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Partitions and partially ordered sets 

JlRI KLASKA 

A b s t r a c t . The paper deals with the connection between partitions, non-isomorphic 
posets and non-isomorphic continuous posets. This connection is studied from the point 
of view of finding the recurrence formula for the number Pn of non-isomorphic n-element 
posets. We also determine the number of all non-isomorphic continuous posets for n < 13. 

1991 M a t h e m a t i c s S u b j e c t Class i f icat ion: 06A07 

1 Introduction 
Let us denote by N the set of all positive integers, No = N U {0}. A par t i t ion of 
the number n £ N is a sequence a = ( a i , . . . , a/.) £ Nk, where 1 < k < n, such 
tha t a\ + . . . + ak = n and a\ > . . . > a&. The terms az- are called the par t s of a. If 
the par t i t ion a has k% pa r t s equal to i, then we write a = (lkl, 2fe2, . . .}, where all 
terms with k2- = 0 may be omi t ted . For instance, ( 4 , 4 , 2 , 2 , 2 , 1 ) = ( l 1 ^ 3 ^ 2 ) = 
4 + 4 + 2 + 2 + 2 + 1 is a par t i t ion of the number 15. The set of all par t i t ions 
of n will be denoted by P ( n ) . A composit ion of the number n £ N is a sequence 
a = ( a i , . . . , a&) £ N^, where 1 < k < n , such tha t a i + . . . + a^ = n. For example, 
(2, 1,2,4, 4,2) = 2 + 1 + 2 + 4 + 4 + 2 is a composit ion of 15. If exactly k s u m m a n d s 
appear in a composi t ion a, we call a a k-composition. We shall denote by C ( n ) 
the set of all composi t ions of n and by C ( n , k) the set of all k-compositions of n. 
We recall t ha t there is a bijection between all k-compositions of n and (k — 1)-

subsets of {1, 2 , . . ., n— 1} . Hence there are ( , 1 ) k-compositions of n and 2 n ~ 1 

composit ions of n. A comprehensive survey of the theory of par t i t ions can be found 
in the monographs [1] or [6]. Further , our work [5] is useful for comparison of the 
procedures and m e t h o d s which are used in this paper . 

A part ial ly ordered set (A, < ) or poset, for short , is a set A together with a 
binary relation < on A, which is satisfying the following three axioms: 1. For all 
x £ Ay x < x (reflexivity). 2. If x < y and y < x, then x = y ( an t i symmet ry) . 
3. If x < y and y < z) then x < z ( t ransi t ivi ty) . We use the obvious nota t ion 
x < y to express x < y and x ^ y. When there is a possibility of confusion, 
we write precisely (A , <A). A binary relation < ^ is called a par t ia l order or an 
ordering. We say t ha t two posets {A,<A) and {B,<B) are isomorphic if there 
exists an order-preserving bijection <p : A —» B whose inverse is order-preserving 
bijection as well; t ha t is, for all x, y £ A: x <A y <£> <p{x) <B <p{y)- If two posets 
(A,<A) and (B,<B) are isomorphic, we write A = B. Next , we define a set 
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fi = 1 (Folklore) 

p-1 = 2 (Folklore) 

Pг = 5 (Folklore) 

Pл = 16 (Folklore) 

l\ = 63 (Folklore) 

Pб = 318 (Folkloгe) 

Pl = 2 045 (1972) J.Wright 

Pв = 16 999 (1977) S.K.Das 

PS = 183 231 (1984) R. H.Möhring 

Pю = 2 567 284 (1990) J. C. Culberson and G. J. E. 

Pll = 46 749 427 (1990) J. C. Culberson and G. J. E. 

Pvi = 1 104 891 746 (1991) C. Chaunier and N. Lygerös 

Piз = 33 823 327 452 (1992) C. Chaunier and N. Lygerös 

Rawlins 
Rawlins 

Table 1: Values Pn for non-isomorhic n-elements posets, n < 13 

P(A) := {(A, <A)\ <A is a partial order on A}. It is well-known that = is an 
equivalence on P(A). The blocks of a partition of the set P n := P(A)/ = are 
called non-isomorphic posets. In what follows A will denote the set of n elements. 
We shall denote by Pn the number of all non-isomorphic n-element posets. Non-
isomorphic posets can be represented by means of Hasse diagrams. We define: 
if x,y G -4, then we say y covers x if x < y and if no element z £ A satisfies 
x < z < y. The Hasse diagram of a finite poset A is the graph whose edges are the 
cover relations, and such that if x < y, then y is drawn "above" x (i.e. with the 
higher horizontal coordinate). We remark that the theory of posets is studied e. g. 
in the monograph [10]. Further, the basic results on posets are presented in the 
survey [4]. Moreover, the connection between partitions and posets is investigated 
in [9], but from a different point of view as in this paper. Now we recall the known 
values of Pn which were introduced in [2] by C. Chaunier and N. Lygeros. We 
underline that even finding of PQ was a difficult problem (see e.g. [8]). 

The structure of the paper is as follows. First we draw our attention to relations 
between numbers of non-isomorphic posets and non-isomorphic continuous posets 
and to their connection with partitions. Our relations will have the form of for­
mulas for Pn. Next we derive a new expression of the power series of the sequence 
Pn in the form of an infinite product. This is an analogy to Euler's form of the 
generating function of the sequence of numbers of partitions. Taking into account 
the main idea of Euler's method which was used in the proof of his well-known 
pentagonal theorem, we deduce further result. Moreover we determine another 
relationship between Pn and the number of non-isomorphic continuous posets. Fi­
nally we introduce the number of all non-isomorphic continuous posets for n < 13. 
Let us remark that in this paper we shall use only standard and classical methods 
(i.e. elementary combinatorical techniques and the machinery of formal power 
series). 
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2 Continuous partially ordered sets 

Definition 1. Let (A, <) be a partially ordered set, x,y £ A. We say that two 
elements x and y are comparable and we write x ^ t/, if x < y or y < x. Otherwise 
x and y are called incomparable. For x}y £ A we put x ~ y iff there are k £ N 
and k elements # i , . . . , Xk £ A such that x ^ a?i , . . . , Xk ^ y. The poset (A, <) is 
called continuous, if for all #, g £ A : x ~ y. Otherwise it is called discontinuous. 
Now we define a set C(A) := {(A,<A) £ P(-4); (A, <A) is continuous}. Then = 
is an equivalence relation on C(A) and the blocks of C n := C(A)/ = are called 
non-isomorphic continuous posets. We shall denote by Cn the number of all non-
isomorphic n-element posets. 

Example 1. There are exactly 10 non-isomorphic continuous 4-element posets, 
i.e. the set C 4 has 10 elements and C\ = 10. All non-isomorphic continuous 
4-element posets are shown in Figure 1. 

Figure 1 

Definition 2. Let (A, <) be a poset. For every x £ A we define a set Ax := {y £ 
A; x ~ y}. It is evident that for x, y £ A, x -̂  y it holds x ~ y <--> Ax = Ay and 
^ is an equivalence relation on A. Blocks of the set A/ ~ are called continuous 
parts of (A., <) . 

Example 2. Figure 2 shows the Hasse diagram of a poset with 16 elements. This 
poset is not continuous and has 4 continuous parts. Further, this poset corresponds 
to a partition (5, 5, 3, 3) = (32 , 52) of an integer 16. 

Figure 2 

Now we introduce the first assertion, where we show the connection between 
partitions, non-isomorphic posets and non-isomorphic continuous posets. 
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Theorem 1. For each positive integer n we have the formula 

P(n) 

where the sum extends over all partitions ( l ^ 1 ^ 2 , . . . ) of n. 

PROOF: Let a = (l f c l ,2 ; c 2 , . . . ) E P(n) be an arbitrary partition of n and let us 
consider a part of a which is created by exactly k2 summands i. Let N(k;,Ci) 
be the number of all different disarranged k;-tuples of a non-isomorphic con­
tinuous i-element poset. Clearly, N(k%)C%) — ^C%(Ci -f 1 ) . . . (C ; 4- k% — 1) = 

C% + k% - 1 
,, so that N(ki,C%) is equal to the number of k2-element combina-

K% J 
tions with a repetition of C% elements. For k; = 0 we put N(0, C%) := 1. Further, 
by means of the product rule, for each (l*1, 2k2 . . .) £ P(^) there are exactly 
N(ki,Ci) .. . N ( k n , C n ) elements of the set P(n) , which are composed from k% i-
element continuous parts for i = 1 , . . . ,n . Finally, by the addition rule we have 
pn = Ep(n) ^ ( * i ) C i ) • • --V(*n,C„). (1) is now evident. D 

Example 3. We find the number of non-isomorphic posets for n = 5 by means of 
(1). We shall suppose that we know the numbers C\ — 1, C2 = 1, C3 = 3, C4 = 10 
and C5 = 44. Clearly, 
P(5) = {(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1)} = 
= { (5 1 ) , (4 1 , l 1 ) , (3 1 , 2 1 ) , (3 1 , l 2 ) , (2 2 , l 1 ) , (2 1 , r 3 ) , ( l 5 )} . Now we have by the for-

^y.^(^) + (^)(c;) + (c^) + (^(c^ 

+ 5 + > ) CrM?) (c ,3+2)+(c ,r)=«+-«+3+1+1+1=6., 
3 The recurrence formula for Pn 

Let us denote by Nn(C, k) the number of all continuous k-element parts which 
occur in all elements of P n . Let x be an arbitrary continuous k-element part from 
P n . Then we shall denote by Nn(x,k) the number of all occurrances of x in all 
elements of P n . Now we derive a new recurrent formula for Pn which is analogous 
to that for the number of partitions of an integer n into summands (cf. [5]). 

Theorem 2. For each positive integer n we have the formula 

1 n _ 1 

Pn = — Y j a(n — k)P/c, where a(m) := Y^ kC^. (2) 
k=0 k\m 

PROOF: Clearly, we have the following identity 

n 

^2k-Nn{C,k) = n-Pn. (3) 
fc = l 
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We first determine the value Nn(C, k) for 1 < k < n. Let n = mk • k + zk, where 
zk < k is the remainder after division of n by k and mk is the partial quotient. Let 
x be an arbitrary continuous k-element part from P n and let 1 < r < mk. Then 
we see that the number of all elements of P n , which contain at least r k-parts x 
is Pn-rk. Hence the number of all k-parts x in P n is 

Nn(x, k) = Pn-k + ...+ Pn-mkk. (4) 

It is evident that the number Nn(x}k) is the same for every continuous k-part 
from P n . Hence by the product rule we have 

Nn(C\ k) = Ck(Pn-k + ... + Pn-mkk). (5) 

Further, the relations (3) and (5) together give the following formula for Pn 

1 n 

Pn = - V kCk(Pn-k + ...+ Pn-mkk). (6) 
n L—' 

k=i 

Now we simplify (6). Let 0 < s < n -~ l b e a natural number. Let us consider 
when Ps occurs among the members of the sum Pn-k + .. . + Pn-mkk, i. e. when 
n — r . k = 5 for some 1 < r < mk. Clearly, the relation n — r • k — s holds 
iff k divides n — s. Therefore Ps occurs in all the sums Pn-k + . . . + Pn-mkk 

where k divides n — s. Then the number of all occurrances of Ps in the sum 
zCLri kCk(Pn-k + • •. + Pn-mkk) is exactly Ylk\n-s *C*> since Ps occurs in the 
s u m Y^=i kCk(Pn-k + • • • + Pn-mkk) (kC/c)-times for every natural divisor k of 
the number n — s. Thus we have 

n n — 1 / \ 

YkCk(Pn-k + ...+ Pn-mkk) = J2\ 52kCk]P" 
k = l 5 = 0 \ /c|n-.s / 

This completes the proof of (2). • 

Example 4. Now we enumerate the value P6 by means of our formula (6). We 
suppose that the values P0 = 1, Pi = 1, P2 = 2, P3 = 5, P4 = 16, P5 = 63 and the 
values Ci = 1, C2 = 1, C3 = 3, C4 = 10, C5 = 44, C6 = 238 are already known. By 
formula (2) we have P6 = i (a (6)P 0 +a(5)P i+a(4)P 2 +a(3)P 3 +a(2)P 4 +a( l )P 5 ) = 
| ( ( 1 C I + 2C2 + 3C3 + 6C6)P0 + (lCi + 5C5)Pi + ( I d + 2C2 + 4C4)P2 + (lCi + 
3C3)P3 + ( lCi+2C 2 )P 4 + (lCi)P5 = ^(1440Po + 221Pi+43P2 + 10P3 + 3P4 + P5) = 
|(1440 + 221 + 86 + 50 + 48 + 63) = 318. 

4 The formal power series of the sequence Pn 

Let P(x) = J2n=o Pn%n be the formal power series of the sequence Pn. Using our 
recurrence (2), we first determine a new form of P(x). We remark that formal 
power series are studied comprehensively e.g. in [7]. 
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Theorem 3. The formal power semes P(x) of the sequence Pn has the form 

oo / 1 \Cn 

^ = n ( T T ^ ) • (?) 
n = l v 7 

PROOF: Let A(x) = £ ^ = 1 a ( n ) ^ n be the formal power series o fa (n) . Multipli-
cating formula (2) by nxn and then evaluating the sum for each positive integer 
n we obtain the following equation 

00 00 /n — l \ 

J^nPnxn = Y. E a < n - ^ P " ' (8) 
n = l n = l \/c = 0 / 

It is evident that the left hand side of (8) is equal to xP'(x) and one verifies easily 
that the right hand side of (8) is equal to the product A(x)P(x). Hence 

xP'(x) = A(x)P(x). (9) 

This equation yields In P(x) = JZn=i ^ ^ ^ n > which is nothing else than 

P(x) = exY>( j r ^ - x A . (10) 

Furthermore, we arrange the form of the series X^n°=i ^ ^ ^ n - We get 

n = l /c = l \ n = l / /c = l 

Finally, from this and from (10) we obtain the following relationship 

\ /c = l / /c = l V 7 

which is nothing else than (7). This completes the proof. • 

Using Theorem 3, we deduce further formula for Pn. In the proof we shall 
use the main idea of the proof of Euler's pentagonal formula for the number of 
partitions of an integer n (cf. [1]). 

Theorem 4. For each positive integer n we have the formulas 

Pn = -nTQn-kPk and Qn = £ ( ~ l ) * 1 + - + ^ ^ (11) 
k=0 s \ 1 / \ n / 

where the sum extends over the set S of all solutions [k\,..., kn] £ {0, 1 , . . . , n}n 

of the linear Diophantine equation lki 4- 2k2 -f . . . -4- nkn = n. 
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P R O O F : Let Q(x) = ^ ^ - Q Qnx
n be the formal power series such that P(x)-Q(x) = 

1. By (7) we have Y^=o QnXn = f l ^ ^ l - ^ ) ^ and the binomial theorem reads 

_ \i ( t'n 

n = l n = l i = 0 

Hence the general member of the series ^117=0 QnxH has the form 

П(1-*")с" = ПЕнп?Ь т ( 1 2 ) 

(_!) i l + ...+i» t ^ N . f ^ X JJ141 + . . .+J-*-, ( 1 3 ) 

Let 1 < s < m be an arbitrary positive integer. It is evident that in the form 
(13) all numbers ks are different, but the numbers j s may be the same and further 
0 < j s < n and 1 < ks < n. Now we see that there is a one to one correspon­
dence between the set 5 of all solutions [ j i , . . . , jn] £ {0, 1 , . . . , n}n of the linear 
Diophantine equation lj\ + 2j2 + . . . + jmkm = n and all cases when the equation 
j/iki + . . . + jmkm = n is satisfied. From this it follows that the coefficient by xn 

is 

Qn = yVi ) J l +
 +j»(cA...(cA- (H) 

Clearly, in the product P(x)Q(x) the coefficient by xn is __]^_-0 PkQn-k- Now we 
recall that P(x)Q(x) = 1. Hence in this product the coefficient by xn is equal to 0 
for n > 1. This implies __^=0 PkQn-k — 0 and so we have Pn = - X_nI0 PkQn-k-
This completes the proof. • 

Example 5. We again suppose that the numbers Ci,C2 ,C3,C4 and C5 are 
already known. First we find the number Q5 by means of the formula (11). We 
shall solve the linear Diophantine equation \j\ + 2j_ + 3^3 + 4j 4 + 5J5 = 5 over 
the set {0, 1,2,3,4, 5}5 . There are exactly 6 solutions of this equation and the set 
S of all such solutions is: 
5 = {[5, 0,0,0,0], [0,0,0,0,1], [2,0,1,0,0], [3,1,0,0,0], [0,1,1,0,0], [1,0,0,1,0]}. 

Now we have Q5 = (~1)5 ( ^ ) + ( -1 ) 1 ( ^ 5 ) + (~1)2 + 1 ( ^ ) (C j3) + 

= - C 5 + C2C3 + C1C4 = - 4 4 + 3 + 10 = - 3 1 . Analogously we find the values 
Q\,Qi,Qz and Q4 . Now by the formula (11) we have P5 = — (P0Q5 + P1Q4 + 
P2Q3 + P3Q2 + P4Q1) = 31Po + 7Pi + 2P2 + P3 + P4 = 63. 

Now we introduce two forms of the formal power series A(x) of a(n) and then we 
mention the connection of such series with the known series from number theory. 

Corollary 1. We have the following relations for the formal power series A(x) 

0 0 n 00 

^ ) = E ^ T ^ r = E„-^(*n). W 
n = l n = l 
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i. e. A(x) is a special case of the Lambert series, (see e. g. [3], page 146). 

P R O O F : We prove (15) by different ways of the summation of A(x). First we have 

A(x) = ^a(n)x» = ^nCnJ2*kn = E n C " x П E x k П = IlC» ^ -
nx" 

n = l n = l k — \ n = l /c = 0 n = l 

Quite similarly, 

oo oo oo oo oo oo 

A(x) = Y «(»)-" = £ £ nCn^ = Y I £ (Cnx^)' = Y x-c>(x* 
n = l n = l/c = l n = l k~\ n~\ 

Remark . We note that the important special cases of the Lambert series in the 
number theory are 

£ T T ^ = X>)- B and £r^ = £̂ )*"' nx 

т 
n = l 

where d(n) is the number and a(n) is the sum of all positive divisors of n ; re­
spectively. These series converge for every \x\ < 1. The connection between the 
arithmetic function a(n) and partitions is studied e. g. in [5]. 

Taking into account formula (2) and Table 1, we can directly compute the 
numbers Cn of non-isomorphic continuous posets. We have also determined initial 
members of the sequence Qn for n < 13. 

Finally we deduce another identity for Pn. In the proof we shall use relation 
(10) from the proof of Theorem 3. 

T h e o r e m 5. We have the followmg identity for the number Pn 

pn= Y I^M...^i). (16) 
**—' k\ ai ak 

ai + . - + a f e 6 L ( n ) 

P R O O F : Let F(x) := ^ = 1 ^ x n . Then (10) yields P(x) = eF^. Let us develop 
function P into the series of powers of the function F. We have 

pм=f:=и 7 ! =ž (̂f=i--)' 
m = 0 \ n = l / 

Hence after involution of the series F we obtain the development of function P 
into the series of powers of x. Now we determine the coefficient by xn in the 
development of function P. Let k be a natural number. Clearly, each member of 
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Co = 1 Qo = l 
Ci = 1 Qi = -1 

c2 
= 1 02 = -1 

Cз = 3 Qз = -2 
C4 = 10 Q.i = -7 

c5 
= 44 Q

5 = -31 

cб 
= 238 Qe = -184 

C7 = 1650 g7 = -1351 

C8 = 14512 Qs = -12 524 

C9 = 163 341 09 = -146 468 

Cio = 2360719 QlO = -2 177 570 

Cц = 43 944 974 Qn = -41374 407 

C12 = 1055 019 099 Q\2 = -1008 220 289 

CIЗ = 32 664484238 Q\з = -31558 946 774 

Table 2: Initial values of Cn and Qn for n < 13. 

the series Fk arises as the product of k factors. The general member of the series 
F^ has the form 

a ( f l l L q i 
aЫxak aiai) a(ak) 

,ai + . . + a f c 

fll / V fl/c / fll flfe 

If k > m, then there is no member with xn or with the lower power of x in 
the series Fk

} so that only a part of the series ]Cfc=i h.^k c°ntains members 

with xn. Furthermore, in the series Fk the coefficient by xn is ^^- . .. Z&l iff 
. . a i <-* 

ai -f- .. . -j- fl/c = n> Clearly, the number of coefficients with this property is equal 
to cardC(n, k). So in the series Fk the coefficient by xn is 

ii + ... + akeC(n,k 

q ( f l i 

fli 

Q(f l fe) 

fl/c 

and finally in the series Ylm=o TnT ^ n e c o e f f i c i e n t by xn is equal to 

E l Y~̂  a(fli) «(fl/e) __ v-^ 1 &(a\) 

fll fl/c 
ai + ... + a f c є C ( n ) 

k! fli 

Q(f l fe) 

fl/c 

By comparison of the coefficients by £n with the series X^L 0 Pn%n we obtain (16). 
This completes the proof. D 

Example 6. Now we demonstrate the identity (16) for n = 4. Since the values 
Ci, C2, C3 and C4 are already known, we easily compute that a ( l ) = 1, cv(2) = 3, 
a(3) = 10 and a(4) = 43. Further, applying the identity (19) we have 

P 1«(4) 1 t a ( 3 ) a ( l ) в ( l ) « ( 3 ) a(2)q(2) 
4 1! 4 2! V 3 1 1 3 2 2 + 



1 /a(2) a(l) a(i) g ( l ) a ( 2 ) g ( l ) g ( l ) g ( l ) g ( 2 ) \ 

3! V 2 1 1 1 2 1 1 1 2 ) 

l a ( l ) a ( l ) a ( l ) a ( l ) 1 4 3 1 1 0 7 1 9 1 1 _ 
-I _ _ _ _ _ _ _ _ _ _ _ |_ 1 1 = 16. 

4! 1 1 1 1 1! 4 2! 12 3! 2 4! 1 
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