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Balanced Projective Dimension of Modules 

R. M. Dimitrič 

Abstract: This semi-expository note fulfills the promise we gave some time ago of 
building a theory of balanced projective dimension of torsion-free modules over valu
ation domains, which will be used in further studies of balanced projective dimension. 
A complementary account of balanced projective dimension for the torsion case (for 
abelian p-groups) has been given by Fuchs and Hill. In addition to essential proper
ties of balanced exact sequences, we define balanced n-fold extensions and define a 
module M to have the balanced projective dimension n, if there is a module C with 
Ex ts(M , C) ^ 0 and, for every k > 1 and every module B, Ext^+k(M, B) = 0. Prin
cipal results are variations on the theme of the well-known Auslander's lemma about 
the dimension of the union of an ascending chain of submodules depending on the 
dimension of the subsequent links. 

Mathematics Subject Classification: 13F30, 13C13, 13C15, 13G05 

1. Balanced exact sequences 
The realm we work within is that of unitary torsion-free R-modules over a commutative 
valuation domain R, although a number of our results may be shown to be valid in a 
wider context of proper exact sequences. 

Definition. A (pure) exact sequence of R-modules E : 0 —> A —> B —> C —> 
0 is called balanced exact and A is a balanced submodule of B, if every rank one 
module has the projective property with respect to the sequence. E £ 33 will stand 
for "E is a balanced exact sequence", while A<s B will stand for "the module A is 
a balanced submodule of B"; a is a "balanced monomorphism" and p is a "balanced 
epimorphism". 

There are several characterizations of balanced exact sequences and we collect 
them below, giving first the following definitions (cf. [Dimitric, 1992, 1993]): For an 
H-module M and a £ M, the set X M W = {r € R : a = tai}, for some a\ £ M is 
called the characteristic of a in M. The trace of an ideal I in an ^-module M is 
M(I) = {aeM:3ieIX,(i)< X„ (a)} . 
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Proposition 1. A (pure) exact sequence of R-modules E : 0 —> A —--> B ----> C —> 
0 is balanced if and only if any of the following statements holds: 

(1) Every completely decomposable module has projective property with respect to 
E. 

(2) Vc £ C3b e B with qb = c and Xc (c) = XB W-

(3) Every rank one module has projective property with respect to E. 

(4) For every rank one module I. the sequence Horn (I, E) : 0 —> Horn (I, A) —> 

Horn (I, B) —> Horn (I, C) —> 0 is (balanced) exact. 

(5) For every r € R, the sequence rE : 0 —> rA —> rB —> rC —> 0 is balanced 
exact. 

(6) For every rank one module I', the sequence E®RI : 0 —> A®RI —> B<S>RI —> 
C (g) I —> 0 is balanced exact. 

(7) For every rank one module I, the sequence E(I) : 0 —> A(I) —> B(l) —> 
C(I) —> 0 is balanced exact. 

Proof. Most of the claims are in [Dimitric, 1993, Proposition 5.1] and [Dimitric, 1992, 
Lemma 2.1], and equivalences with (1) and (5) are not difficult to establish. <0> 

Balanced projective modules (direct sums of rank one modules) are completely 
decomposable modules. Direct sum of modules is balanced projective iff every com
ponent is balanced projective. 

A simple, but an extremely important fact is that balanceness is preserved under 

push-outs and (dually) pull-backs-

Lemma 2. (a) Given a balanced exact sequence E[a,P] € 3 and 7 : B —> C 

(the ''matching morphism"), there is a unique commutative diagram (below) with the 

bottom row E'[a'',/?'] € -B. We write E' = 7F . 
(b) Given a balanced exact sequence E[/3, a] £ 23 and a (matching morphism) 

7 : B —> C, there is a unique commutative diagram (shown below) with the top row 
E'[j3',a'] e 2 . We write E' = F7. 
Proof. First build the push-out diagram CBAS. By a property of pushouts, a' is 
monic, since a is. Another commutative square with the same three corners A, B, 
C is formed by adding morphisms 0 : C —> D and /3 : A —> D as its sides. By 
universality of the push-out construction, there is then a unique j3' : S —> D with 
j3'a' = 0,P'j' = (3. Thus we have constructed the following commutative diagram: 

E: 0—> B ~^> A - A D —> 0 

7 1 f i'i f || 

E' : 0 — > C 7 - ^ > 5 - A D —> 0 



p л -» Б 
1 i 7 4 

A -i -• c 
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We will now prove that j3' £ cokera ' and therefore that E' is exact. To this end 
let £ be a morphism such that £a ' = 0. Since £a77 = £7 'a = 0, £7' factors through 
/3 6 cokera as follows: £7' = Sf5 = S/3'j', for some morphisms S. On the other 
hand, £a ' = 0 = Sj3'a'. The universal property of the push-out at 5 , applied to the 
coterminal maps £ and <5/5' gives £ = S(3'. Every £ with £a ' = 0 factors through ff and 
/?'a' = 0, hence ft € cokera ' . Uniqueness comes from uniqueness of push-outs. 

It remains only to prove that E' € 23. If I is a rank one module and / : I — • L) 
is a morphism, there is a morphism g : I —> A with f3g = / , because E is balanced 
exact. Now /3 (y'g) = /3g = / . 

(b) The construction is fully dual with the pull-back P etc. To show that the top 
row is balanced, start with a rank-one morphism / : I —> B. 

E' : 0 —+ D — 

II 
E: 0 - ^ D - A A - ^ C - ^ n 

Bottom row is balanced, thus 3gi : I —> A with 7 / = ag i . By universality of 
the pull-back construction 3g : I —> P with a'g = / . Uniqueness is guaranteed by 
uniqueness of the pull-back. 0 

This lemma is used to prove the set of self-dual properties of the class of balanced 
exact sequences: 

Proposition 3. Assume that D < A < B, for R-modules D,A,B. Then the following 
hold: 

(PI) If D < A and D\ < A\ are isomorphic embeddings, then D <<% A implies 

D\ <03 Ai. 

(P2) Every direct summand of a module is its balanced submodule. 

(P3) IfD <3 A, A <3 B, then D < 3 B. 

(P3d) IfD < s B and A/D <?> B/D, then A < 3 H 

(P4) IfD <?, B, then D < 3 A. 

(P4d) If A < 3 B, then A/D < s B/D. 

Proof. We give a homological proof applicable to more general classes too. Axioms 
(PI) and (P2) are straightforward to establish. For (P3), assume that a , a i are bal
anced monomorphisms, i.e. that the short exact sequences Ci, E2 6 rB. Construct the 
commutative rectangle ABZZYX, according to Lemma 2(a). Thus, also E3 € 23. Fill 
the top boxes as indicated, where E\,Cz G tB. 
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0 0 0 

1 4 4 
D ~= + Z) 

0 0 
«i 4 ÖQI 4- o | 

A --> B ß Z 
ÍЗI 4 ß2 4 -4 

X -2 ~> Y ő Z 
4 4 4 
0 0 0 

C i O2 Cз 

El 

F2 

Eз 

We want to prove that the middle column is proper. Note that ftacn = 0, thus, 
by the middle 3 x 3 Lemma the middle column is exact. Now let P3 be completely 
decomposable and $3 '• P3 —• Y be given. Then Sfo '• P3 —> Z and F2 € 23 imply 
the existence of f2 : P3 —> B with S(/)3 = /3f2. Denote ip = (32f2 — 4>3. If ^ = 0, 
we are done. Otherwise note that Sip = 3f2 — S(p3 = 0. Thus ip = 7 ^ 1 , for some 
ipi : P3 —> X (since 7 = kero"). Now Ci G 3 implies the existence of £ : P3 —> A 
with /3if = tpi. We have /?2a£ = 7/̂ 1 £ = 7^1 = ^> s o 03 = ^2/2 - V> = /M/2 - a£). 
This means that / = f2 — a£ is the desired map with /?2/ = 4>3. 

For (P3d), let C2)E3 G 23; we need to show that F2 G 23 (as above we have the 
commutative diagram with all columns and all rows exact). To this end let P3d be 
completely decomposable and <f>3d : P3.i —> Z. The balanced exact sequence F3 would 
imply the existence of a map fa : P3d —> Y with cf>3d = Sf3 and the balanced exact 
sequence C2 guarantees the existence of a map <f> : P3d —> B with f3 = f32(f>. Thus 
</>3d = P(j>-

For (P4), assume that C2 G 23; we will show that Ci G £. Given a completely 
decomposable module P4l (f>4 : P4 —> K, balanceness of C2 guarantees the existence of 
f4 : P4 —> B with/32f4 = 7^4- Note that /3f4 = S/32f4 = 6~704 = 0, hence f4 = a 0 i , 
for some </>i : P4 —» A. Now 7^4 = /32/4 = fta^i = 7/3i0i, and 7 being monic 
induces the following equality: /3\(j)i = 04-

Finally, for (P4d), assume that F2 G 23; we will show E3 G 23. If P4d is a completely 
decomposable module and a morphism (p4d : P4d — • -£> then there exists a 4>2 : P4d ——> 
B With p(j>2 = 04d = S(fo(f>2). 0 

We can show (using the Noether isomorphism theorems) that the above properties 
are what characterizes the relative (proper) exact sequences. One of the consequences 
is the 3 by 3 lemma for this class of sequences; we give an independent proof: 

The balanced 3 x 3 Lemma. If a commutative 3x3 diagram has middle column and 
row balanced exact, then, if three of the remaining four rows and columns are balanced 
exact, then so is the fourth. 
Proof. We omit the zero maps at both ends of all the rows and columns in the diagram 
below. We will prove that, given all the three columns proper, 1) If E\,E2 6 23, then 
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E3 e £ ; 2) If E3,F2 G 23, then E\ G 3 . First note that by the ordinary 3x3 lemma, 
all the rows (and columns) are short exact sequences. 

E1 : Лi 
" 1 

Hl P I d 
fl У 4 h i 

E2: A2 

Q 2 
H2 fo c2 

p 4- 9 i rl 

E3: Aз Q ҙ JЗз ŕ»з c3 

1) Given 03 : I — • C3, then 3 0 2 : I —> C2With r02 = 03, since the third 
column is balanced. E2 is balanced, thus 30i : I —> B2 with f32(j)\ = (fi2. Finally 
30 : I —> H3, because the second column is balanced. Balanceness of E3 follows 
from the following equalities: /33 0 = /?3a0i = rfi2<j)\ = r<fi2 = 03. 2) Start with 
/ : I —> C\. E2 is balanced, so 302 : I —> B2 with hf = fi2(j)2. /33<702 = 0, and 
since o;3 = ker/53, 303 : I —> A3 with g02 = c*303. The first column is balanced, 
hence 3-02 with p^2 = 03- a3pip2 = q<t>2 and qa2ip2 = q<p2 imply q(a2ip2 - 02) = 0 , 
and, since g = kerg, 30 : I —> B\ with a2xp2 — 4>2 = g(fi. Now / = f3\(—0), because 
/32(a2ip2 — 02) = P2g4> so —f32(j)2 = —hf = hf3\<f)\ injectivity of h finishes the proof 
that Ei is balanced, <C> 

2. Bext functors 

Having the properties established in 1., we can say that balanced exact sequences form 
a so-called proper class of exact sequences. A number of papers have been written 
on the general subject of relative (proper) exact sequences. A good treatment of the 
related topics is in [Mac Lane, 1963]. We give a sketch here, for we need this theory 
in order to define balanced dimension of modules. 

The direct sum of two balanced-exact sequences E : 0 —> A\ — h B\ —-->• C\ —> 

0 and E : 0 —> A2 —>• B2 —> C2 —> 0 is the balanced-exact sequence E : 0 —> 

A, © A2

 a ^ ? 2 B1 © B2 ^ 2 d © C 2 - + 0. 
Two short exact sequences E[a,/5] and E[a') f3'] with same ends A and C are said 

to be (Yoneda) congruent, if there is a morphism / with fa = a and (3' f = j3\ by the 
short five lemma, every such / is an equivalence. 

We can now consider balanced extensions: Given R-modules C, A, denote by 
Ext^(C , A) the set (we may postulate it to be a set) of all congruence classes of 

balanced short exact sequences E : 0 —> A —± B —•> C —> 0 in 13. Ext^(C , A) is 
more than a set: 

Theorem 4. Ext^(C , A) is a bifunctor on the category of R-modules, contravariant 
in C and covariant in A. The addition, defined by the so-called Baer sum: E\-\-E2 = 
VA(E\ © E2)Ac, makes it a bifunctor to abelian groups. 



44 R. M. Dimitrič 

Proof. Covariance in A follows from Lemma 2(a), and contravariance in C is a con
sequence of the dual (b). Thus, given 7 and E, we can define E' = 7 F (or E' = E7); 
these give left (right) operations on E and the (co)universality of E' implies covariance 
and contravariance of the relative ext functor. Proof that Ext^(C , A) is an abelian 
group uses similar techniques. The class of the split extensions 0 —> A —> A0C —> 
C —> 0 is the zero element and the inverse of the class E is ( — 1A)E. 0 

Ext^(C , A) will be called the group of balanced extensions, and the corresponding 
functor the Bext functor. Note that [Butler and Horrocks, 1961] treat Ext^(—, —) as 
a subfunctor of E x t ^ —, —), which provides for an equivalent treatment of balanced 
exact sequences. We now immediately have the following: 

Proposition 5. The following are equivalent for an R-module X: 

(1) X has the projective property with respect to balanced exact sequences. 

(2) For every balanced epimorphism, (3 : B —> X, (3 splits, i.e. 37 : X —> B with 

7/3 = idx • 

(S) For every R-module A, E x t ^ ( K , A ) = 0. 0 

We also outline relevant material related to the extension group of long balanced 
sequences. A long exact sequence (for every n, I m / n + i = Ker fn) ... —> Kn+i —> 

Xn —-^ Kn_i —> . . . is balanced exact if every fn may be represented by a composition 
Q-nPm where an is a balanced monomorphism and pn is a balanced epimorphism 
(equivalently, if every Im/ n -f i is balanced in Xn)- In particular, a balanced exact 
sequence 

S -. 0 - 4 A A l „ ^ . . A l , A C ^ 0 

is called an n-fold balanced exact extension of A by C. We will refer to it also as an 
n~fold balanced extension starting at A and ending at C. 

Given an n-fold balanced exact sequence, Si : 0 —> A —> Xn -—> • •. -—• 
X\ —> C —> 0 starting at A and ending at C, and an m-fold balanced exact sequence, 
S2 : 0 — > C —> Ym — > • • • — • Yi —> D —> 0 starting at C and ending at D, 
then the Yoneda composition is the following (n -f m)~fold balanced exact sequence 

starting at A and ending at D: Si o 5 2 : 0 —> A —> Xn —> ... —> Xi —> 
Ym -—> • • • —> Y\ —> D —> 0; composition is in fact the "splicing" of the two 
sequences. This operation is clearly associative and non-commutative. Every n-fold 
balanced extension may be written as the Yoneda composition of n short balanced 
exact sequences: S = En o ... o E\. If S is as above, take En : 0 —> A —> Xn —> 
lma = Kercvn —> 0, and so on. 

We now define composition with matching morphisms: If p : A —> B (or /? : 
B —•> C) is a matching morphism, then pS = P(Eno. . .0E1) = (PEn) o En-X ...oE\ 
(or SP = (Eno.. .oEi)P = Eno.. .o(Eip). Note that in general (Ep)oEi J- Eo(pEi)), 
and this could be corrected by defining o congruence relation on (long) balanced exact 
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sequences in a way that it is the weakest reflexive, symmetric and transitive relation 
satisfying (S/3) o S\ = S o (0S\), as well as including the Yoneda congruence relation 
for short balanced exact sequences. Assume that two n-fold balanced exact sequences 
S, S', both starting at A and ending at C, have the following (unique) factorizations 
into short balanced exact sequences: S = En o . . . o E\ and S' — E'n o . . . o E[. Then S 
and S' are said to be congruent n-fold extensions, if, for every i, either E{ is congruent 
to E[, or two successive factors in S are replaced by the corresponding factor in S' 
using the rules: (E7) o F = E o (7F) and E o (7F) = (E7) o F (here E, F are short 
balanced exact sequences and 7 is any matching morphisrn). 

Denote by Ext^(C , A) the set (and we have made it an axiom earlier that this 
is a set) of all the congruence classes of n-fold balanced exact extensions of A by C. 
By convention, we set Ext^(C , A) — Hom£(C , A). In fact, E x t J ( - , - ) : FMod x 
R M o d —> Se t s is a bifunctor, contravariant in the first argument and covariant in 
the second. 

The direct sum of n-fold extensions is defined in a natural way, to respect the 
congruence relation and in a way to enable defining the abelian group structure on the 
Bext set: 

Theorem 6. Ex t J (C , A) is an abehan group with respect to the following Baer sum 

addition: a\ -f 0*2 = VA(&\ 0o~2)Ac. The inverse (opposite) of S is represented by 

( — 1A)S, and the zero extension is the congruence class of 0 —> A —> A —> 0 —> 

. . . — > 0 — > C - i - > C — > 0. 0 
Congruent long balanced exact sequences are also congruent as BMod sequences, 

therefore there is the induced natural transformation of bifunctors ExtJ (C , A) —> 
E x t ^ M o d ( C , A). This transformation is a monomorphism, for n = 1, but not always 
so, for n > 1. 

The following long exact sequences are extremely useful in computational matters 
and otherwise: 

Theorem 7. If 23 denotes the proper class of balanced exact sequences of torsion-free 

modules, and E : 0 —> A - A B --U C —> 0 <E £ . then, for every object M zn 

BMod. we have the following exact sequences: 

(1) 0 — > Я o m Ћ ( M , A ) • Ą H o m s ( M , B ) Ą H o m i ( M , C) - A . . . -

E x t J ( M , С ) --=> E x t ^ + 1 ( M , Л ) " - A Ex t£ + 1 (M,B) ^ Eҡtn

Ћ

+1 (M,C) 
E n 

(2) 0 —> Horns (C, M ) - A H o m B ( £ , M) - A Horns ( 4 , M) —+ • • • -

E x t £ ( A , M ) -£> E x t ^ + 1 ( C , M ) a-^ Ex t^ + 1 ( B , M ) "---* E x t ^ + 1 ( A , M ) 
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The participating morphisrns are defined as follows: an(clsS) = cls(aS), /3n(clsS) = 
cls(PS), an(clsS) = cls(Sa)} 0n(clsS) = cls(Sf3) and the connecting morphisrns are 
acting as follows: En(clsS) = cls(E o S) and En(clsS) = (~l)ncls(S o F) 0 

We have constructed the iterated bext functor ExtJ(—,—) without reference to 
balanced projectives. By Proposition 5.2 [Dimitric, 1993] there are enough balanced 
projectives. Namely, given any H-module M, set P = © a eM(a)* and let o(0b) = y^b, 
for 0 b G P. This gives rise to the canonical projective cover 0 —> N —> P —> 
M —> 0. As is often the case, the (iterated) ext functors are constructed via projective 
resolutions. We outline now this alternative construction. 

Given an object C and the class 13 of (short) balanced sequences, a 33-complex over 
C, denoted by e : X —> C is a chain complex of the form . . . —> Xn —> Kn-i —> 
., , —> X\ —> XQ —> C —> 0, n € N. This complex is called a balanced resolution 
of C', if the sequence is exact and all the maps are balanced (compositions of balanced 
monomorphism and balanced epimorphism). It is a balanced projective resolution ofC, 
if in addition, every Xn is a balanced projective object (i.e. completely decomposable). 

It can be shown [Mac Lane, 1963] that the cohomologies do not depend on the 
resolutions used, namely if X, X' are two balanced projective resolutions of C, and A 
is any object, then Hn (X, A) = Hn(X',A) depends only on C and A. 

It is easy to establish that E x t ^ ( C , A ) = H o m £ ( C , A ) = H°(K, A), where X\ —> 
XQ —> C —> is a balanced projective resolution of C. A more general result is also 
valid. Note first that any balanced n-fold extension of A by C may be regarded as a 
resolution of C, since it may be extended to the left of A by zeros. 

Theorem 8. If C, A are R-modules and e : X —> C is a balanced projective 
resolution of C, then there is an isomorphism £n : ExtJ(C7, A) = Hn(X, A), natural 
in A for every n = 0 , 1 , . . .. <0> 

3. Balanced projective dimension 

The balanced homological dimension of an B-module A is denoted and defined as 
hd3A = sup{n : E x t J ( A , - ) ^ 0}. Thus, h d s A = n iff VH and all k > V 

Extn+k(A,B) = 0 and there exists a module C with E x t ^ A . C ) ^ 0. Note that 
we allow the homological dimension to be infinite, but at this stage we do not distin
guish among different infinite ordinals. To accommodate the above definition, we set 
hdO = - c o and add the axiom — oo -f oo = — oo to the usual set of conventions in 

dealing with addition of the oo symbols. 
We also define the balanced global dimension of the category ItMod to be 

g l .d im 3 H = sup{n : E x t J ( ~ , - ) ^ 0} = sup{ h d 3 A : A G HMod}. 

Lemma 9. Let E : 0 —> A —> B —> C —> 0 be a balanced exact sequence. Then 
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(1) If h d B A < hd^B, then hd^C = h d ^ B 

(2) If h d c 5 A = hdo3F7 then hd^C < 1 + h d 3 B . 

(3) If hd^A > hdvB, then h d ^ C = 1 4- h d s A . 

Proof. This is a consequence of Theorem 7 0 

Corollary 10. Assume that 0 —> A —> Xn —> .. . —> X\ —> C —> 0 is a balanced 
n-fold extension of A by C. If, for all i = 1 , . . . , n, hd^K i < h d ^ A , then h d ^ C < 
n -f h d ^ A ; if, moreover, hdo3Ki < h d ^ A , for all i, then hd^C = n + hd-BA. If 
in addition, A = C. then h d ^ A = oo. <) 

Lemma 11. For an R-module B. if in the long balanced sequences S : 0 —> Cn —> 
Kn_i —> ... —> Xo —> C —> 0, all X{, i = 0 , . . . , n — 1 are balanced projective, 
then E x t n + 1 ( C , B ) .= E x t ^ ( C n , B ) 
Proof. Decompose S into short balanced sequences Ei : 0 —> Cz+i —> Xi —> 
Ci —> 0: S = FTi-i o . .. o Eo- Each of them induces the following long exact 

sequences, by Theorem 7: E x t | ( K , , B ) —> E x t | ( C , + i , B ) —h Ex t^ + 1 (C z + i , B) —> 
Ext^ + 1 (K j , B). Since all Xi are balanced projective, the end terms in this sequence 
are zero by Proposition 5, thus Ex are isomorphisms for all i and k > 1. We can now 
form the iterated connecting morphism Sn = Fn o . . . o F n „ l 5 which will be the desired 
isomorphism. <0> 

Theorem 12. The follovhng statements are equivalent: 

(1) hd3C = n. 

(2) If in the long balanced sequences S : 0 —> Cn —> Xn-i —> • • • —> Xo —> 
C —> 0. all Xi, i = 0 , . . . , n — 1 are balanced projective, then Cn is likewise 
balanced projective. 

(3) C has a balanced projective resolution of length n: 0 —> Xn —> Xn-\ —> 
. . . — > C — > 0 . 

Proof. Note first that for n = 0, this is essentially Proposition 5. 
(1)=>(2) Since Ext^ + 1 (C , B) = 0, for every B, Lemma 11. guarantees that 

Ex t s (C n ,H ) = 0, 

for every B, thus proving that Cn is ^-projective, by Proposition 5. 
(2)=>(3) This follows from the assumption that there are enough balanced projec-

tives, thus there is at least one projective resolution. 
(3)=>(1) Again by Lemma 11., E x t n + 1 ( C , B ) .= E x t ^ ( C n , B ) = 0. 0 
This theorem is the reason that balanced homological dimension is also called 

balanced projective dimension (denoted by bpd) . We also define balanced injective 
dimension of an object A as follows: id %A = sup{n : Extn

J( —, A) ^ 0}. 
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Note. If the quotient field Q of R is generated by Hn elements, it is well known that 
the projective dimension of Q is n 4- 1; on the other hand b p d Q = 0, since Q is 
balanced projective, gen M and rk M denote a generating set of minimal cardinality 
and a maximal independent set of M or their cardinalities respectively Defining 
an (equivalence) relation ~ on M by a ~ b iff there are r,s £ R with ra = 5b, 
the equivalence classes are rank one pure submodules generated by a single element: 
(a)*. sepM denotes the set of those equivalence classes or the cardinality of that 
set; clearly rk M < sep M. Given an B-module M, the canonical projective cover of 
M is a balanced exact sequence 0 —> N —> P —•> M —> 0 with P = ©a<EM(a)* 
and g(©b) = Y2 b. We will call this the separable projective cover, if we only take 
a € sepM. A pure ascending chain of B-modules M: 0 = Mo <* Mi <* . . . <* 
Mi <* . . . <* M, i < a is a continuous filtration, if for every limit ordinal a < l3, 
M/3 = Ui<pMl. This is a slice filtration if M2 is a direct summand of Mi+i, for every 
i. If M = {xz},;<a, we get the rank filtration of M by setting M^ = ({_"i}i<B)* 

We need the following easy and useful 

Lemma 13. For an ordinal r, assume that 0 —> Ai —> Bi —> d —> 0, i € r is a 
direct system of balanced exact sequences determined by continuous ascending chains 
of R-modules respectively Ai, Bl} d, i £ r, with every module pure in its subsequent 
link. Then the direct limit 

0 —> lim A% —> lim Bx —> lim Cx —> 0 

is also a balanced exact sequence. 
Proof. The limit sequence is exact, because lim-, is an exact functor. If / : I —> 
UCi = lim_). d is a morphism from a rank one module, then 3io with / ( I ) C ClQ, 
because of purity. Now the proof follows from the fact that the exact sequence with 
index io is balanced (and properties of lim-,). <0> 

We are interested in determining how balanced projective dimension is affected by 
ascending unions of modules. As a model to start at we modify the classical result of 
Auslander who addresses this question in the context of ordinary projective dimension 
of modules: 

Theorem 14. Assume that the following is a continuous ascending chain of pure 
submodules, where every link is balanced in the subsequent one (a a limit ordinal): 

0 = Mo <T> • • • <_ M(3 <<£> Mp + i < 3 . . . < s M = U(3<aMf3 . 

If, for every f3, b^&Mp+i/Mp < n, then b p d M < n. 
Proof. If n = oo, there is nothing to prove. We prove the claim by induction on 
finite n. If n — 0 then Mp+i/Mp is balanced projective and the exact sequence 
0 —> Mp —> M/3+i —> Mp+i/Mp —> 0 splits, hence M^+i = Mp © Pp (*), where 
Pp •= Mp+i/Mp is balanced projective. Claim that Mp = ©7<^P7 , for all j3 < a 
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(thus, all M/3, including M are balanced projective). We do it inductively on (3: If /? 
is a successor ordinal this is obvious, in view of (*); if (5 is a limit ordinal, then the 
claim follows from the fact that the union (limit) of a slice filtration is again a slice 
filtration. 

Assume now the inductive step that the claim is true for all numbers < n and 
prove it for n; to that end consider the canonical (or separable) balanced projective 

covers 0 —•> N/3 — • P0 •%• M/3 —> 0, f3 < a, P0 = @aeM0(a)*, qp(06) = ] £ &, 
hence qp = a/3+1 | Pp. Note that this is a direct system of balanced exact sequences, 
since N/3 < # P@ < # P/3+1, hence N/3 < u N/3+1, by Proposition 3.; use Lemma 13. to 
arrive at the canonical balanced exact sequence 0 —> N —> P —•> M —•> 0, with 
N = U/3<aN/3 with N/3 balanced in N/3+1 and P = U/3<aP/3 balanced projective (the 
same applies to every limit ordinal < a). Thus far we have not taken advantage of the 
fact that the links M/3 are balanced. We have the following commutative diagram: 

0 0 0 

4 4 4 
Nß -> Pß -4 M0 

4 4 4 
Nß+i -4 Pß+г -> Mß+i 

4 4 4 
ß+í/Nß --+ Pß+i/Pß --* Mß+i/Mß 

4 4 4 
0 0 0 

with all the columns and the top two rows balanced, hence the bottom row must be 
balanced, by balanced 3 x 3 lemma. By the assumption, bpdM/3+i/M/3 < n, hence 
application of Corollary 10. to the bo t tom row yields bpdNp+i/Np < n — 1. By 
the inductive hypothesis we conclude b p d N < n — 1 and applying Lemma 9. to the 
balanced exact sequence 0 —> N —> P —> M —> 0, we get b p d M < n. 0 

An application of Lemma 9. yields the following: 

Corollary 15. If the conditions are same as in Theorem 14-, except that the assumption 
on the links is: bpdM^ < n, for every (3, then the conclusion is that b p d M < n-f 1. 

• 
We can strengthen this however, replacing the balanceness condition by mere pu

rity: 

Corollary 16. Assume that the following is a continuous ascending chain of pure 
submodules: 

0 = Mo < * • • • < * M/3 <* M/3 + 1 < • . . . < * M = U/3<aM/3 • 

If, for every /3, bpdM/3 < n. then b p d M < n + 1. 
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Proof. As in the proof of Theorem 14., we arrive at the 3 x 3 commutative diagram, 
except we cannot assume that the third column is balanced exact. Balanced exactness 
of the first row, the assumption and Lemma 9. force bpdNg < n— 1, n > 1. If n = 0, 
then the top row splits and all N^ are balanced projective and direct summands in the 
subsequent links hence their union N is balanced projective, thus b p d M < 1, from 
the balanced exact sequence 0 -—> N —> P —> M —> 0. If we assume the statement 
true for dimension < n, then applying Corollary 15. yields b p d N < n. This again 
implies b p d M < n + 1. 0 

A similar argument was attributed by [Fuchs and Hill, 1986] to [Simmons, 1983], in 
a context of cyclic puri ty An immediate consequence is that pure continuous ascending 
union of completely decomposable modules has balanced projective dimension at most 
1. The following is an analogue of Proposition 8., [Dimitric and Fuchs, 1987]: 

Proposition 17. If M is a rank Hn pure submodule of a completely decomposable 
module P, then b p d M < n 
Proof. Countable pure submodules of completely decomposable modules over valua
tion domains are again completely decomposable, thus the claim is verified for n = 0. 
Without loss of generality P is also of rank Kn and is the union of the slice filtration 
Pa, where each Pa is of rank at most N n _ i . If Ma = M fl PQ, then Ma also has rank 
at most N n - i , thus inductivelly by Theorem 16 we get the desired result. 0 

Corollary 18. Let \R\ < H n ; and let M be an Kn-generated R-module. Then b p d M < 
n + 1 
Proof. Consider the rank filtration M@ of M, and the canonical balanced projective 
covers 0 —> Np —> Pp —> M@ —> 0, just as in the proof of Theorem 14. M^ 
will be also at most ttn-generated, because they are pure submodules, thus the rank 
of Pp+i/Pp is at most N n , since the cardinality of R is bound by the same cardinal. 
Applying Proposition 17. we arrive at bpdN^+i/N^g < n, hence b p d N < n by 
Theorem 14. The result follows from applying Lemma 9. to the balanced exact 
sequence 0 — > N —> P —> M —> 0. 0 

Proposition 19. For n > 2. the following are equivalent: 

(1) gl.dim ^R < n. 

(2) Balanced submodules of balanced projective modules have balanced projective 
dimension at most n — 2. 

Proof. (1)=>(2) If P is a balanced projective module and 0 —> N —> P —> P/N —> 
0 a balanced exact sequence, b p d P / N < n— 1, by (1) and b p d N < n — 2, by Lemma 
9. (2)=>(lj For any P-module M, let 0 —> N —> P — > M —> 0 be a canonical 
balanced projective cover. By the assumption, b p d N < n — 2, hence b p d M < n — 1 
(for every module M). 0 
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The results in this paper were also presented at The International Conference on 
Abelian Groups and Modules, Colorado Springs, August 7-12, 1995. In a sequel to 
this paper we will explore further properties of balanced projective dimension and in 
particular the balanced global dimension. 
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