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On integral Wit t equivalence of algebraic 
number fields 

A L F R E D C Z O G A L A 

A b s t r a c t . Two algebraic number fields K and L are said to be integrally Witt equivalent 
if there exists a Witt ring isomorphism W(K) —> W(L) mapping the Witt ring W(OK) 
of the ring of integers OK of K onto the Witt ring W(Oi) of the ring of integers OL 
of L. The paper connects integral Witt equivalence with Hilbert-symbol equivalence of 
number fields, and gives a complete classification of quadratic number fields with respect 
to the integral Witt equivalence. 

1991 M a t h e m a t i c s S u b j e c t Classi f icat ion: Primary 11E81, Secondary 11E12 

1 Introduc t ion 

The notion of the W i t t ring of a field plays a central role in the algebraic theory 
of quadra t ic forms. While asking for a description of the isomorphism type of the 
W i t t ring W(K) of a general field K as an exclusive question, asking for criteria 
differentiating between nonisornorphic W i t t rings turns out to be a menageable 
problem. Two fields with isomorphic W i t t rings are said to be Witt equivalent and 
the problem consists in classifying fields with respect to W i t t equivalence. 
When K is an algebraic number field, there is another Wi t t ring to be considered, 
the Wi t t ring W(OK) of symmetr ic bilinear forms over the ring OK of integers of 
K. We call W(OK) the integral Witt ring of / { . 

The extension of scalars yields the ring homomorphism W(OK) —> W(K) which 
is known to be injective (cf. [4, Cor.3.3]). For this reason we will view the integral 
W i t t ring of K as a subring of the W i t t ring of K. 

In this paper we consider Wi t t equivalent number fields K and L and the iso
morphisms <j> : W(I\) —» W(L) of their W i t t rings inducing isomorphisms of their 
integral W i t t rings W(OK) and W(OL)- If for fields K and L such an isomorphism 
<j) of W i t t rings exists, then we say tha t K and L are integrally Witt equivalent. 

We will be even more restrictive and will consider only the so called strong isomor

phisms of W i t t r ings, i .e . , isomorphisms preserving the dimensions of anisotropic 
forms. It follows from the Harr ison 's Criterion (see [6]) t ha t s t rong isomorphisms 
of isomorphic W i t t rings always exist. 

In [6] there has been int roduced the concept of a reciprocity equivalence of two 
number fields as a necessary and sufficient condit ion for the fields to be W i t t 
equivalent. Following [9] and [2] we will use the n a m e Hilbert-symbol equivalence 

instead of reciprocity equivalence. 
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Recall that two algebraic number fields K and L are said to be Hilbert-symbol 
equivalent if there is a pair of maps (t)T)) where 

t : k/k2 —> L/L2 

is a group isomorphism and 

T : Q(K) —•» Q(L) 

is a bijection of the set all primes of K onto the set of all primes of L, preserving 
Hilbert symbols in the sense that 

(a, b)p = (tfa, l6)j-p 

for all a, 6 G K/K2 and P G fi(K). One of the main results in [6] (see also [8], 
[9]) asserts that two global fields are Witt equivalent iff they are Hilbert-symbol 
equivalent. 
In this paper we give a necessary and sufficient condition for integral Witt equiv
alence of number fields. The condition, called here the even-order-preserving 
Hilbert-symbol equivalence (EOP-Hilbert-symbol equivalence, or EOP equivalence, 
for short) is a special type of Hilbert-symbol equivalence defined as follows. 
For a number field K we set 

Kev = {x G K : ordp x = 0 (mod 2) for every finite prime P of K } . 

We say that a given Hilbert-symbol equivalence (l,T) between two number fields 
A' and L is even-order-preserving, whenever 

t(kev/k
2) = tev/L

2. 

In Section 2 we prove the following result. 

T h e o r e m 1. Two algebraic number fields K and L are integrally Witt equivalent 
if and only if they are EOP-Hilbert-symbol equivalent. 

For a number field K, let £IQ(K) be the set of all infinite and all dyadic primes of 
K, and let Kp be the completion of K at the prime P. 
The following theorem gives a finiteness condition for the integral Witt equivalence. 
For a proof, see Section 3. 

T h e o r e m 2. Two number fields K and L are integrally Witt equivalent if and 
only if there is a bijective map T : Qrj(K) —> 0>o(L) and a group isomorphism 
t : Kev/K

2 —> Lev/L
2 satisfying the following conditions: 

1. P is infinite real iffTP is infinite real. 

2. P is dyadic iffTP is dyadic; moreover [Kp : Q2] = [LTP '• Q2J-

3. t(-l) = -I. 
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4- x is positive at P iff tx is positive at TP, for all x E K and all infinite real 
primes P. 

5. For every dyadic prime P of K, the map t induces a Hilbert-symbol preserv
ing group isomorphism 

J 2 t : KevKp/KP —y LevLpp/ LTP 

Theorem 2 allows us to give a complete classification of quadratic number fields 
with respect to integral Witt equivalence (EOP-Hilbert-symbol equivalence). 
For a number field K, we write g(K) for the number of dyadic primes of K, r(K) 
for the number of real embeddings of K, N(K) for the norm group of the extension 
K/Q, 1{K) for the number of distinct prime divisors of the discriminant of K. 
T h e o r e m 3. Let K and L be quadratic number fields and let P and Q be arbitrary 
dyadic prime ideals in K and L, respectively. The fields K and L are integrally 
Witt equivalent if and only if the follotving nine conditions are satisfied: 

(0) -1 e K2 <=> - l el2. 
(1) r(K) = r(L). 

(II) g(K)=g(L). 

(in) -1 ek2
P ^=> -1 eL\. 

(IV) l(K) = l(L). 

(V) - 1 e N(i<) <=> - 1 eN(L). 

(VI) 2 is prime in K or 2 E | N ( K ) | <=> 2 is prime in L or 2 E |N(L) | . 

(VII) If - I £ N(K), then -2e N(K) <=> - 2 E N(L). 

(VIII) Ifg(K) = 2 and - 1 E N(K), then (2, a)P = (2, a')Q) 

where a, a7 are elements of Kev and LeV) respectively, with negative norms. 

Theorem 3 implies that there are infinitely many classes of integrally Witt equiva
lent quadratic number fields because fields with distinct numbers of prime factors 
of the discriminants are not integrally Witt equivalent. However, if we Hx the 
number of prime factors of the discriminant, then from Theorem 3 it follows that 
there are at most 18 classes of integrally Witt equivalent quadratic number fields 
with the given number of prime factors of the discriminant. For example, the fol
lowing fields Q(VS), d = — 1, —2, —7,2,17,41, represent quadratic number fields 
with exactly one prime factor of the discriminant. 
The integral Witt equivalence of fields K and L is a sufficient condition for the 
existence of a strong isomorphism of Witt rings W(OR) —> W(OL)- Unfortunately, 
this condition is not necessary. We know from [5] that the integral Witt rings of 
the fields Q(v3) and Q(v7) are strongly isomorphic but, on other hand, these 
fields are not integrally Witt equivalent, according to Theorem 3. 
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EOP-Hilbert-symbol equivalence of number fields is closely related to tame 
Hilbert-symbol equivalence. We recall the definition. Let P G £l(K) be any 
finite prime. The Hilbert-symbol equivalence (t,T) is said to be tame at P if 

ordp a = ordrp ta (mod 2) 

for all a e K/K2. The equivalence (t, T) is said to be tame when it is tame for all 
finite primes of K. 
It is clear that a tame equivalence is also an EOP equivalence. A preliminary 
version of the paper [6] contained the proof of the fact that tame equivalence 
implies integral Witt equivalence of number fields. This result has been omitted in 
the printed version of the paper. We also remark that an analogue of Theorem 2 
for Hilbert-symbol equivalence has been proved in [1, Theorem 3.1] and for tame 
equivalence in [3, Theorem 2.1]. 

2 Hilbert-symbol equivalence versus integral 
Wi t t equivalence 

If K is an algebraic number field, then we have the Knebusch-Milnor exact se
quence (cf. [4, p. 93, 3.3, 3.4]): 

0 — > W ( O K ) —-> W(K) A J2w(Kp) —> C(K)/C(K)2 —> 1 
p 

Here the sum runs over all finite primes of K, whereas Kp and C(K) denote the 
residue class field of the completion Kp of K at P and the ideal class group of Ar, 
respectively. The additive group homomorphism 8 = 8K is the direct sum of the 
second residue class homomorphisms dp : W(K) —> W(Kp). 
Although the homomorphism dp depends on the choice of the local uniformizer 
at P, the kernel ker dp doesn't depend on that choice. Hence the kernel of the 
homomorphism 8K doesn't depend on the choices of local uniformizers. Through
out the paper we will identify the ring W(OK) with the kernel of 8K- Recalling 
the definition we can say, that two algebraic number fields K and L are integrally 
Witt equivalent iff there exists a strong isomorphism <j> : W(K) —> W(L) such 
that <̂ >(ker<9x) = kerdj,. 
In the proof of the Theorem 1 we use the following 
auxiliary facts from [7, Prop. 2.4]. Let q e W(K) and a G K. Then: 
(1) qe W(OK) => d isgGNe 
(2) (a) e W(OK) <=> ae Ke 

P R O O F OF THE THEOREM 1: (Necessity). Let <j> be a strong isomorphism of Witt-
rings of K and L such that </>(W(OK)) — W(OL). The isomorphism <f> induces 
canonically a Harrison map t<p such that <j>((a)) — (t<pa) for all a G K/K2. From 
[6] it follows that there exists a Hilbert-symbol equivalence (t, T) from K to L 
satisfying t = t^. Now a G Kev implies that <f>((a)) G W(OL), hence ta G Lev. 
This proves that the equivalence (t,T) is even-order-preserving. • 

^ЄV ) 

^ev • 
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To prove the converse s t a t e m e n t we need some auxiliary results. L e m m a s 2 A , 2.2 

and Propos i t ion 2.1 have been reproduced from the unpubl ished prel iminary 1989 

version of [6]. 

Let (t, T) be a Hilbert-symbol equivalence of algebraic number fields K and L. 

Pick a pr ime P of K. T h e r e exists a n a t u r a l group epimorphism K/K2 —> Kp / Kp 

whose kernel is keri = { o E K/K2; (a, x)p = 1 for every x G K/K2}. Consider 

the d iagram 

keři 

keг 2 

K/K2 

L/L2 

( ' 2 KP/K 

11 p 

Ĺтp/Ĺ2 

TP 

1 

1 

T h e m a p t preserves Hilbert symbols, hence t sends keri to ker 2 and we obta in 
the following result. 
L e m m a 2 . 1 . The map t induces a local Hilbert-symbol-preserving isomorphism 

tP : Kp/Kp Lтp/Lтp• 

F r o m the above l e m m a and Harr ison 's Criterion (see [6]) it follows t h a t t induces 

a global W i t t ring i somorphism <j> = <j>t and a local W i t t ring i somorphism <j)p 

making the following d iagram c o m m u t e 

W(K) W(KP) 

W{L) - W(LTp) 

T h e horizontal arrows are the canonical ring homomorphisms and the vertical 

arrows are ring i somorphisms m a p p i n g the class of (a) to the class of (ta) (resp. 

(tPa)). 

L e m m a 2 .2 . If the Hilbert-symbol equivalence (t, T) is tame at P, then there 

exists an isomorphism <j)P : W(Kp) — > W(Lpp) such that the following diagram 

is commutative 

/ x dP — 

W(K) W(KP) W(KP) 

W(L) W(LTP)
 TP > W(LTp) 

(with appropriate choices of the uniformizers). 

P R O O F : Assume t h a t the finite pr ime P is non-dyadic. Choose a local pr ime 

square class n G Kp)Kp, t h a t is, the square class of a local uniformizing p a r a m e t e r 

at P. From t h e congruence o r d p TT = ordj-p lp7r (mod 2) it follows t h a t tpn is 
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a local prime class in LTP/LTP. We choose the prime class /p7r in LTP/LTP to 
define the map &TP-
The map dp is a left inverse to the injection jp : W(KP) —•> W(Kp) mapping 
(«i , . . ., un) in W(Kp) to (TTWI, . . . , 7run) in W(Kp). We define </)P = dTP°<f>p°jp-
Then (/»p produces the desired commutative diagram. 
Now consider a dyadic prime P. Then TP is also dyadic (see [6]), and the Witt 
rings of the residue class fields are isomorphic to Z/2__. The second residue class 
homomorphism becomes dp(q) = ordp(disg) (mod 2). In this case we define 
(pP = id to be the identity map . Since tP preserves orders modulo 2, this produces 
the necessary commutative diagram. D 

Corollary 2.1. Assume that the Hilbert-symbol equivalence (t) T) is tame at P 
and q G W(K). Then dP(q) = 0 iff dTp(q) = 0. D 

Proposit ion 2.1. If the Hilbert-symbol equivalence (l, T) of K and L is tame, 
then the integral Witt rings W(OK) and W(OL) are isomorphic and ideal class 
groups modulo squares C(K)/C(K)2 and C(L)/C(L)2 are isomorphic. 

P R O O F : It suffices to consider the following commutative diagram obtained from 
Knebusch-Milnor sequences and Lemma 2.2: 

dK -
0 — W(0K) — W(K) - E P W(LTP) - C(K)/C(K)2 — 1 

0 — W(0L) •—> W(L) —--* Y.pW(LTp) C(L)/C(L)2 

Here <f> = J2p <fip- D 

Proposit ion 2.2. IfP is a finite non-dyadic prime of K with — 1 ^ Kp, then the 
Hilbert-symbol equivalence (t, T) is tame at P. 

PROOF: From [6] it follows that the prime TP of L is finite and non-dyadic and 
— 1 is not a local square at TP. The quadratic extensions A'p(\/--i )/A'p and 
L>TP(V—1)/LTP are unramified. Then we have 

( _ 1 . a)p = ( - 1 ) ° ^ " and ( - 1 , ta)TP = ( -1 l O r d T p t a 

for every a G K. Now the equality of Hilbert symbols ( —1, a)P = (—1, ta)TP 
proves that the equivalence (t, T) is tame at P. D 

P R O O F OF THEOREM 1: (Sufficiency). Let (t, T) be an EOP-Hilbert-symbol 

equivalence between K and L, and <j> = <f>t be the Witt ring homomorphism induced 
by t. Consider q £ W(OK) and assume that q is anisotropic over K. Then 
dis q G Kev implies dis <pq G Lev. 
Now we show that drpi&q) = 0 for all finite primes P of I^. 
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(1) First consider a dyadic pr ime P. Then TP is also dyadic, and the W i t t 

ring of the residue class field LLp is isomorphic to 7L/TL. The second residue 

homomorphism 3TP yields 

dTp(<t>q) = o rdTp(d i s0g) mod 2 = 0 

(2) If P is nondyadic with —I ^ KJ>, then from Cor. 2.3 and Prop. 2.2 it follows 
tha t dTp(<t>q) = 0. 

(3) Finally consider a finite non-dyadic pr ime P at which - 1 is a local square. If 
g = 0 in W(Kp), then dTp(4>q) = 0. 
Now suppose t ha t q / 0 in W(Kp). Let g = (a\, . . . , an). The square class group 
of Kp consists of 4 elements, hence after renumbering a,\, . . . , an (if necessary) we 
have the following decomposit ion over K 

q = ( a i , a/,.) 1 (a^+i , a* + 2 ) -1 K - i , a n ) , 

where 1 < k < 4, the square classes of a i , . . . , a* cire pair wise dist inct in Kp / Kp 

and az = a?-+i mod K|> for i = k -f- 1, k-f-3, . . . , n — 1. 

The form q\ = ( a i , . . . , ak) is anisotropic over Kp and all (a;, a*+i) are hyperbolic 
over Kp. Thus we can decompose the form q over K into the sum q — qx _L g2, 
where gi and #2 ai*e anisotropic and hyperbolic over Kp, respectively (of course, 
dim g < 4). It is clear tha t dr(q'i) = 0, and this implies dp(q\) = 0. Analyz
ing the anisotropic forms over K lying in the kernel of the second residue class 
homomorphism we deduce tha t q\ can be writ ten as (a) , (b) or (a, b), where 
a, b G K are P — adic units modulo squares and a G Kp, 6 ^ Kp. We also have 
the decomposit ion <j>q = (/>gi _L <̂>g2 over the field L. Moreover, 4>q\ and 0g 2 are 
anisotropic and hyperbolic over LTP) respectively. Thus dis(0g2) is a local square 
at TP. Hence ord j -p^l i s^gi ) is even. When q\ is a one-dimensional form, we get 
drTp((j>qi) = 0. If q\ = (a, b), then 0gi = (ta, lb). Because ordTptatb is even and 
(la, £ 6 ) T P = (a, b)p = 1, we get drp^qi) — 0. 

In both cases we have dTp(4>q) = dTp(<j>qi) = 0. 

Now consider the EOP-Hi lber t - symbol equivalence ( l - 1 , T " 1 ) , and let t/; be the 
Wi t t ring isomorphism induced by t~l. From the above it follows tha t 
i>(W(0L)) C KV(0A ')- A s a r e s u l t w e §et 0(^(OK)) = W(OL). D 

3 Integral Wi t t equivalence 

In this section we prove the characterizat ion of the integral W i t t equivalence given 
in Theorem 2. According to Theorem 1, we can switch to even-order-preserving 
Hilbert-symbol equivalence. We begin with introducing some nota t ion . For a 
number field Iv let I\+ denote the set of total ly positive elements of K and let 

Ksq — {x G Kev : x G Kp for every pr ime P G VLQ(K)}. 

We write p = p(K) for the 2-rank of the ideal class group C(K) of K, a = O"(K) 
for the 2-rank of the subgroup of C(K) generated by the classes of dyadic ideals 
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of K and c = c(K) for the number of infinite complex primes of K. According to 

[3] we have 

d i m p 2 Kev/K2 = r + c + p, 

dimp 2 Ksq/K
2 - p - a. 

P r o p o s i t i o n 3 . 1 . Let; ( / ,T) be an EOP-Hilbert-symbol equivalence between K 

and L. Then t induces the following group isomorphisms. 

(a) Kev H K+/K2 = Lev H L+/L2. 

(b) Ksq/K
2^Lsq/L

2. 

P R O O F : . Th i s follows from [6]. • 

Clearly E O P equivalence preserves all those properties of fields which are preserved 

by a plain Hi lbert-symbol equivalence (the degree over Q, the number of real 

embeddings, the number of dyadic primes, etc; cf. [6]). Now we apply Prop . 3.1 

to show tha t an E O P equivalence preserves some addit iona l a r i thmet ic propert ies 

of fields. 

C o r o l l a r y 3 . 1 . IfK and L are EOP-Hilbert-symbol equivalent, then 

(i) the ideal class groups of K and L have the same 2-ranks; 

(ii) the narrow ideal class groups of K and L have the same 2-ranks; 

(iii) the subgroups of ideal class groups of K and L generated by the classes of 

dyadic ideals have the same 2-ranks. 

PROOF: (i) and (iii) follow from Prop. 3.1. If K is a number field and p(K) denotes 

2-rank of the narrow ideal class group of K, then [4] s tates tha t the order of the 

group Kev H K+/K2 is equal to 2c^K)p(K). Thus (ii) follows from Prop . 3 .1 . • • 

P R O O F O F T H E O R E M 2: (Necessity.) Let (l, T) be an EOP-Hi lber t - symbol equiv

alence between K and L. Restr ict ing T to Clo(K) and t to Kev/K
2 we obta in the 

maps t and T as s ta ted in Theorem 2. Then , according to [6], (1) - (5) are satisfied. 

• 

In the proof of the sufficiency par t of Theorem 2 we use the concept of a small 

equivalence (cf. [6]). According to [6] we say tha t a finite set S of pr imes of K 

is sufficiently large when S contains all infinite and dyadic primes, and when the 

class number hs(K) of the ring of S—integers of K is odd. We write UK(S) for 

the group of 5-uni ts of K. The 5-unit square class group UK(S)/UK(S)2 will be 

identified with its image under the na tu ra l embedding UK(S)/UK(S)2 —> K/K2. 

The following s t a t emen t follows from [6, Lemma 5]. 

If S is a sufficiently large set of primes of K, then a square class a in K/K2 is 

represented by an S-unit iff or dp a = 0 (mod 2) for every finite P E Sl(K) \ S. 

C o r o l l a r y 3 . 2 . If S is a sufficiently large set of primes of K, then the group 

KevIK
2 is a subgroup of UK (S)/UK (S)2. 
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Let S be a sufficiently large set of primes of K and consider the direct product of 
the groups Kp/K2

P over all P £ S, 

G(S) = n Kp/Kp. 
Pes 

The Lemma 5 in [6] states that the map is : UK(S)/UK{S)2 —> G(S) which 
maps the square class of y £ K to the tuple (y , . . . , y) where the P—th coordinate 
represents the image of the global square class y in Kp/Kp, is injective. 
In the sequel we use the same symbol for x £ K and its canonical image in K/K2. 
We will do the same with cosets of K modulo some other subgroups of K. 

P R O O F OF THEOREM: 2. (Sufficiency.) Let t and T denote maps satisfying the 

conditions (1) - (5) in Theorem 2. We first observe that K and L have the same 
degree over Q and r(K) ~ r(L), c(K) = c(L), g(K) - g(L). Thus p(K) - p(L). 
From (4) and (5) it follows that t induces the isomorphism Ksq/K

2 = Lsq/L
2. 

Therefore we have <r(K) = &(L). Write m ~ p — a, n = r-f-c-f-cr. Let {ai, . . . , an} 
and {bi, . . . , bm} be bases for Kev/Ksq and Ksq/K

2, resp., where we choose bi = 
— 1 whenever — 1 £ Ksq\K

2. Then the set B# = { a i , . . . , an, &i, . . . , bm} is a basis 
for Kev/K

2 and the set £L = {tai, . . . , t a n , l b i , . . . ,tbm} is a basis for Lev/L
2\ and 

moreover, { t a i , . . . ,tan} is a basis for Lev/Lsq, {tb\, . . . , lbm} is a basis for Lsq/L
2 

and lbi = — 1 whenever —1 £ Lsq \ L2. 

We pick up non-dyadic prime ideals Qi, . .., Qm in K and Pi,..., Pm in L such 
that 

Q,) \Ri) l' \Qi) \Ri) l 

for each x £ B \ {&;}, i = 1, 2 , . . . , m. 

From [3, Lemma 2.6] it follows that the sets of primes 
S = fio(IO U { Q i , . . . , Q m } and S' - Q0(L) U{P i , . . . , P m } are sufficiently large 
in K and L, respectively. Thus the groups Kev/K

2 and Lev/L
2 are subgroups 

of UK{S)/UK(S)2 and UL(5/)/c!rL(5,)2
3 respectively. We extend T to a map T : 

S -> 5 r by putting T(Qi) = P2-. Then our choice of Ql5 i?,- implies that t induces 

a group isomorphism 

tp : KevKp/Kp —y LevLPp/LTP 

for each P £ {Qi, • • ., Qm}-

From [3, Lemma 2.9] it follows that, for P £ 5, the group isomorphism tp can 
be extended to a group isomorphism lp : Kp/Kp —•> LTP/LPP in a symbol 
preserving way. In this situation, the pair S, S1 is called a suitable pair for K and 
L, according to [1]. 
Let Ts be the product of isomorphisms tP for P £ S. We have the following 
diagram 
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Uк(S)/Uк(S)2 G(S) 

rs 

i - uL(S')/uL(S')2 2 _ G(S") 

According to [l] we put 

Hs = {<*£ UK(S)/UK(S)2; TS oi,(r>) G iS'(UL(S')/UL(S')2)}, 

Hs> = is! OTS o i 5 (H 5 ) , 

J55, = dimF2 UK(S)/UK(S)2/HS. 

We have r 5 o i 5(a) = is'(ta) for each a £ Kev/K
2. Therefore the groups Kev/K

2 

and Lev/L
2 are subgroups of H5 and H5/, respectively. By the Obstruction-

Killing Lemma (see [1]), there exists a suitable pair S\,S[ for K and L with 
S C Si, S' C SJ and J55t < dSls' • An analysis of the proof of [1, Obstruction-
Killing Lemma] shows that 

TSi o ist (a) = z's( (*a) 

for each a £ Kev/K
2. 

Indeed, in the proof Si = S U {Pi} and S[ = S" U {P/} where P1 and P{ are 
suitably chosen primes in K and L, respectively. Moreover, it follows from the 
proof that each element of H5 is a local square at Pi and each element of H5/ is 
a local square at P[. Thus putting 

G(S\) = G(S) x kPjk\ , G(S[) = G(S') x LP,/L2
P, 

and 

rs1 = rs x tPl, 

we have 

T5 I o i 5 l ( a ) = TSl(is(a), 1) = (r5 o i 5 (a ) , 1) = (i5/(*a), 1) = iS[(ta) 

for all a E Kev/K
2. 

Continuing the process (at most dSS' times) we obtain a suitable pair S^, S'd for 
K and L such that 

HSd = UK(Sd)/UK(Sd)
2 

and 
Tsd °isd(

a) = is'd(ta) 

- 2 foг all a Є Kev/K 
Now we put l = i 5 , o r 5 d o iSd. Then we have the following commutative diagram 
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UK(Sd)/UK(Sd)
2 - G(Sd) 

тSd 

UL(S'd)IUL(S'df G(S'd\ 

and moreover ta = ta for every a G Kev/K2. 

In this situation we say that there is a small ^-equivalence between K and L. 
From [6] it follows that the .^-equivalence can be extended to a Hilbert-symbol 
equivalence of K and L which is tame outside Sd- The equivalence is even-order-
preserving. This proves Theorem 2. • 

4 Integral Witt equivalence of quadratic number 
fields 

In this section we prove Theorem 3. As in the previous section we use Theorem 
I to replace integral Witt equivalence by even-order-preserving Hilbert-symbol 
equivalence. From [6] it follows that the field Q(y/-—T) constitutes a singleton 
class of Hilbert-symbol equivalence. Thus in this section we assume that K and 
L are quadratic fields distinct from Q(\A-1 ). 
The proof of Theorem 3 will be based on some properties of the following groups: 
Kev/K2

) Kev/KevC\K+ and KevDK+/K2. 
Assume that K = Q ( v J ) , where d is a square-free integer ^ 1. Let {p\, . . .,pi} 
be the pairwise distinct prime divisors of the discriminant of K; we agree that 
p{ — 2, whenever d = 3 (mod 4). The order of the group Kev C\ K+/K2 is equal 
to 2 C + / _ 1 and one of the sets 

{- l ,Pi , . . . ,p/-i} if d< 0, 

{pi, . . .,p/_i} if d > 0, 

forms a basis for Kev C\ K+/K2, (cf. [4]). From [3, Prop. 3.3] it follows that the 
2-rank a(K) of the subgroup of the ideal class group of K generated by the classes 
of dyadic ideals is equal to 0 when 2 is prime in K or 2 £ |N (K ) | , and is equal to 
1 otherwise. 
The Gauss Genus Theory states that the 2-rank p(K) of the ideal class group of 
K is equal to / — 1 when K is non-real or — 1 £ N(K), and is equal to / — 2 when 
K is real and - 1 ^ N(K). 

Lemma 4.1. Let K = Q(yd) be a real quadratic field with —I (^ N(K), cr(K) = 0 
and let P be arbitrarily chosen dyadic prime in K. Then 
- 1 £ (KevnK+)K2

P/K2
P iff-2 $ N(K). 

PROOF: From —1 ^ N(K) it follows that there is a prime divisor p of the dis
criminant of K congruent to 3 or 7 mod 8. If p = 7 (mod 8), then — p is a local 
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square at P . If p = 3 (mod 8), then 2 g N(K). It follows that 2 is prime in 
K (i. e., d = 5 (mod 8)). Thus -p is a square in the field KP = Q2(>/3). 
Now assume that —2 E N(K). Then every prime divisor of d is congruent to 1, 
2 or 3 mod 8. Therefore d = 1,2,3,6 (mod 8). Moreover, a = 1,2,3,6 (mod 8) 
and da = 1,2,3,6 (mod 8) for each a E Kev H K+. This proves that -a £ K2

p 

for each element a of Kev C\ K+. • 

If Ii is non-real, then Kev = KevnK+. If Ii is real, then the group Kev/KevC\K+ 
is 2-element with basis { —1}, or is 4-element with basis { —l,a} depending on 
whether —1 $. N(K) or — 1 E N(K), where a is an element of K with negative 
norm. 

PROOF OF THEOREM 3: Assume that (r,T) is an EOP-Hilbert-symbol equivalence 
between K and L. The conditions (0) - (III) are consequences of Hilbert-symbol 
equivalence of K and L (cf. [6]). 
The condition (IV) follows from Prop. 3.L 
The map t induces a group isomorphism Kev/Kev C\ K+ = Lev/Lev D L+ hence 
(V) holds. 
Corollary 3.1 and Gauss Genus Theory imply the condition (IV). 
The condition (VI) follows from Cor. 3.L 
From Theorem 2 and Prop. 3.1 it follows that the map t induces a group isomor
phism 

(Kev n K+)K2p/k2
P £. (Lev n L+)L^p/Llp 

for every dyadic prime P. Since TP is dyadic, (VII) follows from Lemma 4.1. 
Now we prove (VIII). First we show that the Hilbert symbols in question do not 
depend on the choice of elements a and a' and on the choice of dyadic primes P, Q. 
Let a be an element of K with negative norm. Then N(a) E —Q2 and 

(2, a)P = (2, a)p = (2, -a)p = (2, a)p 

(here P is the conjugate ideal of P and a is the conjugate element of a). The 
assumptions in (VIII) imply that every prime factor p of the discriminant of K is 
congruent to 1 mod 8. Hence Kev D K+ = Ksq. If a\ is any element of Kev with 
negative norm, then ±a\a E Kev C\K+. Thus a\ = ±a in Kp/Kp. This implies 
the equality of the Hilbert symbols 

(2 , a i )p = (2, ± a ) P = (2 ,a )p . 

To prove (VIII) we can assume that TP = Q since, as we have already shown, the 
Hilbert symbols in question do not depend on the choice of dyadic primes. Let a 
be an element of Kev with negative norm. The Prop. 3.1 implies that the element 
ta of Lev has negative norm. The above yields that without loss of generality we 
can assume a' = ta. Thus we get 

(2, a)P = (2, ta)TP = (2, a')Q 
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Now we prove the sufficiency of (0) - (VIII) íbr K and L to be EOP equivalent. 
Thus, we assume that A' and L satisfy (0) - (VIII), and we construct two maps T 
and t satisfying the hypothesis of Theorem 2. 
If — 1 (£ N(K) we define T to be an arbitrary bijection that sends infinite reál 
primes and dyadic primes of K onto infinite reál primes and dyadic primes of L. 
respectively. 
Now assume that —1 £ N(K). First we choose elements a and a' of Kev and 
Lev, resp., with negative norms. We write POQl) Poo2

 an<^ Qoo15 Qoo2
 I o r the two 

infinite reál primes of A and L, respectively. We can assume that a is positive at 
Pn0l and negative at POQ2 and sirnilarly that a' is positive at QOQl and negative at 
Qoo2- We put rPoo, = Qoox and 7\Poo2 = Qoo2> 
H g(K) — i and P, Q are the unique dyadic primes in /l and L, respectively, then 
we put TP — Q. 
Let ^(/ í) = 2 and let P, P/ and Q, Q' be distinct dyadic primes of K and L, 
respectively. By Hilbert reciprocity (—1, a)p/ = —(—1, a)p and ( — 1, a r)g' = 
-(— 1, (I')Q. We can assume (— 1, a)p — (—1, a^g = 1, Then we put TP — Q and 
TP' — Q'. The elements a and a' chosen above will be ušed in the construction 
oit. 
The isomorphism t will be defined on a suitably chosen basis of the group Kev / K

1. 
We construct this basis in the samé way as the basis in the proof of [3, Thm 1]. 
We use the isomorphism 

Kev/K
2 = Kev/Kev O K+ 0 Kev n K+/Ksq 0 Ksq/I<

2-

The conditions (I) - (VII) irnply that the orders of the direct surnmands are equal 
to the orders of the corresponding direct surnmands in the decomposition 

Lev/L
2 ^ Lev I Lev H L+ 0 Lev n L+/L8q 0 Lsq/L

2. 

First we define t on Ksq/K
2. Let {6 i , . . . , 6 m } and {6 i , . . . , 6^ ) be bases for 

Ksq/K
2 and Lsq/L

2
y where &i = 6^ = — 1, whenever —1 E Á'5g. Then we put 

í6j = 6J- for ? — 1,2,. . . , m. 
The group Kev/Kev D A+ is non-trivial only when /i is reál and has basis { — 1} 
when -1 £ A^(Ar), and { - l , a} when -1 e Ar(A'). We put / ( - l ) = -1 and 
ta — a''. 
Now we choose a basis P^ of /ie í , O K+/Ksq. We consider two cases depending 
on the number of dyadic primes. 
Part I. g(K) — 1. The group Á'et; fi K+/Ksq is canonically isornorphic to (A'ev O 
K+)kl/ki. 
1.1. If A is non-real, the group A'eí, O K+/Ksq has a basis {v} or {v, ?i} depending 
on whether a(K) is equal 0 or l. In both cases we can assume that v — -T , 
whenever —1 is not locally a square at P. 
1.2. When -1 £ N(K), the group Kev D K+/Ksq is nontrivial only if cr(Ar) = 1 
and it has order 2. Let {u} be a basis of Kev C\ K+/Ksq in the nontrivial čase. 
The Hilbert reciprocity implies that ( —1, á)p — (—1, —a)p — —1, thus { —l,a} 
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are independent in kP/K2p. Moreover ( - 1 , U)P = K U)P = ^ h e n c e - 1 » a ' W 

are independent in Kp/Kp, if a(K) = 1. 
1.3. Now assume that K is real and - 1 g 1V(K). The group Kev n K+/Ksq has 
a basis {v} if cr(K) = 0, and {v, u} if <r(K) = 1. If cr(K) = 1, then the subspace 
of the dyadic unit square class group Up /Up (with the Hilbert symbol as inner 
product) generated by - 1 , u, v is totally isotropic, hence - 1 , u, v are dependent 
in Kp/Kp. Thus we can assume that v £ -Kp whenever - 1 is not a square at P. 
When <T(K) = 0, the Lemma 4.1 guarantees that we can assume v £ — KJ> when 
-2 £ N(K) and - 1 £ Kp, and v ^ -Kj> in the remaining cases. 
Part II. g(K) = 2. In this case <r(K) = 0 iff 2 € \N(K)\. 
ILL Assume that K is non-real. When 2 £ N(K), there is a prime divisor p of 
the discriminant of K congruent to 3 or 5 mod 8. 
Take pi = ±p = 5 (mod 8). Thus KevCM\ + /Ksq has the basis {-1} or {-l,pi} 
depending on whether 2 £ N(K) or 2 0 N(K), respectively. 
II.2. Assume that A' is real and —1 ^ N(K). Then there exists a prime divisor 
p of the discriminant of K congruent to 3 or 7 mod 8. When 2 £ | N ( K ) | there 
exists a divisor q of the discriminant of K congruent to 5 mod 8. We choose 
pi = p or pq, whichever satisfies p\ = 7 (mod 8). Then {pi,?} is a basis of 
the group Kev n K+/Ksq. When 2 £ N(K) or - 2 £ N(K) we find a basis {p2} 
of Kew n K+/Ksq, where p2 is congruent to 7 mod 8 when 2 £ N(K) and p2 is 
congruent to 3 mod 8 when —2 £ N(K). 
U.S. Now assume that —1 £ N(K). The group Kev n K+/Ksq is nontrivial when 
2 £. N(K). In this case we choose a basis {p} of Kev O K+/Ksq, where p = 5 
(mod 8). The equality (—1, a)p = 1 implies that a is equal to 1 or 5 in the group 
Kp/Kp. In the case when 2 ^ N(K), by replacing a with pa, if necessary, we get 
a = 1 in Kp/Kp ( then a = — 1 in Kp>/Kp,). In case 2 £ N(K) we have a equal 
to 1 or 5 in Kp/Kp depending on whether the Hilbert symbol (2, a)p is equal to 
1 or — 1, respectively. 
Analogously we construct a basis BL of the group Lev C\L+/Lsq and we define the 
mapping t by assigning elements of BK to corresponding elements of BL. This 
definition guarantees that t induces the group isomorphism 

KevKp/Kp —•> LevLrp/LTP, 

for every dyadic prime P. Moreover, in the case g(K) = 2, it follows immediately 
from the construction that t preserves the Hilbert symbols for dyadic primes. And 
in the case g(K) = 1, it follows from the construction that t preserves the Hilbert 
symbols for all infinite primes and all non-dyadic primes. The Hilbert symbols for 
dyadic primes are equal by Hilbert reciprocity (cf. [3]). • 
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