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Note on the Cubic Residues 

Stanislav Jakubec 

Abstract: In this paper, a simple characterization for a prime q to be a cubic residue 
modulo p is given. This criterion (Corollary 1) is a corollary of Theorem 1, where the 
decomposition of primes q onto prime ideals in a cubic subfield of the field Q(Cp) is 
described. 

Mathematics Subject Classification: Primary 11R18. 

Let p be a prime, p = 1 (mod 3) and let K be a cubic subfield of the field Q(CP) -

Theorem 1. Let q be a prime, q ^ 3, q ^- p, such that it decomposes onto r prime 
ideals in ZQ(^p) ; where 3|r. Then q decomposes onto 3 prime ideals in Z K 

Proof. Then we two possibilities. Either q decomposes in Z K onto 3 prime ideals, or 
oZK is a prime ideal. 

(i) Let p ^ 1 (mod 9). Then 3 does not divide 2~. Let (?ZK be a prime ideal in 
Z K - Then Z K decomposes onto r prime ideals in Z Q ( ^ P ) , hence r l ^ 1 - a contradiction. 

(ii) Let p = 1 (mod 9). Suppose that <?ZK is a prime ideal. Let /3o,/?i,/32 are 
Gauss periods. As it is well known (see [1]) 14- 3/30 is a root of the polynomial 
f(X) = X3 - 3pX - (2A - B)p, where 

J(x>x) = A + BCz = -l (mod 3) 

is the Jacobi sum. 
Because « Z K is a prime ideal, we have 

[ Z K / " Z K : Z/oZ] = 3, 

Therefore f(X) is irreducible modulo q (q ^ 3). From the fact that q decomposes onto 

r prime ideals in Z Q ( £ ), using the theorem on the degree of the residue field, we get 

q r = 1 (mod p), hence q is a cubic residue modulo p. 
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Let H*(Q(Cs)) be the group of ray classes in the narrow sense (mod 9)gZQ ( C p). 
By [4] Corollary 7 p. 358 there holds: In every class of H*(K) there are infinitely 
many prime ideals, even of the first degree. Consider the class generated by the ideal 

(*) (A + 3g + (B + 3o)C3)ZQ(C3). 

From the fact that ZQ(C3) is a ring of principal ideals it follows that the class 
generated by the ideal (*) consists of ideals of the form (A1 + B'C3)ZQ(C3), where 
A' = A + 3q (mod 9q) and B' = B + 3q (mod 9q). Let (A* + B*C3)ZQ(C3) be a 
prime ideal from this class. Let 

p* = N(A* + B*C3) = A*A* - A*B* + B*B*. 

Because B = 0 (mod 3) we have 

p* = 1 + 3qA = 1 - 3o (mod 9), 

hence p* ^ 1 (mod 9). 
From A* + B*C3 = — 1 (mod 3) we get that A* + B*C3 is the Jacobi sum for the 

Dirichlet character modulo p*. By Lemma 2 of [3] and from the facts that A* + B*C3 
is the Jacobi sum, q is a cubic residue modulo p, and A* + B*C3 = A + BC3 (mod g), 
it follows that q is a cubic residue modulo p*. 

Denote by /3Q the Gauss period for a prime p*. Hence 1 + 3/3Q is a root of the poly
nomial f*(X) where f*(X) = f(X) (mod q) therefore f*(X) is irreducible modulo 
q. By (i) of this proof, q decomposes onto 3 prime ideals in Z*< (because p* ^ 1 
(mod 9) and q is a cubic residue modulo p*), hence f*(X) decomposes modulo q onto 
linear factors - a contradiction. 

Corollary 1. Let p = 1 (mod 3). 4p = a2 + 27b2, a = 1 (mod 3). A prime q, q ^ 3 
is a cubic residue modulo p if and only if the polynomial f(X) = K3 — 3pK — ap has 
a root modulo q. 

Proof. The assertion of this corollary follows from the Theorem 1, if we lake into con
sideration that this polynomial is either irreducible or decomposes onto linear factors, 
depending on whether O Z R is a prime ideal or decomposes on 3 ideals respectively 

Example 1. Let q be a prime g / 3. If q\ab, then q is a cubic residue modulo p. 
Proof l.If g|a, then f(X) has a root X = 0 modulo q. 

2.If g|b, then f(X) has a root X = a modulo q. 
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Example 2. If q — 2, 5, 7, then q is a cubic residue modulo p if and only if q\ab. 
Proof. If q\ab then by Example 1 o is a cubic residue modulo p. Investigating a few 
possibilities we find that f(X) is otherwise irreducible. 

Remark 1. Theorem 1 and hence Corollary 1, too, can be extended to the case q = 3. 
But we must consider the polynomial g(X) = X3 + X 2 — ^^—X — ap+

2
3

7
p —, which has 

the Gauss period 0Q as a root. Let g(X) decomposes onto linear factor modulo 3. This 
decomposition cannot be of the form 

g(X) = X(X - 1)(X - 2) (mod 3), 

because 0 + 1 + 2 ^ —1 (mod 3). Therefore g(X) has a multiple root modulo 3, 
hence 3|A. where A = p2b2 is a discriminant of the polynomial g(X). It follows that 
3|b. Conversely z/3 |b then the polynomial g(X) has a root modulo 3. Therefore 3 is 
a cubic residue modulo p if and only if Ap = a2 + 243b2. Because it is consistent with 
the condition for 3 to be a cubic residue modulo p (see [2]), it is a proof of Theorem 
1 for q = 3. 
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