Acta Mathematica et Informatica Universitatis Ostraviensis

Alfred Czogała

On integral Witt equivalence of algebraic number fields

Acta Mathematic et Informatica Universitatis Ostraviensis, Vol. 4 (1996), No. 1, 7--21

Persistent URL:
http://dml.cz/dmlcz/120498

Terms of use:

© University of Ostrava, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On integral Witt equivalence of algebraic number fields

Alfred Czogala

Abstract

Two algebraic number fields K and L are said to be integrally Witt equivalent if there exists a Witt ring isomorphism $W(K) \rightarrow W(L)$ mapping the Witt ring $W\left(\mathcal{O}_{K}\right)$ of the ring of integers \mathcal{O}_{K} of K onto the Witt ring $W\left(\mathcal{O}_{L}\right)$ of the ring of integers \mathcal{O}_{L} of L. The paper connects integral Witt equivalence with Hilbert-symbol equivalence of number fields, and gives a complete classification of quadratic number fields with respect to the integral Witt equivalence.

1991 Mathematics Subject Classification: Primary 11E81, Secondary 11E12

1 Introduction

The notion of the Witt ring of a field plays a central role in the algebraic theory of quadratic forms. While asking for a description of the isomorphism type of the Witt ring $W(K)$ of a general field K as an exclusive question, asking for criteria differentiating between nonisomorphic Witt rings turns out to be a menageable problem. Two fields with isomorphic Witt rings are said to be Witt equivalent and the problem consists in classifying fields with respect to Witt equivalence.
When K is an algebraic number field, there is another Witt ring to be considered, the Witt ring $W\left(\mathcal{O}_{K}\right)$ of symmetric bilinear forms over the ring \mathcal{O}_{K} of integers of K. We call $W\left(\mathcal{O}_{K}\right)$ the integral Witt ring of K.
The extension of scalars yields the ring homomorphism $W\left(\mathcal{O}_{K}\right) \longrightarrow W(K)$ which is known to be injective (cf. [4, Cor.3.3]). For this reason we will view the integral Witt ring of K as a subring of the Witt ring of K.
In this paper we consider Witt equivalent number fields K and L and the isomorphisms $\phi: W(K) \rightarrow W(L)$ of their Witt rings inducing isomorphisms of their integral Witt rings $W\left(\mathcal{O}_{K}\right)$ and $W\left(\mathcal{O}_{L}\right)$. If for fields K and L such an isomorphism ϕ of Witt rings exists, then we say that K and L are integrally Witt equivalent.
We will be even more restrictive and will consider only the so called strong isomorphisms of Witt rings, i. e., isomorphisms preserving the dimensions of anisotropic forms. It follows from the Harrison's Criterion (see [6]) that strong isomorphisms of isomorphic Witt rings always exist.
In [6] there has been introduced the concept of a reciprocity equivalence of two number fields as a necessary and sufficient condition for the fields to be Witt equivalent. Following [9] and [2] we will use the name Hilbert-symbol equivalence instead of reciprocity equivalence.

Recall that two algebraic number fields K and L are said to be Hilbert-symbol equivalent if there is a pair of maps (t, T), where

$$
t: \dot{K} / \dot{K}^{2} \longrightarrow \dot{L} / \dot{L}^{2}
$$

is a group isomorphism and

$$
T: \Omega(K) \longrightarrow \Omega(L)
$$

is a bijection of the set all primes of K onto the set of all primes of L, preserving Hilbert symbols in the sense that

$$
(a, b)_{P}=(t a, t b)_{T P}
$$

for all $a, b \in \dot{K} / \dot{K}^{2}$ and $P \in \Omega(K)$. One of the main results in [6] (see also [8], [9]) asserts that two global fields are Witt equivalent iff they are Hilbert-symbol equivalent.
In this paper we give a necessary and sufficient condition for integral Witt equivalence of number fields. The condition, called here the even-order-preserving Hilbert-symbol equivalence (EOP-Hilbert-symbol equivalence, or EOP equivalence, for short) is a special type of Hilbert-symbol equivalence defined as follows.
For a number field K we set

$$
\dot{K}_{e v}=\left\{x \in \dot{K}: \operatorname{ord}_{P} x \equiv 0(\bmod 2) \text { for every finite prime } P \text { of } K\right\}
$$

We say that a given Hilbert-symbol equivalence (t, T) between two number fields K and L is even-order-preserving, whenever

$$
t\left(\dot{K}_{e v} / \dot{K}^{2}\right)=\dot{L}_{e v} / \dot{L}^{2}
$$

In Section 2 we prove the following result.
Theorem 1. Two algebraic number fields K and L are integrally Witt equivalent if and only if they are EOP-Hilbert-symbol equivalent.

For a number field K, let $\Omega_{0}(K)$ be the set of all infinite and all dyadic primes of K, and let K_{P} be the completion of K at the prime P.
The following theorem gives a finiteness condition for the integral Witt equivalence. For a proof, see Section 3.

Theorem 2. Two number fields K and L are integrally Witt equivalent if and only if there is a bijective map $T: \Omega_{0}(K) \longrightarrow \Omega_{0}(L)$ and a group isomorphism $t: \dot{K}_{e v} / \dot{K}^{2} \longrightarrow \dot{L}_{e v} / \dot{L}^{2}$ satisfying the following conditions:

1. P is infinite real iff $T P$ is infinite real.
2. P is dyadic iff $T P$ is dyadic; moreover $\left[K_{P}: \mathbb{Q}_{2}\right]=\left[L_{T P}: \mathbb{Q}_{2}\right]$.
3. $t(-1)=-1$.
4. x is positive at P iff $t x$ is positive at $T P$, for all $x \in \dot{K}$ and all infinite real primes P.
5. For every dyadic prime P of K, the map t induces a Hilbert-symbol preserving group isomorphism

$$
t: K_{e v} \dot{K}_{P} / \dot{K}_{P}^{2} \longrightarrow L_{e v} \dot{L}_{T P} / \dot{L}_{T P}^{2}
$$

Theorem 2 allows us to give a complete classification of quadratic number fields with respect to integral Witt equivalence (EOP-Hilbert-symbol equivalence).
For a number field K, we write $g(K)$ for the number of dyadic primes of $K, r(K)$ for the number of real embeddings of $K, N(K)$ for the norm group of the extension $K / \mathbb{Q}, l(K)$ for the number of distinct prime divisors of the discriminant of K.
Theorem 3. Let K and L be quadratic number fields and let P and Q be arbitrary dyadic prime ideals in K and L, respectively. The fields K and L are integrally Witt equivalent if and only if the following nine conditions are satisfied:
(0) $-1 \in \dot{K}^{2} \Longleftrightarrow-1 \in \dot{L}^{2}$.
(I) $\quad r(K)=r(L)$.
(II) $g(K)=g(L)$.
(III) $-1 \in \dot{K}_{P}^{2} \Longleftrightarrow-1 \in \dot{L}_{Q}^{2}$.
(IV) $l(K)=l(L)$.
(V) $-1 \in N(K) \Longleftrightarrow-1 \in N(L)$.
(VI) 2 is prime in K or $2 \in|N(K)| \Longleftrightarrow 2$ is prime in L or $2 \in|N(L)|$.
(VII) If $-1 \notin N(K)$, then $-2 \in N(K) \Longleftrightarrow-2 \in N(L)$.
(VIII) If $g(K)=2$ and $-1 \in N(K)$, then $(2, a)_{P}=\left(2, a^{\prime}\right)_{Q}$,
where a, a^{\prime} are elements of $K_{e v}$ and $L_{e v}$, respectively, with negative norms.

Theorem 3 implies that there are infinitely many classes of integrally Witt equivalent quadratic number fields because fields with distinct numbers of prime factors of the discriminants are not integrally Witt equivalent. However, if we fix the number of prime factors of the discriminant, then from Theorem 3 it follows that there are at most 18 classes of integrally Witt equivalent quadratic number fields with the given number of prime factors of the discriminant. For example, the following fields $\mathbb{Q}(\sqrt{d}), d=-1,-2,-7,2,17,41$, represent quadratic number fields with exactly one prime factor of the discriminant.
The integral Witt equivalence of fields K and L is a sufficient condition for the existence of a strong isomorphism of Witt rings $W\left(\mathcal{O}_{K}\right) \rightarrow W\left(\mathcal{O}_{L}\right)$. Unfortunately, this condition is not necessary. We know from [5] that the integral Witt rings of the fields $\mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{7})$ are strongly isomorphic but, on other hand, these fields are not integrally Witt equivalent, according to Theorem 3.

EOP-Hilbert-symbol equivalence of number fields is closely related to tame Hilbert-symbol equivalence. We recall the definition. Let $P \in \Omega(K)$ be any finite prime. The Hilbert-symbol equivalence (t, T) is said to be tame at P if

$$
\operatorname{ord}_{P} a \equiv \operatorname{ord}_{T P} t a \quad(\bmod 2)
$$

for all $a \in \dot{K} / \dot{K}^{2}$. The equivalence (t, T) is said to be tame when it is tame for all finite primes of K.
It is clear that a tame equivalence is also an EOP equivalence. A preliminary version of the paper [6] contained the proof of the fact that tame equivalence implies integral Witt equivalence of number fields. This result has been omitted in the printed version of the paper. We also remark that an analogue of Theorem 2 for Hilbert-symbol equivalence has been proved in [1, Theorem 3.1] and for tame equivalence in [3, Theorem 2.1].

2 Hilbert-symbol equivalence versus integral Witt equivalence

If K is an algebraic number field, then we have the Knebusch-Milnor exact sequence (cf. [4, p. 93, 3.3, 3.4]):

$$
0 \longrightarrow W\left(\mathcal{O}_{K}\right) \longrightarrow W(K) \xrightarrow{\partial} \sum_{P} W\left(\bar{K}_{P}\right) \longrightarrow C(K) / C(K)^{2} \longrightarrow 1
$$

Here the sum runs over all finite primes of K, whereas \bar{K}_{P} and $C(K)$ denote the residue class field of the completion K_{P} of K at P and the ideal class group of K, respectively. The additive group homomorphism $\partial=\partial_{K}$ is the direct sum of the second residue class homomorphisms $\partial_{P}: W(K) \longrightarrow W\left(\bar{K}_{P}\right)$.
Although the homomorphism ∂_{P} depends on the choice of the local uniformizer at P, the kernel ker ∂_{P} doesn't depend on that choice. Hence the kernel of the homomorphism ∂_{K} doesn't depend on the choices of local uniformizers. Throughout the paper we will identify the ring $W\left(\mathcal{O}_{K}\right)$ with the kernel of ∂_{K}. Recalling the definition we can say, that two algebraic number fields K and L are integrally Witt equivalent iff there exists a strong isomorphism $\phi: W(K) \longrightarrow W(L)$ such that $\phi\left(\operatorname{ker} \partial_{K}\right)=\operatorname{ker} \partial_{L}$.
In the proof of the Theorem 1 we use the following
auxiliary facts from [7, Prop. 2.4]. Let $q \in W(K)$ and $a \in \dot{K}$. Then:
(1) $q \in W\left(\mathcal{O}_{K}\right) \Longrightarrow \operatorname{dis} q \in K_{e v}$,
(2) $\langle a\rangle \in W\left(\mathcal{O}_{K}\right) \Longleftrightarrow a \in K_{e v}$.

Proof of the Theorem 1: (Necessity). Let ϕ be a strong isomorphism of Witt rings of K and L such that $\phi\left(W\left(\mathcal{O}_{K}\right)\right)=W\left(\mathcal{O}_{L}\right)$. The isomorphism ϕ induces canonically a Harrison map t_{ϕ} such that $\phi(\langle a\rangle)=\left\langle t_{\phi} a\right\rangle$ for all $a \in \dot{K} / \dot{K}^{2}$. From [6] it follows that there exists a Hilbert-symbol equivalence (t, T) from K to L satisfying $t=t_{\phi}$. Now $a \in K_{e v}$ implies that $\phi(\langle a\rangle) \in W\left(\mathcal{O}_{L}\right)$, hence $t a \in L_{e v}$. This proves that the equivalence (t, T) is even-order-preserving.

To prove the converse statement we need some auxiliary results. Lemmas 2.1, 2.2 and Proposition 2.1 have been reproduced from the unpublished preliminary 1989 version of [6].
Let (t, T) be a Hilbert-symbol equivalence of algebraic number fields K and L. Pick a prime P of K. There exists a natural group epimorphism $\dot{K} / \dot{K}^{2} \rightarrow \dot{K}_{P} / \dot{K}_{P}^{2}$ whose kernel is $\operatorname{ker}_{1}=\left\{a \in \dot{K} / \dot{K}^{2} ;(a, x)_{P}=1\right.$ for every $\left.x \in \dot{K} / \dot{K}^{2}\right\}$. Consider the diagram

The map t preserves Hilbert symbols, hence t sends ker_{1} to ker_{2} and we obtain the following result.
Lemma 2.1. The map t induces a local Hilbert-symbol-preserving isomorphism

$$
t_{P}: \dot{K}_{P} / \dot{K}_{P}^{2} \longrightarrow \dot{L}_{T P} / \dot{L}_{T P}^{2}
$$

From the above lemma and Harrison's Criterion (see [6]) it follows that t induces a global Witt ring isomorphism $\phi=\phi_{t}$ and a local Witt ring isomorphism ϕ_{P} making the following diagram commute

The horizontal arrows are the canonical ring homomorphisms and the vertical arrows are ring isomorphisms mapping the class of $\langle a\rangle$ to the class of $\langle t a\rangle$ (resp. $\left.\left\langle t_{p} a\right\rangle\right)$.
Lemma 2.2. If the Hilbert-symbol equivalence (t, T) is tame at P, then there exists an isomorphism $\bar{\phi}_{P}: W\left(\bar{K}_{P}\right) \longrightarrow W\left(\bar{L}_{T P}\right)$ such that the following diagram is commutative

(with appropriate choices of the uniformizers).
Proof: Assume that the finite prime P is non-dyadic. Choose a local prime square class $\pi \in \dot{K}_{P} / \dot{K}_{P}^{2}$, that is, the square class of a local uniformizing parameter at P. From the congruence $\operatorname{ord}_{P} \pi \equiv \operatorname{ord}_{T P} t_{P} \pi(\bmod 2)$ it follows that $t_{P} \pi$ is
a local prime class in $\dot{L}_{T P} / \dot{L}_{T P}^{2}$. We choose the prime class $t_{P} \pi$ in $\dot{L}_{T P} / \dot{L}_{T P}^{2}$ to define the map $\partial_{T P}$.
The map ∂_{P} is a left inverse to the injection $j_{P}: W\left(\bar{K}_{P}\right) \longrightarrow W\left(K_{P}\right)$ mapping $\left\langle\bar{u}_{1}, \ldots, \bar{u}_{n}\right\rangle$ in $W\left(\bar{K}_{P}\right)$ to $\left\langle\pi u_{1}, \ldots, \pi u_{n}\right\rangle$ in $W\left(K_{P}\right)$. We define $\bar{\phi}_{P}=\partial_{T P} \circ \phi_{P} \circ j_{P}$. Then ϕ_{P} produces the desired commutative diagram.
Now consider a dyadic prime P. Then $T P$ is also dyadic (see [6]), and the Witt rings of the residue class fields are isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$. The second residue class homomorphism becomes $\partial_{P}(q) \equiv \operatorname{ord}_{P}(\operatorname{dis} q)(\bmod 2)$. In this case we define $\phi_{P}=$ id to be the identity map. Since t_{P} preserves orders modulo 2 , this produces the necessary commutative diagram.

Corollary 2.1. Assume that the Hilbert-symbol equivalence (t, T) is tame at P and $q \in W(K)$. Then $\partial_{P}(q)=0$ iff $\partial_{T P}(q)=0$.

Proposition 2.1. If the Hilbert-symbol equivalence (t, T) of K and L is tame, then the integral Witt rings $W\left(\mathcal{O}_{K}\right)$ and $W\left(\mathcal{O}_{L}\right)$ are isomorphic and ideal class groups modulo squares $C(K) / C(K)^{2}$ and $C(L) / C(L)^{2}$ are isomorphic.
Proof: It suffices to consider the following commutative diagram obtained from Knebusch-Milnor sequences and Lemma 2.2:

Here $\bar{\phi}=\sum_{P} \bar{\phi}_{P}$.
Proposition 2.2. If P is a finite non-dyadic prime of K with $-1 \notin \dot{K}_{P}^{2}$, then the Hilbert-symbol equivalence (t, T) is tame at P.
Proof: From [6] it follows that the prime $T P$ of L is finite and non-dyadic and -1 is not a local square at $T P$. The quadratic extensions $K_{P}(\sqrt{-1}) / K_{P}$ and $L_{T P}(\sqrt{-1}) / L_{T P}$ are unramified. Then we have

$$
(-1, a)_{P}=(-1)^{\operatorname{ord}_{P} a} \text { and }(-1, t a)_{T P}=(-1)^{\operatorname{ord}_{T P} t a}
$$

for every $a \in \dot{K}$. Now the equality of Hilbert symbols $(-1, a)_{P}=(-1, t a)_{T P}$ proves that the equivalence (t, T) is tame at P .

Proof of Theorem 1: (Sufficiency). Let (t, T) be an EOP-Hilbert-symbol equivalence between K and L, and $\phi=\phi_{t}$ be the Witt ring homomorphism induced by t. Consider $q \in W\left(\mathcal{O}_{K}\right)$ and assume that q is anisotropic over K. Then $\operatorname{dis} q \in K_{e v}$ implies dis $\phi q \in L_{e v}$.
Now we show that $\partial_{T P}(\phi q)=0$ for all finite primes P of K.
(1) First consider a dyadic prime P. Then $T P$ is also dyadic, and the Witt ring of the residue class field $\bar{L}_{T P}$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$. The second residue homomorphism $\partial_{T P}$ yields

$$
\partial_{T P}(\phi q)=\operatorname{ord}_{T P}(\operatorname{dis} \phi q) \bmod 2=0
$$

(2) If P is nondyadic with $-1 \notin \dot{K}_{P}^{2}$, then from Cor. 2.3 and Prop. 2.2 it follows that $\partial_{T P}(\phi q)=0$.
(3) Finally consider a finite non-dyadic prime P at which -1 is a local square. If $q=0$ in $W\left(K_{P}\right)$, then $\partial_{T P}(\phi q)=0$.
Now suppose that $q \neq 0$ in $W\left(K_{P}\right)$. Let $q=\left\langle a_{1}, \ldots, a_{n}\right\rangle$. The square class group of K_{P}^{\prime} consists of 4 elements, hence after renumbering a_{1}, \ldots, a_{n} (if necessary) we have the following decomposition over K

$$
q=\left\langle a_{1}, \ldots, a_{k}\right\rangle \perp\left\langle a_{k+1}, a_{k+2}\right\rangle \perp\left\langle a_{n-1}, a_{n}\right\rangle
$$

where $1 \leq k \leq 4$, the square classes of a_{1}, \ldots, a_{k} are pairwise distinct in $\dot{K}_{P} / \dot{K}_{P}^{2}$ and $a_{i}=a_{i+1} \bmod \dot{K}_{P}^{2}$ for $i=k+1, k+3, \ldots, n-1$.
The form $q_{1}=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ is anisotropic over K_{P} and all $\left\langle a_{i}, a_{i+1}\right\rangle$ are hyperbolic over K_{P}. Thus we can decompose the form q over K into the sum $q=q_{1} \perp q_{2}$, where q_{1} and q_{2} are anisotropic and hyperbolic over K_{P}, respectively (of course, $\operatorname{dim} q \leq 4)$. It is clear that $\partial_{P}\left(q_{2}\right)=0$, and this implies $\partial_{P}\left(q_{1}\right)=0$. Analyzing the anisotropic forms over K lying in the kernel of the second residue class homomorphism we deduce that q_{1} can be written as $\langle a\rangle,\langle b\rangle$ or $\langle a, b\rangle$, where $a, b \in \dot{K}$ are P-adic units modulo squares and $a \in \dot{K}_{P}^{2}, b \notin \dot{K}_{P}^{2}$. We also have the decomposition $\phi q=\phi q_{1} \perp \phi q_{2}$ over the field L. Moreover, ϕq_{1} and ϕq_{2} are anisotropic and hyperbolic over $L_{T P}$, respectively. Thus $\operatorname{dis}\left(\phi q_{2}\right)$ is a local square at $T P$. Hence $\operatorname{ord}_{T P}\left(\operatorname{dis} \phi q_{1}\right)$ is even. When q_{1} is a one-dimensional form, we get $\partial_{T P}\left(\phi q_{1}\right)=0$. If $q_{1}=\langle a, b\rangle$, then $\phi q_{1}=\langle t a, t b\rangle$. Because ord ${ }_{T P} t a t b$ is even and $(t a, t b)_{T P}=(a, b)_{P}=1$, we get $\partial_{T P}\left(\phi q_{1}\right)=0$.
In both cases we have $\partial_{T P}(\phi q)=\partial_{T P}\left(\phi q_{1}\right)=0$.
Now consider the EOP-Hilbert-symbol equivalence $\left(t^{-1}, T^{-1}\right)$, and let ψ be the Witt ring isomorphism induced by t^{-1}. From the above it follows that $\psi\left(W\left(\mathcal{O}_{L}\right)\right) \subseteq W\left(\mathcal{O}_{K}\right)$. As a result we get $\phi\left(W\left(\mathcal{O}_{K}\right)\right)=W\left(\mathcal{O}_{L}\right)$.

3 Integral Witt equivalence

In this section we prove the characterization of the integral Witt equivalence given in Theorem 2. According to Theorem 1, we can switch to even-order-preserving Hilbert-symbol equivalence. We begin with introducing some notation. For a number field K let K_{+}denote the set of totally positive elements of K and let

$$
K_{s q}=\left\{x \in K_{e v}: x \in \dot{K}_{P}^{2} \text { for every prime } P \in \Omega_{0}(K)\right\} .
$$

We write $\rho=\rho(K)$ for the 2-rank of the ideal class group $C(K)$ of $K, \sigma=\sigma(K)$ for the 2 -rank of the subgroup of $C(K)$ generated by the classes of dyadic ideals
of K and $c=c(K)$ for the number of infinite complex primes of K. According to [3] we have

$$
\begin{gathered}
\operatorname{dim}_{\mathbf{F}_{2}} \dot{K}_{e v} / \dot{K}^{2}=r+c+\rho \\
\operatorname{dim}_{\mathbf{F}_{2}} K_{s q} / \dot{K}^{2}=\rho-\sigma
\end{gathered}
$$

Proposition 3.1. Let (t, T) be an EOP-Hilbert-symbol equivalence between K and L. Then t induces the following group isomorphisms.
(a) $K_{e v} \cap K_{+} / \dot{K}^{2} \cong L_{e v} \cap L_{+} / \dot{L}^{2}$.
(b) $K_{s q} / \dot{K}^{2} \cong L_{s q} / \dot{L}^{2}$.

Proof: . This follows from [6].

Clearly EOP equivalence preserves all those properties of fields which are preserved by a plain Hilbert-symbol equivalence (the degree over \mathbb{Q}, the number of real embeddings, the number of dyadic primes, etc; cf. [6]). Now we apply Prop. 3.1 to show that an EOP equivalence preserves some additional arithmetic properties of fields.

Corollary 3.1. If K and L are EOP-Hilbert-symbol equivalent, then
(i) the ideal class groups of K and L have the same 2-ranks;
(ii) the narrow ideal class groups of K and L have the same 2-ranks;
(iii) the subgroups of ideal class groups of K and L generated by the classes of dyadic ideals have the same 2-ranks.

Proof: (i) and (iii) follow from Prop. 3.1. If K is a number field and $\hat{\rho}(K)$ denotes 2-rank of the narrow ideal class group of K, then [4] states that the order of the group $K_{\epsilon u} \cap K_{+} / \dot{K}^{2}$ is equal to $2^{c(K)} \hat{\rho}(K)$. Thus (ii) follows from Prop.3.1.

Proof of Theorem 2: (Necessity.) Let (t, T) be an EOP-Hilbert-symbol equivalence between K and L. Restricting T to $\Omega_{0}(K)$ and t to $K_{e v} / \dot{K}^{2}$ we obtain the maps t and T as stated in Theorem 2. Then, according to [6], (1) - (5) are satisfied.

In the proof of the sufficiency part of Theorem 2 we use the concept of a small equivalence (cf. [6]). According to [6] we say that a finite set S of primes of K is sufficiently large when S contains all infinite and dyadic primes, and when the class number $h^{S}(K)$ of the ring of S-integers of K is odd. We write $U_{K}(S)$ for the group of S-units of K. The S-unit square class group $U_{K}(S) / U_{K}(S)^{2}$ will be identified with its image under the natural embedding $U_{K}(S) / U_{K}(S)^{2} \longrightarrow \dot{K} / \dot{K}^{2}$. The following statement follows from [6, Lemma 5].
If S is a sufficiently large set of primes of K, then a square class a in \dot{K} / \dot{K}^{2} is represented by an S-unit iff $\operatorname{ord}_{P} a \equiv 0(\bmod 2)$ for every finite $P \in \Omega(K) \backslash S$.

Corollary 3.2. If S is a sufficiently large set of primes of K, then the group $\dot{K}_{e v} / \dot{K}^{2}$ is a subgroup of $U_{K}(S) / U_{K}(S)^{2}$.

Let S be a sufficiently large set of primes of K and consider the direct product of the groups $\dot{K}_{P} / \dot{K}_{P}^{2}$ over all $P \in S$,

$$
G(S)=\prod_{P \in S} \dot{K}_{P} / \dot{K}_{P}^{2}
$$

The Lemma 5 in [6] states that the map $i_{s}: U_{K}(S) / U_{K}(S)^{2} \longrightarrow G(S)$ which maps the square class of $y \in K$ to the tuple (y, \ldots, y) where the P-th coordinate represents the image of the global square class y in $\dot{K}_{P} / \dot{K}_{P}^{2}$, is injective.
In the sequel we use the same symbol for $x \in \dot{K}$ and its canonical image in \dot{K} / \dot{K}^{2}. We will do the same with cosets of K modulo some other subgroups of K.

Proof of Theorem: 2. (Sufficiency.) Let t and T denote maps satisfying the conditions (1) - (5) in Theorem 2. We first observe that K and L have the same degree over \mathbb{Q} and $r(K)=r(L), c(K)=c(L), g(K)=g(L)$. Thus $\rho(K)=\rho(L)$. From (4) and (5) it follows that t induces the isomorphism $K_{s q} / \dot{K}^{2} \cong L_{s q} / \dot{L}^{2}$. Therefore we have $\sigma(K)=\sigma(L)$. Write $m=\rho-\sigma, n=r+c+\sigma$. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, \ldots, b_{m}\right\}$ be bases for $K_{e v} / K_{s q}$ and $K_{s q} / \dot{K}^{2}$, resp., where we choose $b_{1}=$ -1 whenever $-1 \in K_{s q} \backslash \dot{K}^{2}$. Then the set $B_{K}=\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\}$ is a basis for $K_{e v} / \dot{K}^{2}$ and the set $B_{L}=\left\{t a_{1}, \ldots, t a_{n}, t b_{1}, \ldots, t b_{m}\right\}$ is a basis for $L_{e v} / \dot{L}^{2}$, and moreover, $\left\{t a_{1}, \ldots, t a_{n}\right\}$ is a basis for $L_{e v} / L_{s q}, \quad\left\{t b_{1}, \ldots, t b_{m}\right\}$ is a basis for $L_{s q} / \dot{L}^{2}$ and $t b_{1}=-1$ whenever $-1 \in L_{s q} \backslash \dot{L}^{2}$.
We pick up non-dyadic prime ideals Q_{1}, \ldots, Q_{m} in K and R_{1}, \ldots, R_{m} in L such that

$$
\left(\frac{b_{i}}{Q_{i}}\right)=\left(\frac{t b_{i}}{R_{i}}\right)=-1, \quad\left(\frac{x}{Q_{i}}\right)=\left(\frac{t x}{R_{i}}\right)=1
$$

for each $x \in B \backslash\left\{b_{i}\right\}, \quad i=1,2, \ldots, m$.
From [3, Lemma 2.6] it follows that the sets of primes
$S=\Omega_{0}(K) \cup\left\{Q_{1}, \ldots, Q_{m}\right\}$ and $S^{\prime}=\Omega_{0}(L) \cup\left\{R_{1}, \ldots, R_{m}\right\}$ are sufficiently large in K and L, respectively. Thus the groups $\dot{K}_{e v} / \dot{K}^{2}$ and $\dot{L}_{e v} / \dot{L}^{2}$ are subgroups of $U_{K}(S) / U_{K}(S)^{2}$ and $U_{L}\left(S^{\prime}\right) / U_{L}\left(S^{\prime}\right)^{2}$, respectively. We extend T to a map T : $S \rightarrow S^{\prime}$ by putting $T\left(Q_{i}\right)=R_{i}$. Then our choice of Q_{i}, R_{i} implies that t induces a group isomorphism

$$
t_{P}: K_{e v} \dot{K}_{P} / \dot{K}_{P}^{2} \longrightarrow L_{e v} \dot{L}_{T P} / \dot{L}_{T P}^{2}
$$

for each $P \in\left\{Q_{1}, \ldots, Q_{m}\right\}$.
From [3, Lemma 2.9] it follows that, for $P \in S$, the group isomorphism t_{P} can be extended to a group isomorphism $t_{P}: \dot{K}_{P} / \dot{K}_{P}^{2} \longrightarrow \dot{L}_{T P} / \dot{L}_{T P}^{2}$ in a symbol preserving way. In this situation, the pair S, S^{\prime} is called a suitable pair for K and L, according to [1].
Let τ_{S} be the product of isomorphisms t_{P} for $P \in S$. We have the following diagram

According to [1] we put

$$
\begin{gathered}
H_{S}=\left\{\alpha \in U_{K}(S) / U_{K}\left(S^{\prime}\right)^{2} ; \tau_{s} \circ i_{s}(\alpha) \in i_{S^{\prime}}\left(U_{L}\left(S^{\prime}\right) / U_{L}\left(S^{\prime}\right)^{2}\right)\right\} \\
H_{S^{\prime}}=i_{S^{\prime}}^{-1} \circ \tau_{S} \circ i_{S}\left(H_{S}\right) \\
d_{S S^{\prime}}=\operatorname{dim}_{\mathbf{F}_{2}} U_{K}(S) / U_{K}\left(S^{2} / H_{S}\right.
\end{gathered}
$$

We have $\tau_{S} \circ i_{S}(a)=i_{S^{\prime}}(t a)$ for each $a \in \dot{K}_{e v} / \dot{K}^{2}$. Therefore the groups $\dot{K}_{e v} / \dot{K}^{2}$ and $\dot{L}_{e v} / \dot{L}^{2}$ are subgroups of H_{S} and $H_{S^{\prime}}$, respectively. By the ObstructionKilling Lemma (see [1]), there exists a suitable pair S_{1}, S_{1}^{\prime} for K and L with $S \subseteq S_{1}, S^{\prime} \subseteq S_{1}^{\prime}$ and $d_{S S^{\prime}}<d_{S_{1} S_{1}^{\prime}}$. An analysis of the proof of $[1$, ObstructionKilling Lemma] shows that

$$
\tau_{S_{1}} \circ i_{S_{1}}(a)=i_{S_{1}^{\prime}}(t a)
$$

for each $a \in \dot{K}_{e v} / \dot{K}^{2}$.
Indeed, in the proof $S_{1}=S \cup\left\{P_{1}\right\}$ and $S_{1}^{\prime}=S^{\prime \prime} \cup\left\{P_{1}^{\prime}\right\}$ where P_{1} and P_{1}^{\prime} are suitably chosen primes in K and L, respectively. Moreover, it follows from the proof that each element of H_{S} is a local square at P_{1} and each element of $H_{S^{\prime}}$ is a local square at P_{1}^{\prime}. Thus putting

$$
G\left(S_{1}\right)=G(S) \times \dot{K}_{P_{1}} / \dot{K}_{P_{1}}^{2}, \quad G\left(S_{1}^{\prime}\right)=G\left(S^{\prime}\right) \times \dot{L}_{P_{1}^{\prime}} / \dot{L}_{P_{1}^{\prime}}^{2}
$$

and

$$
\tau_{S_{1}}=\tau_{S} \times t_{P_{1}}
$$

we have

$$
\tau_{S_{1}} \circ i_{S_{1}}(a)=\tau_{S_{1}}\left(i_{S}(a), 1\right)=\left(\tau_{S} \circ i_{S}(a), 1\right)=\left(i_{S^{\prime}}(t a), 1\right)=i_{S_{1}^{\prime}}(t a)
$$

for all $a \in \dot{K}_{e v} / \dot{K}^{2}$.
Continuing the process (at most $d_{S S^{\prime}}$ times) we obtain a suitable pair S_{d}, S_{d}^{\prime} for K and L such that

$$
H_{S_{d}}=U_{K}\left(S_{d}\right) / U_{K}\left(S_{d}\right)^{2}
$$

and

$$
\tau_{S_{d}} \circ i_{S_{d}}(a)=i_{S_{d}^{\prime}}(t a)
$$

for all $a \in \dot{K}_{e v} / \dot{K}^{2}$.
Now we put $\hat{t}=i_{S_{d}^{\prime}}^{-1} \circ \tau_{S_{d}} \circ i_{S_{d}}$. Then we have the following commutative diagram

and moreover $\hat{t} a=t a$ for every $a \in \dot{K}_{e v} / \dot{K}^{2}$.
In this situation we say that there is a small S_{d}-equivalence between K and L. From [6] it follows that the S_{d}-equivalence can be extended to a Hilbert-symbol equivalence of K and L which is tame outside S_{d}. The equivalence is even-orderpreserving. This proves Theorem 2.

4 Integral Witt equivalence of quadratic number fields

In this section we prove Theorem 3. As in the previous section we use Theorem 1 to replace integral Witt equivalence by even-order-preserving Hilbert-symbol equivalence. From [6] it follows that the field $\mathbb{Q}(\sqrt{-1})$ constitutes a singleton class of Hilbert-symbol equivalence. Thus in this section we assume that K and L are quadratic fields distinct from $\mathbb{Q}(\sqrt{-1})$.
The proof of Theorem 3 will be based on some properties of the following groups: $\dot{K}_{e v} / \dot{K}^{2}, \quad K_{e v} / K_{e v} \cap K_{+}$and $K_{e v} \cap K_{+} / \dot{K}^{2}$.
Assume that $K=\mathbb{Q}(\sqrt{d})$, where d is a square-free integer $\neq 1$. Let $\left\{p_{1}, \ldots, p_{l}\right\}$ be the pairwise distinct prime divisors of the discriminant of K; we agree that $p_{1}=2$, whenever $d \equiv 3(\bmod 4)$. The order of the group $K_{e v} \cap K_{+} / \dot{K}^{2}$ is equal to 2^{c+l-1} and one of the sets

$$
\begin{gathered}
\left\{-1, p_{1}, \ldots, p_{l-1}\right\} \text { if } d<0, \\
\left\{p_{1}, \ldots, p_{l-1}\right\} \text { if } d>0
\end{gathered}
$$

forms a basis for $K_{e v} \cap K_{+} / \dot{K}^{2}$, (cf. [4]). From [3, Prop.3.3] it follows that the 2 -rank $\sigma(K)$ of the subgroup of the ideal class group of K generated by the classes of dyadic ideals is equal to 0 when 2 is prime in K or $2 \in|N(K)|$, and is equal to 1 otherwise.
The Gauss Genus Theory states that the 2 -rank $\rho(K)$ of the ideal class group of K is equal to $l-1$ when K is non-real or $-1 \in N(K)$, and is equal to $l-2$ when K is real and $-1 \notin N(K)$.

Lemma 4.1. Let $K=\mathbb{Q}(\sqrt{d})$ be a real quadratic field with $-1 \notin N(K), \sigma(K)=0$ and let P be arbitrarily chosen dyadic prime in K. Then $-1 \in\left(K_{e v} \cap K_{+}\right) \dot{K}_{P}^{2} / \dot{K}_{P}^{2}$ iff $-2 \notin N(K)$.

Proof: From $-1 \notin N(K)$ it follows that there is a prime divisor p of the discriminant of K congruent to 3 or $7 \bmod 8$. If $p \equiv 7(\bmod 8)$, then $-p$ is a local
square at P. If $p \equiv 3(\bmod 8)$, then $2 \notin N(K)$. It follows that 2 is prime in $\mathrm{K}($ i. e., $d \equiv 5 \quad(\bmod 8))$. Thus $-p$ is a square in the field $K_{P}=\mathbb{Q}_{2}(\sqrt{d})$.
Now assume that $-2 \in N(K)$. Then every prime divisor of d is congruent to 1 , 2 or $3 \bmod 8$. Therefore $d \equiv 1,2,3,6 \quad(\bmod 8)$. Moreover, $a \equiv 1,2,3,6(\bmod 8)$ and $d a \equiv 1,2,3,6 \quad(\bmod 8)$ for each $a \in K_{e v} \cap K_{+}$. This proves that $-a \notin \dot{K}_{P}^{2}$ for each element a of $K_{e v} \cap K_{+}$.

If K is non-real, then $K_{e v}=K_{e v} \cap K_{+}$. If K is real, then the group $K_{e v} / K_{e v} \cap K_{+}$ is 2-element with basis $\{-1\}$, or is 4 -element with basis $\{-1, a\}$ depending on whether $-1 \notin N(K)$ or $-1 \in N(K)$, where a is an element of K with negative norm.

Proof of Theorem 3: Assume that (t, T) is an EOP-Hilbert-symbol equivalence between K and L. The conditions (0) - (III) are consequences of Hilbert-symbol equivalence of K and L (cf. [6]).
The condition (IV) follows from Prop. 3.1.
The map t induces a group isomorphism $K_{e v} / K_{e v} \cap K_{+} \cong L_{e v} / L_{e v} \cap L_{+}$hence (V) holds.

Corollary 3.1 and Gauss Genus Theory imply the condition (IV).
The condition (VI) follows from Cor. 3.1.
From Theorem 2 and Prop. 3.1 it follows that the map t induces a group isomorphism

$$
\left(K_{e v} \cap K_{+}\right) \dot{K}_{P}^{2} / \dot{K}_{P}^{2} \cong\left(L_{e v} \cap L_{+}\right) \dot{L}_{T P}^{2} / \dot{L}_{T P}^{2}
$$

for every dyadic prime P. Since $T P$ is dyadic, (VII) follows from Lemma 4.1. Now we prove (VIII). First we show that the Hilbert symbols in question do not depend on the choice of elements a and a^{\prime} and on the choice of dyadic primes P, Q. Let a be an element of K with negative norm. Then $N(a) \in-\dot{\mathbb{Q}}^{2}$ and

$$
(2, a)_{P}=(2, \bar{a})_{\bar{P}}=(2,-a)_{\bar{P}}=(2, a)_{\bar{P}}
$$

(here \bar{P} is the conjugate ideal of P and \bar{a} is the conjugate element of a). The assumptions in (VIII) imply that every prime factor p of the discriminant of K is congruent to $1 \bmod 8$. Hence $K_{e v} \cap K_{+}=K_{s q}$. If a_{1} is any element of $K_{e v}$ with negative norm, then $\pm a_{1} a \in K_{e v} \cap K_{+}$. Thus $a_{1}= \pm a$ in $\dot{K}_{P} / \dot{K}_{P}^{2}$. This implies the equality of the Hilbert symbols

$$
\left(2, a_{1}\right)_{P}=(2, \pm a)_{P}=(2, a)_{P}
$$

To prove (VIII) we can assume that $T P=Q$ since, as we have already shown, the Hilbert symbols in question do not depend on the choice of dyadic primes. Let a be an element of $K_{e v}$ with negative norm. The Prop. 3.1 implies that the element $t a$ of $L_{e v}$ has negative norm. The above yields that without loss of generality we can assume $a^{\prime}=t a$. Thus we get

$$
(2, a)_{P}=(2, t a)_{T P}=\left(2, a^{\prime}\right)_{Q}
$$

Now we prove the sufficiency of (0) - (VIII) íbr K and L to be EOP equivalent. Thus, we assume that A^{\prime} and L satisfy (0) - (VIII), and we construct two maps T and t satisfying the hypothesis of Theorem 2.
If - $1(£ N(K)$ we define T to be an arbitrary bijection that sends infinite reál primes and dyadic primes of K onto infinite reál primes and dyadic primes of L. respectively.
Now assume that -1 $£ N(K)$. First we choose elements a and a^{\prime} of $K_{e v}$ and $L_{e v}$, resp., with negative norms. We write $P_{O Q l l} P o o_{2}{ }^{\text {an }<\wedge}$ Qoo $_{15}$ Qoo ${ }_{2}{ }^{\text {Ior }}$ the two infinite reál primes of A and L , respectively. We can assume that a is positive at $\mathrm{P}_{\mathrm{n} 01}$ and negative at POQ_{2} and sirnilarly that a^{\prime} is positive at $Q_{o Q l}$ and negative at $Q o o_{2}-$ We put rPoo, $=Q o o_{x}$ and $7 \mathrm{Poo}_{2}=Q o o_{2}>$
$H g(K)$ - i and P, Q are the unique dyadic primes in $/ 1$ and L , respectively, then we put $T P-Q$.
Let $\wedge^{\wedge}(/ i ́)=2$ and let $\mathrm{P}, \mathrm{P}^{\prime}$ and $\mathrm{Q}, \mathrm{Q}^{\prime}$ be distinct dyadic primes of K and L , respectively. By Hilbert reciprocity $(-1, a) p /=-(-1, a) p$ and $\left(-1, \mathrm{a}^{\mathrm{r}}\right) \mathrm{g}^{\prime}=$ $-\left(-1,\left(I^{\prime}\right) Q\right.$. We can assume $(-1, a) p-\left(-1, \mathrm{a}^{\wedge} \mathrm{g}=1\right.$, Then we put $T P-Q$ and $T P^{\prime}-Q^{\prime}$. The elements a and a^{\prime} chosen above will be ušed in the construction oit.
The isomorphism t will be defined on a suitably chosen basis of the group $K_{e v} / K^{l}$. We construct this basis in the samé way as the basis in the proof of [3, Thm 1]. We use the isomorphism

$$
K_{e v} / K^{2}=K_{e v} / K_{e v} \quad \mathrm{O} \quad K+\quad 0 \quad K_{e v} \quad \mathrm{n} \quad K+/ K_{s q} \quad 0 \quad K_{s q} / I<^{2}-
$$

The conditions (I) - (VII) irnply that the orders of the direct surnmands are equal to the orders of the corresponding direct surnmands in the decomposition

$$
L_{e v} / L^{2} \wedge \text { Lev I Lev H } \mathrm{L}_{+} 00 L_{e v} \mathrm{n} L+/ L_{8 q} 00 L_{s q} / L^{2}
$$

First we define t on $K_{s q} / K^{2}$. Let $\left\{6 \mathrm{i}, \ldots, 6_{\mathrm{m}}\right\}$ and $\left\{6 \mathrm{i}, \ldots, 6^{\wedge}\right)$ be bases for $K_{s q} / K^{2}$ and $L_{s q} / L^{2}{ }_{y}$ where $\& i=6^{\wedge}=-1$, whenever $-1 \mathrm{E} \mathrm{A}^{\prime}{ }_{5 g}$. Then we put $16 \mathrm{j}=6$ for ? - $1,2, \ldots, m$.
The group $K_{e v} / K_{e v} \mathrm{D} \mathrm{A}+$ is non-trivial only when $/ \mathrm{i}$ is reál and has basis $\{-1\}$ when -1 $£ \mathrm{~A}^{\wedge}\left(\mathrm{A}^{\mathrm{r}}\right)$, and $\{-1, \mathrm{a}\}$ when $-1 \mathrm{e}^{\mathrm{r}}\left(\mathrm{A}^{\prime}\right)$. We put $/(-1)=-1$ and $t a-a^{\prime \prime}$.
Now we choose a basis P^{\wedge} of $/ \mathrm{i}_{\mathrm{e} 1}, \mathrm{O} K+/ K_{s q}$. We consider two cases depending on the number of dyadic primes.
Part I. $g(K)-1$. The group $\mathrm{A}^{\prime}{ }_{\mathrm{et}}$; fi $K+/ K_{s q}$ is canonically isornorphic to $\left(\mathrm{A}^{\prime}{ }_{\mathrm{evv}} \mathrm{O}\right.$ $\left.K_{+}\right) k l / k i$.
1.1. If A is non-real, the group $\mathrm{A}_{\mathrm{e} \text { í, }}^{\prime} \mathrm{O} K+/ K_{s q}$ has a basis $\{\mathrm{v}\}$ or $\{\mathrm{v}, ? \mathrm{i}\}$ depending on whether $a(K)$ is equal 0 or 1 . In both cases we can assume that $v--\mathrm{T}$, whenever - 1 is not locally a square at P .
1.2. When $-1 £ N(K)$, the group $K_{e v} \mathrm{D} K+/ K_{s q}$ is nontrivial only if $\operatorname{cr}\left(\mathrm{A}^{\mathrm{r}}\right)=1$ and it has order 2. Let $\{\mathrm{u}\}$ be a basis of $K_{e v} C \backslash K+/ K_{s q}$ in the nontrivial čase. The Hilbert reciprocity implies that $(-1$, á) $p-(-1,-a) p--1$, thus $\{-1, \mathrm{a}\}$
are independent in $\dot{K}_{P} / \dot{K}_{P}^{2}$. Moreover $(-1, u)_{P}=(a, u)_{P}=1$, hence $-1, a, u$ are independent in $\dot{K}_{P} / \dot{K}_{P}^{2}$, if $\sigma(K)=1$.
1.3. Now assume that K is real and $-1 \notin N(K)$. The group $K_{e v} \cap K_{+} / K_{s q}$ has a basis $\{v\}$ if $\sigma(K)=0$, and $\{v, u\}$ if $\sigma(K)=1$. If $\sigma(K)=1$, then the subspace of the dyadic unit square class group U_{P} / U_{P}^{2} (with the Hilbert symbol as inner product) generated by $-1, u, v$ is totally isotropic, hence $-1, u, v$ are dependent in $\dot{K}_{P} / \dot{K}_{P}^{2}$. Thus we can assume that $v \in-\dot{K}_{P}^{2}$ whenever -1 is not a square at P. When $\sigma(K)=0$, the Lemma 4.1 guarantees that we can assume $v \in-\dot{K}_{P}^{2}$ when $-2 \notin N(K)$ and $-1 \notin \dot{K}_{P}^{2}$, and $v \notin-\dot{K}_{P}^{2}$ in the remaining cases.
Part II. $g(K)=2$. In this case $\sigma(K)=0$ iff $2 \in|N(K)|$.
II.1. Assume that K is non-real. When $2 \notin N(K)$, there is a prime divisor p of the discriminant of K congruent to 3 or $5 \bmod 8$.
Take $p_{1}= \pm p \equiv 5(\bmod 8)$. Thus $K_{e v} \cap K_{+} / K_{\text {sq }}$ has the basis $\{-1\}$ or $\left\{-1, p_{1}\right\}$ depending on whether $2 \in N(K)$ or $2 \notin N(K)$, respectively.
II.2. Assume that K is real and $-1 \notin N(K)$. Then there exists a prime divisor p of the discriminant of K congruent to 3 or $7 \bmod 8$. When $2 \notin|N(K)|$ there exists a divisor q of the discriminant of K congruent to $5 \bmod 8$. We choose $p_{1}=p$ or $p q$, whichever satisfies $p_{1} \equiv 7(\bmod 8)$. Then $\left\{p_{1}, q\right\}$ is a basis of the group $K_{e v} \cap K_{+} / K_{s q}$. When $2 \in N(K)$ or $-2 \in N(K)$ we find a basis $\left\{p_{2}\right\}$ of $K_{\text {ev }} \cap K_{+} / K_{s q}$, where p_{2} is congruent to $7 \bmod 8$ when $2 \in N(K)$ and p_{2} is congruent to $3 \bmod 8$ when $-2 \in N(K)$.
II.3. Now assume that $-1 \in N(K)$. The group $K_{e v} \cap K_{+} / K_{s q}$ is nontrivial when $2 \notin N(K)$. In this case we choose a basis $\{p\}$ of $K_{e v} \cap K_{+} / K_{s q}$, where $p \equiv 5$ $(\bmod 8)$. The equality $(-1, a)_{P}=1$ implies that a is equal to 1 or 5 in the group $\dot{K}_{P} / \dot{K}_{P}^{2}$. In the case when $2 \notin N(K)$, by replacing a with $p a$, if necessary, we get $a=1$ in $\dot{K}_{P} / \dot{K}_{P}^{2}\left(\right.$ then $a=-1$ in $\left.\dot{K}_{P^{\prime}} / \dot{K}_{P^{\prime}}^{2}\right)$. in case $2 \in N(K)$ we have a equal to 1 or 5 in $\dot{K}_{P} / \dot{K}_{P}^{2}$ depending on whether the Hilbert symbol $(2, a)_{P}$ is equal to 1 or -1 , respectively.
Analogously we construct a basis B_{L} of the group $L_{e v} \cap L_{+} / L_{s q}$ and we define the mapping t by assigning elements of B_{K} to corresponding elements of B_{L}. This definition guarantees that t induces the group isomorphism

$$
K_{e v} \dot{K}_{P} / \dot{K}_{P}^{2} \longrightarrow L_{e v} \dot{L}_{T P} / \dot{L}_{T P}^{2}
$$

for every dyadic prime P. Moreover, in the case $g(K)=2$, it follows immediately from the construction that t preserves the Hilbert symbols for dyadic primes. And in the case $g(K)=1$, it follows from the construction that t preserves the Hilbert symbols for all infinite primes and all non-dyadic primes. The Hilbert symbols for dyadic primes are equal by Hilbert reciprocity (cf. [3]).

References

[1] Carpenter, J.P., Finiteness theorems for forms over global fields, Math. Zeit. 209 (1992), 153-166.
[2] Conner, P.E., Perlis, R., Szymiczek, K., Wild sets and D-ranks of class groups, Acta Arith., (to appear).
[3] Czogała, A., On reciprocity equivalence of quadratic number fields, Acta arith. 58 (1991), 365-387.
[4] Milnor, J., Husemoller, D., Symmetrir Billinear Forms, Springer Verlag, Berlin, 1973.
[5] Münstermann, R., Der Wittring des Ring der ganzen Zahlen eines Quadratischen Zahlkörpers, Diplomarbeit, Bielefeld, 1983.
[6] Perlis, R., Szymiczek, K., Conner, P., Litherland, R., Matching Witts with global fields, Contemp. Math. 155 (1994), 365-387.
[7] Shastri, P., Witt groups of algebraic integers, J. of Number Theory 30 (1988), 243266.
[8] Szymiczek, K., Matching Witts locally and globally, Math. Slovaca 41 (1991), 315330.
[9] Szymiczek,
K., Hilbert-symbol equivalence of number fields, Tatra Mount. Math. Publ., 11 (to appear).

Address: Instytut Matematyki, Uniwersytet Śla̧ski, 40007 Katowice, Poland
Talk at the First Czech-Polish Conference on Number Theory, University of Ostrava, Ostrava, Czech Republic, May 30, 1996.
Supported by the State Committee for Scientific Research (KBN) of Poland under Grant 210639101.

