered}
$$

According to (3.7) and (1.8) this equation becomes

$$
\begin{equation*}
\mathcal{L}_{z} L_{j k}^{i}=\underset{\substack{1 \mid k}}{i}{ }_{2 \mid k}+{\underset{2}{2}}_{i}^{i} z^{p}+\mathcal{L}_{z} T_{j k}^{i} \tag{3.13}
\end{equation*}
$$

From here

$$
\mathcal{L}_{z}\left(L_{j k}^{i}-T_{j k}^{i}\right) \stackrel{(3.7)}{=} \mathcal{L}_{z}\left(L_{j k}^{i}-L_{j k}^{i}+L_{k j}^{i}\right)=\mathcal{L}_{z} L_{k j}^{i}=\underset{|j| k}{i}+\underset{2}{R_{j k p}^{i}} z^{p}
$$

i.e. $(j \leftrightarrow k)$ we get (3.11).

The difference between (3.11) and (3.10) gives

$$
0=\underset{1 k \mid j}{z_{|k| j}^{i}}-z_{|j| k}^{i}+\left(\underset{2}{R_{k j p}^{i}}-\underset{1}{R_{j k p}^{i}}\right) z^{p},
$$

i.e.

$$
\begin{equation*}
\underset{|c| c \mid}{z_{|j| k}^{i}}-\underset{\left.\right|_{1}}{i} z_{1 \mid j}=\left(\underset{1}{R_{k j p}^{i}}-\underset{2}{R_{j k p}^{i}}\right) z^{p}=\underset{3}{R_{p j k}} z^{p}, \tag{3.14}
\end{equation*}
$$

as from $(3.6,7,8)$ we have

$$
\begin{equation*}
\underset{2}{R_{k j p}^{i}}-\underset{1}{R_{j k p}^{i}}=\underset{3}{R_{p j k}^{i}} . \tag{3.15}
\end{equation*}
$$

The equation (3.14) is one of the Ricci type identities at L_{N} (see [1], [3]).
3.3. Comparing (2.8) and (2.11), we can see that the Lie derivative of a tensor at space $\stackrel{0}{L}_{N}$ of symmetric connection $\stackrel{0}{L}_{j k}^{i}$ and Lie derivative at the space L_{N} of non-symmetric connection $L_{j k}^{i}$ are expressed in the same way: with respect to given symmetric connection ${ }^{0}{ }_{j k}^{i}$ in the first case, and in the second with respect to the symmetric part ${\underset{0}{j}}_{i j}^{i}$ of non-symmetric connection $L_{j k}^{i}$.

We will here consider an analogous problem in a case of a connection (that is not a tensor). At the space $\stackrel{0}{L}_{N}$ of symmetric connection $\stackrel{0}{L}_{\dot{j} k}^{i}$, by reason of $T_{j k}^{i}=0$ all the cases of expresses for the Lie derivative considered before, reduce to

$$
\begin{equation*}
\mathcal{L}_{z} \stackrel{0}{L}_{j k}^{i}=z_{; j k}^{i}+\stackrel{0}{R_{j k p}^{i}} z^{p}, \tag{3.16}
\end{equation*}
$$

where $\stackrel{0}{R}_{j k p}^{i}$ is curvature tensor, generated by ${ }^{0}{ }_{j k}^{i}$. Let us examine a space L_{N} of non-symmetric affine connection $L_{j k}^{i}$, where ${\underset{0}{0}}_{i}^{i}, T_{j k}^{i}$ are given by (2.9).

The main purpose is to express $\mathcal{L}_{z} L_{j k}^{i}$ (3.2') by covariant derivatives with respect to ${\underset{0}{j}}_{i}^{i}$, and $\underset{1}{R_{j k p}^{i}}$ by $\underset{0}{R_{j k p}^{i}}$, formed by $\underset{0}{L_{j k}^{i}}$. We have

$$
\begin{gather*}
z_{1}^{i}=z_{, j}^{i}+L_{p j}^{i} z^{p}=z_{, j}^{i}+\left(\underset{0}{L_{p j}}+\frac{1}{2} T_{p j}^{i}\right) z^{p}=z_{; j}^{i}+\frac{1}{2} T_{p j}^{i} z^{p} \tag{3.17}\\
z_{\mid j k}^{i}=\left(z_{; j}^{i}\right)_{\mid k}+\frac{1}{2}\left(T_{p j}^{i} z^{p}\right)_{\mid k}=\left(z_{; j}^{i}\right)_{, k}+L_{s k}^{i} z_{; j}^{s}-L_{j k}^{s} z_{; s}^{i}+\frac{1}{2}\left(T_{p j}^{i} z^{p}\right)_{\mid k} \\
=z_{; j k}^{i}+\frac{1}{2}\left[T_{s k}^{i} z_{; j}^{s}-T_{j k}^{s} z_{; s}^{i}+\left(T_{p j}^{i} z^{p}\right)_{\mid k}\right] \tag{3.18}
\end{gather*}
$$

According to (2.7) at [3] we have

$$
\begin{equation*}
\underset{1}{R_{j k p}^{i}}=\underset{0}{R_{j k p}^{i}}+\frac{1}{2} T_{j k ; p}^{i}-\frac{1}{2} T_{j p ; k}^{i}+\frac{1}{4} T_{j k}^{s} T_{s p}^{i}-\frac{1}{4} T_{j p}^{s} T_{s k}^{i} \tag{3.19}
\end{equation*}
$$

and substituting $(3.18,19)$ at $\left(3.2^{\prime}\right)$ we obtain

$$
\begin{gathered}
\mathcal{L}_{z} L_{j k}^{i}=z_{; j k}^{i}+\frac{1}{2}\left[T_{s k}^{i} z_{; j}^{s}-T_{j k}^{s} z_{; s}^{i}+\left(T_{p j}^{i} z^{p}\right)_{\mid k}\right] \\
+{\underset{0}{0}}_{i j k p}^{i} z^{p}+\frac{1}{2}\left[T_{j k ; p}^{i}-T_{j p ; k}^{i}+\frac{1}{2} T_{j k}^{s} T_{s p}^{i}-\frac{1}{2} T_{j p}^{s} T_{s k}^{i}\right] z^{p}+\left(T_{j p}^{i} z^{p}\right)_{\mid k}
\end{gathered}
$$

Based on (2.11), we get

As

$$
\mathcal{L}_{0} z\left(L_{j k}^{i}-\frac{1}{2} T_{j k}^{i}\right)=\mathcal{L}_{0}\left(L_{j k}^{i}-\frac{1}{2} L_{j k}^{i}+\frac{1}{2} L_{k j}^{i}\right)=\mathcal{L}_{0} z\left(\frac{1}{2} L_{j k}^{i}+\frac{1}{2} L_{k j}^{i}\right)=\mathcal{L}_{0}{\underset{0}{0}}^{i}{ }_{j k},
$$

from (3.20) we have

Based on the pointed facts follows
Theorem 3.2 Lie derivative of non-symmetric connection $L_{j k}^{i}$ can be given by the equation (3.20), where covariant derivative denoted by; and curvature tensor $R_{j k p}^{i}$ are formed with respect to symmetric part ${\underset{0}{0}}_{i j k}^{i}$ of the connection $L_{j k}^{i}$, and $\mathcal{L}_{0} \mathcal{Z}_{j k}^{i}$ is expressed according to (2.11) with respect to ${\underset{0}{0}}_{i j k}^{i}$. The Lie derivative of symmetric part of connection is given according to (3.21) i.e. it is the same as for symmetric connection (equation (3.16)).

References

[1] Minčić, S. M.: Ricci identities in the space of non-symmetric affine connexion. Matematički vesnik $\mathbf{1 0 (2 5)}, 2$ (1973), 161-172.
[2] Minčić, S. M.: New commutation formulas in the non-symetric affine connexion space. Publ. Inst. Math. (Beograd) (N.S) 22,(36) (1977), 189-199.
[3] Minčić, S. M.: Independent curvature tensors and pseudotensors of spaces with nonsymmetric affine connexion. Coll. math. soc. János Bolyai, 31. Dif. geom., Budapest (Hungary), 1979, 445-460.
[4] Stojanović, R.: Osnovi diferencijalne geometrije. Gradjevinska knjiga, Beograd, 1963.
[5] Schouten, J. A.: Ricci Calculus. Springer Verlag, Berlin-Gotingen-Heildelberg, 1954
[6] Yano, K.: Sur la theorie des deformations infinitesimales. Journal of Fac. of Sci. Univ. of Tokyo 6 (1949), 1-75.
[7] Yano, K.: The Theory of Lie Derivatives and its Applications. N-Holland Publ. Co., Amsterdam, 1957.
[8] Ivanova-Karatopraklieva, I., Sabitov, I. Kh.: Surface deformation. J. Math. Sci., New York 70, 2 (1994), 1685-1716.
[9] Ivanova-Karatopraklieva, I., Sabitov, I. Kh.: Bending of surfaces II. J. Math. Sci., New York 74, 3 (1995), 997-1043.
[10] Minčić, S. M., Velimirović, L. S., Stanković, M. S.: Infinitesimal Deformations of a Non-symmetric Affine Connection Space. Filomat 15 (2001).
[11] Mikes, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89, 3 (1998), 1334-1353.

