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Differential-Difference Equations 
by Lyapunov's Direct Method 
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Abstract: In the present paper the question of global stability of sets with respect to 
systems of impulsive differential-difference equations with impulse effect at fixed moments 
is considered. It is proved that the existence of piecewise continuous functions of the type 
of Lyapunov's functions with certain properties is a sufficient condition for various types of 
global asymptotic stability. 
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direct method 

Mathematics Subject Classification: 34A37 

1. Introduction 
The impulsive differential-difference equations are adequate mathematical models 
of numerous real processes and phenomena studied by physics, biology, popula­
tion dynamics, theory of optimal control, industrial robotics and economics. For 
instance, if the population of given species depends on their maturity and on the 
natural growth rate for the preceeding generations, then the equation which simu­
lates the population dynamics of these species is differential-difference. If, moreover, 
the population is regulated by some impulsive factors acting at certain moments, 
then we have no reasons to expect that the process will be simulated by regular 
control. On the contrary, the solutions must have jumps at these moments and the 
jumps are given beforehand. 

In spite of the great possibilities for application, the theory of the impulsive 
differential-difference equations is developing rather slowly due to obstacles of the­
oretical and technical character.[1-4] 

In the present paper the problem of global stability of sets with respect to systems 
of impulsive differential-difference equations with impulse effect at fixed moments is 
considered by means of Lyapunov's direct method. The use of classical (continuous) 
Lyapunov's functions, however, considerably restricts the facilities provided by the 
method. 



8 Drumi D. Bainov, Ivanka M. Stamova 

The fact that the solutions of the systems considered are piecewise continuous 
functions requires the use of analogues of Lyapunov's functions which have disconti­
nuities of the first kind. By means of these functions the possibility of application of 
Lyapunov's direct method to impulsive systems of differential-difference equations 
considerably increases [6]. Moreover, the technique of investigation essentially de­
pends on the choice of minimal subsets of a suitable space of piecewise continuous 
func tions, by the elements of which the derivatives of Lyapunov's functions are 
estimated. [7] 

We shall note that analogous results for impulsive systems of ordinary differential 
equations (without delay) were obtained in [5]. 

2. Statement of he problem. Preliminary notes and definitions 

Let Ix+ = [0, oo); Rn be the n-dimensional Euclidean space with norm |.| , scalar 
product < .,. > and distance d(.,.). Let h > 0, to £ R and (Do G C[[t0 — h, t0], Rn]. 

Consider the initial value problem 

X(t)=f(tix(t)ix(t-h))1 t>t0)t^Tkl (1) 

x(t) =<A)W, te [ t o - M o ] , (2) 

Ax(Tk) = Ik(x(Tk))t Tk > t0l k = l , 2 , . . . , (3) 

where / : (t0l oo) x Itn x Rn -> Ixn; Ik : Rn -> Itn, A: = 1, 2 , . . . ; Ax(n) = x(n + 
+ 0) — x(Tk — 0)] to = To < T\ < r2 < ... and lim Tk = oo. 

k—^oo 

The solutions x(t) of problems of the type (1), (2), (3) are piecewise continuous 
functions with points of discontinuity of the first kind Tk > to, k = 1,2, . . . at 
which they are continuous from the left, i.e. at the moments of impulse effect Tk 

the following relations are valid 

x(Tk - 0 ) =x(Tk),x(Tk + 0 ) =x(Tk)+Ik(x(Tk))1 k= 1 , 2 , . . . 

If for some positive integer j we have Tk < Tj + h < r/.+i, k = 0 ,1 , 2 , . . . , then 
in the interval [TJ + h,Tk+i] the solution x(t) of problem (1), (2), (3) coincides with 
the solution of the problem 

(y(t) = f(t1y(t)1x(t-h + 0)), 
\y(Tj +h) = X(TJ + h), 

and if Tj + h = Tk for j = 0 ,1 , 2 , . . ., k = 1,2, . . . ,thcn in tlie interval [r, + li, r^+ 1] 
the solution x(t) coincides with the solution of the problem 

hj(t) = f(t,y(t)1x(t-h + 0))1 

\ y(Tj +h)= X(TJ +h) + Ik(x(Tj + h)). 

Let M C [t0 - /i,oo) x Rn. 
Introduce the following notations: 

M(t) = {x e Rn : (t,x) £ M,t £ (*o,oo)}; 
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M0(t) = {x G Rn : (t,x) G M, t e [t0 - M o ] } ; 
d(x, M(t)) = inf \x - Hi is the distance between x e Rn and M(r); 

l / € M ( t ) ' 

M(t,e) = {x G Rn : d(x,M(t)) < e} (e > 0) is an ^-neighbourhood of M(t)\ 
Co = C[[to~h,to],Rn); 
do(tp,M0(t)) = max d(ip(t),M0(t)), ip G Co; 

te[to-h,t0] 
M0(t,e) = {^peC0: d0((p,M0(t)) <e}; 
Sa = {x G Rn : \x\ < a } , a > 0; 
££ = {.r G i t n : |x| < a } ; 
•So (Co) = {<P € Co : |MI < a } , where | M | = max \<p(t)\ is the norm of the 

t£[to — h,to) 

function ip G Co; 
C^ = {(t,a?) G [*0,oo) x H n : rk-i < t < rk) , k = 1, 2 , . . . ; 

oo 

o=(JG*; 
fc=i 

Iv" = {a G C[-R+,I?+] : a(r) is strictly increasing and a(0) = 0}; 
CK = {ae C[(£0,oo) x R+,R+] : a(t,.) G K for any fixed t G (t0 ,oo)}; 
I^* = {ae C[R+ x R+,R+] : a(.,s) G K for any fixed s G R+}\ 
x(t;t0,ip0)is the solution of problem (1),(2),(3); 
J+(toi<Po) is the maximal interval of type (t0,/3) in which the solution x(t;t0,(po) 
is defined. P 

Introduce the following conditions: 
HI. / G C[(*0,oo) x Rn x Rn,Rn]. 
H2. The function / is Lipschitz continuous with respect to its second and third 
arguments in (t0,oo) x Rn x Rn uniformly on t G (t0, oo). 
H3. \f(t,x,x)\ < L < oo forfoar.i) G (*o,oo) xRn xRn, L> 0. 
H4. For any k = 1,2, . . . the following inequality is valid 

|Ifc(xi) ~ 4 ( x 2 ) | < c\xi -x2\, xi,x2 G IT, c > 0. 

H5. t0 = To < Ti < T2 < 
H6. lim Tf. = oo. 

&—»oo 

H7. M(r) ^ 0 for i e (r0 ,oo). 
H8. M0(i) ^ 0 for r € [*o - Mo]-
H9. For any compact subset F of (to,oo) x Rn there exists a constant K > 0 
depending on F such that if (£, a;), (<', a;) € F , then the following inequality is valid 

\d(x, M(t)) - d(x, M(t'))\ < K\t - t'\. 

We shall give definitions of stability of the set M with respect to problem 
U),(2),(3). 

Definition 1. The set M is said to be: 

(a) stable with respect to problem (1),(2),(3) if 

(Vr0 G R)(Wa > 0)(Ve > 0)(3S = «( t 0 >a,e) > 0) 

(Vcpo G 5^(C0) H M0(*,<J))(V* > t0) : 

x(t;*o,<Po) € M(r,£); 
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(b) t(a)-uniformly stable with respect to problem (1), (2), (3) if the number S from 
point (a) does not depend on to (on a ) ; 

(c) uniformly stable with respect to problem (1), (2), (3) if the number S from point 
(a) depends only on e. 

We shall give definitions of boundedness of the solutions of problem (1), (2), (3) 
with respect to the set M . 

Definition 2. The solutions of problem (1), (2), (3) are said to be: 

(a) equi-M-bounded (equi-bounded with respect to the set M) if 

(V77 > 0)(Va > 0)(Vt0 € R)(30 = P(to,n,a) > 0) 

(V<A) € Sa(Co)nM0(t1r}))(yt > t0) : x(t;*0,¥>o) € M(*,/?); 

(6) t (a)-uniformly-M-bounded if the number /3 from (a) does not depend on t0 (on a ) ; 

(c) uniformly-M-bounded if the number 0 from (a) depends only on 77. 

Finally we shall give definitions of global asymptotic stability of the set M with 
respect to problem (1), (2), (3). 

Definition 3. The set M is said to be: 

(a) globally equi-attractive with respect to problem (1), (2), (3) if 

(V77 > 0)(Va > 0)(\/t0 e R)(Ve > 0) 

(3(j = O-(r0,77,a,e) > 0)(V(Do € S^(Co) n M0(t,rj)) 

(\/t>to + o): x(t;t0,tpo) G M(t ,e ) ; 

(b) t(a)-uniformly globally attractive with respect to problem (1), (2), (3) if the 
number <r from (a) does not depend on £0 (on a) ; 

(c) uniformly globally attractive with respect to problem (1), (2), (3) if the number 
a from (a) depends only on 77 and e. 

Definition 4. The set M is said to be: 

(a) globally equi-asymptotically stable with respect to problem (1), (2), (3) if M is 
a stable set and a globally equi-attractive set of problem (1), (2), (3) and the 
solutions of problem (1), (2), (3) are equi-M- bounded; 

(b) t(a)-uniformly globally asymptotically stable with respect to problem (1), (2), (3) 
if M is £(a)-uniformly stable and t(a)-uniformly globally attractive set of prob­
lem (1), (2), (3) and if the solutions of problem (1), (2), (3) are r(a)-uniformly 
M-bounded; 

(c) uniformly globally asymptotically stable with respect to problem (1), (2), (3) if 
M is a uniformly stable and uniformly globally attractive set of problem (1), (2), 
(3) and if the solutions of problem (1), (2), (3) are uniformly M-bounded; 
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(d) exponentially globally asymptotically stable with respect to problem (1), (2), (3) 
if 

(3c > 0 ) (VQ > 0)(Vr/ > 0)(3* = k{a,r)) > 0) 

(Vío Є R)(Уџ>o Є Sa(C0) П M0(ť,ł7))(Vť > í 0 ) : 
d(x(t; t0,щ),M(t)) < к(a,тì)do((p0, M0(t)) exp[-c(ť - ť0)]. 

In the further considerations we shall use the class V0 of piecewise continuous 
auxiliary functions V : [£0,oo) x I?n —•> R which are an analogue of Lyapunov's 
functions [6]. 

Definition 5. We shall say that the function V : [to,oo) x Rn —•> It belongs to the 
class Vb 1f'« 

1. The function V is continuous in G and locally Lipschitz continuous with respect 
to its second argument in each of the sets Gk, k = 1,2, 

2. V(t,x) = Ofor (t,x) e M, t>t0 and V(t,x) > 0 for (t,x) G {[£n,co) x Rn}\M. 

3. For each k = 1,2, . . . and x G Rn there exist the finite limits 

V(n ~0,x)=\imV(t,x), V(Tk +0,x)=hmV(t,x). 
t-+Tk t-+Tk 

4. The equality V(Tk — 0,x) = V(Tk,x) is valid. 

5. The following inequality is valid 

V(Tk +0,x(Tk) + Ik(x(Tk))) <V(Tk,x(Tk)), fc=l,2,... (4) 

We also introduce the following classes of functions: 
PC[[to,oo),Rn] = {x : [to,oo) —> Rn: x is piecewise continuous with points of 

discontinuity of the first kind T\, T<I , . . . at which it is continuous from the left}; 
H = {x e PC[[t0,oo), Rn]: V(s,x(s)) <V(t,x(t)), t - h < s < t, t > t0, 

v eVo}. 
Let V eV0, t>t0, t^Tk, k = 1,2, . . . and x G PC[[ t 0 ,oo) , i t n ] . 
Introduce the function 

D-V(t,x(t)) = lim i n f c r - ^ y ^ + c r ^ ^ ) + af(t,x(t),x(t - h))) -V(t,x(t))}. 
< T - > 0 -

Definition 6. Let A : (t0,oo) -> It+ be measurable. Then we say that X(t) is 
integrally positive if Jj X(t)dt = oo whenever J = [j^Li[ctk, Pk], ak < (3k < ak+\ 
and pk - ak > 6 > 0, fc = 1 ,2 , . . . . 

In the proof of the main results we shall use the following lemmas: 

Lemma 1. Let the conditions HI, H2, H4-H6 hold. 

Then J+(to,^o) = (*o,oo). 
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Proof. By conditions HI, H2 and H4 the solution x(t) = x(t;to,<Po) of problem (1), 
(2), (3) is defined in each of the intervals (rfc_i, rk], fc = 1, 2 , . . . . From conditions 
H5 and H6 we conclude that it is continuable for each t > to- r~j 

L e m m a 2 . Let the following conditions hold: 

1. Conditions HI, H2, H4-H6 are met. 

2. g G PC[[t0,oo) x R+,R] and g(t,0) = 0 for t G [ i 0 , o o ) . 

3. Bk G C[R+,R+], Bk(0) = 0 and ipk(u) = u + Bk(u) are nondecreasing with 
respect to u,k = 1 ,2 , . . . . 

4. The maximal solution r(t\to,uo) of the problem 

(u(t) = O(r,u(t)), t>t0, t^Tk, fc = l , 2 , . . . , 
<̂  u(tQ + 0) = uo > 0, (5) 
[ Au(Tfc) = £?fc(_(rfc)), fc = l , 2 , . . . 

is defined in the interval [£0,00). 

5. The function V £ Vo is such that 

V(to><Po(to)) < u0 

and the inequalities 

D-V(t,x(t)) <g(t,V(t,x(t))), t^Th, fc = l , 2 , . . . , 
V(rfc+0,.r(rfc) + Ifc(x(rfc))) < *pk(V(Tk,x(Tk))), fc = l , 2 , . . . 

are valid for each t > to and x G ft. 

Then 
V(t,x(t;t0,(po)) < r(t]t0,u0) for t G [to,00). (6) 

Proof. The maximal solution r(t;t0,uo) of problem (5) is defined by the equality 

r0(t;to,uo + 0 ) , t0 < t < r 1 ? 

_ r i ( t ; r i , _ i + 0), n < t < r2, 
r(t]t0,u0) = 

rk(t]Tk,Uk + 0 ) , Tfc <t < Tk+l, 

where rk(t; Tk,uk + 0) is the maximal solution of the equation without impulses it = 
= g(t,u) in the interval (Tk,Tk+i], k = 0 , 1 , 2 , . . . , for which _/+0 = ipk(rk-\(Tk]Tk-i, 
Uk-i + 0)), fc = 1, 2 , . . . and uo + 0 = u0. 

Let t G (to,T\]. Then from the corresponding comparison lemma for the contin­
uous case [7] it follows that 

V(t,x(t;t0,(po)) < r(t;t0,u0), 

i.e. inequality (6) is valid for t G (to.Ti]-
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Suppose that (6) is satisfied for t G (Tk-\,Tk], k > 1. Then, using condition 5 of 
Lemma 2 and the fact that the function tpk are nondecreasing, we obtain 

V(rk +0,x(rk + 0;to,ipo)) < rl>k(V(Tk,x(Tk;t0,tp0))) < 

< ipk(r(Tk;t0,u0)) = ipk(rk-i(Tk;Tk-.i,uk-i + 0)) =uk+0. 

We apply again the comparison lemma for the continuous case in the interval 
(Tk,Tk+i] and obtain 

V(t,x(t;t0,(p0)) < rk(t;Tk,uk + 0) = r(t;t0,u0), 

i.e. the inequality (6) is valid for t G (Tk,Tk+\]. 
The proof is completed by induction. rj 

Corollary 1. Let the following conditions hold: 

1. Conditions HI, H2, H4-H6 are met. 

2. The function V G V0 is such that the inequality 

D-V(t,x(t)) < 0 , t^Tk, k = 1,2, . . . 

is valid for each t > t0 and x £ Q. 

Then 
V(t,x(t;t0,(p0)) < V(t0,(p0(t0)), t G [t0,oo). 

Lemma 3. Let conditions H5 and H6 hold and let the function V : [t0, oo) x Rn —> R 
belong to class V0. 

Then for any choice of the numbers t0 G R, a > 0, r\ > 0 there exists a number 
K(t0,a,n) > 0 such that for <p0 G Sa(C0) f] M0(t,rj) the following inequality holds: 

V(t0,ip0(t0)) <K(t0,a,r]). (7) 

Proof. Suppose that the assertion is not true. Then there exist t0 G R, constants 
a>0,r?> 0 and a sequence { r C r } ^ C Rn such that xr G Saf)M0(t0,r)) for r = 
= 1,2,. . . and the following inequalities are valid 

V(t0,ip0(to)) > r , r = l , 2 , . . . (8) 

Since the sequence {xr}%.l is bounded, then out of it we can choose a convergent 
subsequence {a;r,}?£.,. Let l.im xr. — ip0(t0). From the continuity of the function 

J j-^oo 
(Do at io G it and of V(t0,x) at the point (t0,ip0(t0)) it follows that 

lim V(t0,xrj) = V(t0iip0(t0)), 
J-VOO 

which contradicts inequality (8). 
This completes the proof of Lemma 3. rn 
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3. Main results 

Theorem 1. Let the following conditions hold: 

1. Conditions H1-H9 are met. 

2. The functions V G V0 and a G K are such that 

a(d(x,M(t))) < V(t,x) for (t,x) G [*0,oo) x Rn, (9) 

where a(r) —> oo as r —> oo. 

3. The inequality 

D-V(t,x(t)) < -cV(t,x(t)) for t^rk, k = 1 ,2 . . . 

is valid for each t>to,x£fL,V£Vo and c = const > 0. 

Then the set M is globally equi-asymptotically stable with respect to problem (1), 
(2), (3). 

Proof. Let a > 0, e > 0. From the condition V(to,x) = 0 for x G Mo (to) it follows 
that there exists a constant S = S(t0,a,e) > 0 such that if x G Sa f] M0(to, 5), then 
V(t0,x) < a(e). 

Let <A) G S a ( C o ) H M ) ( M ) . Then(A)(t0) 6 Sa f]M0(t0,S), hence V(t0 ,^o(to)) < 
< a(e). 

Let .r(t) = x(t]t0,(po) be the solution of problem (1), (2), (3). 
By Lemma 1 J+(t0,(^0) = ( t0 ,co). 
Since the conditions of Corollary 1 are met, then 

V(t,x(t;t0,<p0)) <V(t0,<p0(t0)), te (t0>oo). (10) 

Form (9) and (10) there follow the inequalities 

a(d(x(t;t0,ip0),M(t))) < V(t,x(t;t0,^0)) < 

< V(t0,ip0(t0)) < a(e) for t G (r0 ,co). 

Hence x(t;to,<po) G M(t,e) for t > to, i.e. the set M is stable with respect to 
problem (1), (2), (3). 

Let a > 0, 77 > 0 and e > 0. From condition 3 of Theorem 1 and (4) there 
follows the inequality 

V(t,x(t;t0,<po)) < V(t0,ip0(t0))exp[-c(t - t0)]. (11) 

Let N(t0,n,a) = sup{V(t0,x) : x G Sa C\M0(t0,r))} and 
a = a(to,a,V,e)>l-ln^^. 

Then from conditions (9) and (11) it follows that for t > t0 -f O the following 
inequalities are valid 

a(d(x(t;t0,tp0),M(t))) < V(t,x(t;t0,(p0)) < 

< V(t0,tp0(t0))exp[-c(t - t0)] < a(e), 
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which means that the set M is globally equi-attractive with respect to problem (1), 
(2), (3). 

Finally we shall prove that the solutions of problem (1), (2), (3) are equi-M-
bounded. 

Let a > 0 and r\ > 0. From Lemma 3 it follows that there exists a con­
stant K(t0,a,n) > 0 such that if ip0 G Sa(C0)f]M0(t,rj), then V(t0,(p0(t0)) < 
< K(t0,a,rf). From the condition a(r) —> co as r —> oo it follows that there exists 
a constant (5 = P(t0,a,r}) > 0 such that a((3) > K(t0,a,n). 

Let (po G Sa(Co) n M0(t, rj) and let x(t) = x(t; to, ip0) be the solution of problem 
(1), (2), (3). Then from condition (9), condition 3 of Theorem 1 and from (4) we 
obtain 

a(d(x(t;t0,<p0),M(t))) < V(t,x(t;t0,ip0)) < 

< V(t0,ip0(to)) < K(t0,a,r)) < a(0) 

for each t > t0. This shows that d(x(t),M(t)) < (3, t > t0, hence the solutions of 
problem (1), (2), (3) are equi-M- bounded. rj 

Theorem 2. Let the following conditions hold: 

1. Conditions H1-H9 are met. 

2. The functions V G V0 and a,b G K are such that 

a(d(x,M(t))) < V(t,x) <j(t)b(d(x,M(t))), 

for (t,x) G [£o,co) x Rn and a(r) -> oo as r —> oo, where 7 : [to, 00) -» [l ,co). 

3. The inequality 

D„V(t,x(t)) < -p(t)c(d(x(t),M(t))), t^rk, k=l,2... 

is valid for any t > t0, x G 0 , V G V0, p : [t0, 00) —> (0, 00). c G K. 

4. / p(s)c[b l(——)]ds = 00 for each sufficiently small value of rj > 0. 

Then the set M is a-uniformly globally asymptotically stable with respect to 
problem (1), (2), (3). 

Proof Let e > 0. Choose S = S(t0,e) > 0, S < e so that b(S) < ^ - . 

Let a > 0 be arbitrary, (p0 G Sa(C0) f] M0(t, S) and x(t) = x(t;t0,tp0). 
From conditions 2 and 3 of Theorem 2 and (4) it follows that for t G J+(zo,<A)) 

the following inequalities are valid 

a(d(x(t;t0,tp0),M(t))) <V(t,x(t)) < 

< V(t0,<p0(t0)) < -y(to)b(d(ipo(to),M0(to))) < 

< -y(to)b(do(<po,M0(t))) < <y(t0)b(5) < a(e). 

Since J+(r0,^o) = (to,°°)5 then x(t) G M(t,e) for all t > t0. 
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Thus it is proved that the set M is a- uniformly stable. 
Now let rj > 0 and e > 0 be given and let the number a — o(to,r),e) > 0 be 

chosen so that 

^ ' p(s)c[b-i(0L)]ds > y(t0)b(V). (12) 

(This is possible in view of condition 4 of Theorem 2 ). 
Let a > 0 be arbitrary, v?o € Sa(Co)C\Mo(t,r]) and x(t) = x(_;_0,(p0). 
Assume that for any t G [t0,t0 + O] the following inequality holds: 

_(_(*), M t t ) ) ^ . - ^ ! ^ ) . 

Then by condition 3 of Theorem 2 and (12) it follows that 

rto + a rto-r-a / \ 

/ D_V ( 5 , x ( 5 ) )d S < - / P ( s ) c [ 6 - i ( - i ^ ) ] d 3 < 7(*o)6fo). (13) 
J to J to 27(5) 

On the other hand, if to + a G ( r r , r r + i ] , then from (4) we obtain 

rto+a r rTk rto + cr 

/ _._V(«,s.(_))__ = ] T / D_V(s ,_(s) )ds + / D-V(s,x(s))ds = 
Jto fc=l JTk-1 J Tr 

r 

= I Z [ y ^ ' x ( r f c ) ) - V ( r * - i + °>3( r*-i + 0))] + V(h + o,x(to + a ) ) -
A : = l 

- V(r r + 0, x(Tr + 0)) > V(to + O, x(_0 + a)) - V(t0, <p0(*o)), 

whence, in view of condition (13) and condition 3 of Theorem 2, it follows that 
V(_o + 0", z(-o + <r)) < 0, which contradicts condition 2 of Theorem 2. 

The contradiction obtained shows that there exists _* G [to, to + cr], such that 

d(j(n,M(nxi- i (^-) . 

Then for t > t* (hence for any t > to + a as well) the following inequalities are 
valid 

a(d(x(t),M(t))) < V(t, _•(-)) < V(t* +0,x(t* + 0 ) ) < 

< j(t*)b(d(x(f),M(t*))) < - ^ - < a(_>. 

Hence __*(£) G M(_,e) for _ > t0 + O, i.e. the set M is a-uniformly globally 
attractive with respect to problem (1), (2), (3). 

Finally we shall prove that the solutions of problem (1), (2), (3) are a-uniformly 
M-bounded. 

Let rj > 0 and let 0 = /?(t0,7?) > 0 be such that a((3) > <y(t0)b(r)). 

Choose arbitrary a > 0, <p0 G Sa(Co) f| A-o(*»»/) a n d l e t -&(0 ~ ^( t ;_ 0 , ^o) . 
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Then for t > to the following inequalities are valid 

a(d(x(t),M(t))) < V(t,x(t)) < V(t0,ip0(to)) < 

<-y(to)b(d(<po(to),M0(t0))) <-Y(to)b(do(<Po,M0(t))) < 

<7(to)b(v)<a(p). 

Hence x(t) G M(t,(5) for t > t0. rj 

Theorem 3. Let the following conditions hold: 

1. Conditions H1-H9 are met. 

2. The functions V G VQ and a,b G K are such that 

a(d(x,M(t))) <V(t,x) <b((d(x,M(t))), 

for (t, x) G [to, oo) x Rn and a(r) —> oo as r —> oo. 

3. There exists an integrall positive function X(t) such that the inequality 

D„V(t,x(t)) < -\(t)c(d(x(t),M(t))), t^rk, k = l,2... 

is valid for any t > to, x G ft, V G Vo o.nd c G K. 

Then the set M is uniformly globally asymptotically stable with respect to problem 
(1), (2), (3). 

Proof. For an arbitrary e > 0 choose the positive number <5 = 5(e) so that b(5) < 
< a(e). 

Let a > 0, <po € S'a(Co) fl M)(£30*) and .r(r) = :c(£; £o5<A))- Then for any t G 
G J+(£o><A)) the following inequalities are valid 

a(d(x(t),M(t))) < V(t,x(t)) < V(t0,<po(to)) < 

b(d(ipo(to),M0(to))) < b(d0(vo,M0(t))) < b(S) < a(e). 

Since by Lemma 1 ^ ( ^ 0 ) ^ 0 ) = (^O)Oo), then x(t) G M(t,e) for t > to. 
Thus it is proved that the set M is uniformly stable with respect to the problem 

(1), (2), (3). 
Now we shall prove that the set M is uniformly globally attractive with respect 

to the problem (1), (2), (3). 
Let again e > 0 and 77 > 0 be given. Choose the number S = S(e) > 0 so that 

b(S) < a(e). 
We shall prove that there exists a = a(e,n) > 0 such that for any solution 

x(t) = x(t;t0,ipo) of problem (1), (2), (3) for which t0 G R, ip0 G 5l(C70)n Mo(t, v) 
(a > 0 - arbitrary) and for any t* G [to, to -f o~] the following inequality is valid 

d(x(t*),M(t*)) <S(e). (14) 
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Suppose that this is not true. Then for any a > 0 there exists a solution x(t) = 
= x(t;t0,ipo) of problem (1), (2), (3) for which to e R, (fo e 5Q(c70)n M0(t,r]), 
a > 0, such that 

d(x(t),M(t))>S(e), (15) 

for t e [to,t0 -f-a]. 
From condition 3 of Theorem 3 and (4) it follows that 

V(t,x(t))-~V(to,<fo(t0))< [ D„V(s,x(s))ds < 
Jt0 

< - / \(s)c(d(x(s),M(s)))ds, t > t0. (16) 
Jt0 

From the properties of the function V(t,x(t)) in the interval (to,oo) it follows 
that there exists the finite limit 

lim V(t,x(t)) =v0 > 0. (17) 
t—>oo 

Then from condition 2 of Theorem 3, (15)-(17) it follows that 

/•OO 

/ \(t)c(d(x(t), M(t)))dt < b(rj) - v0. 
Jt0 

From the integral positivity of the function \(t) it follows that the number a can 
be chosen so that 

Jto c(S(e)) 

Then 

r OO 

6(77) -v0> \(t)c(d(x(t),M(t)))dt > 
Jt0 

r to+cr cto+c 

> / \(t)c(d(x(t),M(t)))dt > c(8(e)) / \(t)dt > 6(77) - v0 + 1. 
Jt0 Jt0 

The contradiction obtained shows that there exists a positive constant a = a(e,r]) 
such that for any solution x(t) = x(t;to,(po) of problem (1), (2), (3) for which to G 
e R, (po e Sa(Co)C\Mo(t,ri), a > 0, there exists t* e [£0,£o + c"] s u c h t n a t inequality 
(14) holds. 

Then for t > t* (hence for any t > 10 -f a as well) the following inequalities are 
valid 

a(d(x(t), M(t))) < V(t, x(t)) < V(t* + 0, x(t* + 0)) < 

<b(d(x(t*),M(t*))) <b(S) < a ( e ) , 

which proves that the set M is uniformly globally attractive with respect to problem 
(1), (2), (3). 
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The uniform M-boundedness of the solutions of problem (1), (2), (3) is proved 
as in the proof of Theorem 2. 

The proofs of the following two theorems are analogous to the proof of Theorem 3. 

• 
Theorem 4. Let the conditions of Theorem 3 hold, condition 2 being replaced by 
the condition 

a(d(x,M(t))) <V(t,x) <b(d(x,M(t)),\x\), 

for (t,x) G [£o,oo) x Rn, where the function b G K*. 
Then the set M is t-uniformly globally asymptotically stable with respect to prob-

km (1), (2), (3). 

Theorem 5. Let the conditions of Theorem 3 hold, condition 2 being replaced by 
the condition 

a(d(x,M(t))) < V(t,x) < b(t,d(x,M(t))), 

for (t,x) G [£rj,co) x Rn, where the function b G CK, 
Then the set M is a-uniformly globally asymptotically stable with respect to 

problem (1), (2), (3). 

Corollary 2. Let the conditions of Theorem 3 hold, condition 3 being replaced by 
the condition 

D.V(t,x(t)) < ~c(d(x(t),M(t))), t^Tk, fc = l , 2 , . . . , (IS) 

for t > 60, x G fi, c G K. 
Then the set M is uniformly globally asymptotically stable with respect to problem, 

(1), (2), (3). 

Corollary 3. Let the conditions of Theorem 3 hold, condition 3 being replaced by 
the condition 

D-V(t,x(t)) < -cd(x(t),M(t)), t^rk, k = l , 2 , . . . , (19) 

for t > to, x G ft, c = const > 0. 
Then the set M is uniformly globally asymptotically stable with respect to problem 

(1), (2), (3). 

Corollary 4. Let the conditions of Theorem 4 hold, condition 3 being replaced by 
the condition (18) (or by condition (19)). 

Then the set M is t-uniformly globally asymptotically stable with respect to prob-
lem(l), (2), (3). 

Corollary 5. Let the conditions of Theorem 5 hold, condition 3 being replaced by 
the condition (18) (or by condition (19)). 

Then the set M is a-uniformly globally asymptotically stable with respect to 
problem (I), (2), (3). 
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Theorem 6. Let the following conditions hold: 

1. Conditions H1-H9 are met. 

2. The function V G V0 is such that 
(i) d(x,M(t)) < V(t,x) for (t,x) G [t0,oo) x Hn; 
(ii) V(t0,ip0(to)) < K(a,n)d(<p0(t0),M0(t0)), a > 0, rj > 0, 
<A)(*o) eSaf]M0(t0,ri). 

3. The inequality 

D„V(t,x(t)) < -cV(t,x(t)), t^rk, k = 1 ,2 . . . 

is valid for any t > t0l x G H, V G Vo and c = const > 0. 

Then the set M is exponentially globally asymptotically stable with respect to 
problem (1), (2), (3). 

Proof. Let a > 0, rj > 0, ip0 G Sa(C0) f) M0(t,n). From condition 3 of Theore 6 
and (4) we obtain 

V(t, x(t; t0,(p0)) < V(t0,(p0(t0))exp[-c(t - t0)], t > t0. 

Then from condition 2 of Theorem 6 it follows that 

d(x(t;t0,ip0),M(t)) < V(t,x(t;t0,ip0)) < 

<V(t0,ip0(t0))exp[-c(t - t0)] < 

< K(a,r})d(tp0(t0),M0(t0))exp[-c(t - to)] < 

< K(a,r))do(<po(t),Mo(t))exp[-c(t - t0)], t > t0 

which proves that the set M is exponentially globally asymptotically stable with 
respect to problem (1), (2), (3). rj 

4. An example 

Consider the problem 

( • (f\ _ / A(t)x(t) + B(t)x(t - h), x(t) > 0, t^rk, t > 0, 
1 X[) ~ 1 0, x(t) <0, t^rk, t>0, 

x(t) =<px(t),te [~h,0], (20) 

AW^ - / ^*(XW)' x ( 0 > 0, t - rk, t > 0, 
LXX^)- \ o, x(t) <0, t = rk, t>0, 

where x G Pc7[it-f-,itn]; A(t) and B(t) are (n x n) matrix- valued continuous func­
tions, B(t) is diagonal and A(t) is skew-symmetric; </?i G C[[— h,0], i?n]; Ik(x), k = 
= 1,2, . . . are continuous in JRn and such that x + Ik(x) > 0 and \x + Ik(x)\ < \x\ 
for x > 0 (Here x > 0 (respectively x < 0) means that xk > 0 (xk < 0) for 
k = 1,2,... ,n, where xk is the k-th component of the vector x G Rn). 
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The impulse moments { r / b } ^ form a strictly increasing sequence, i.e. 0 < T\ < 
< r2 < • • • < Tk < ..., lim Tk = oo. 

k—>oo 

Let M = [-ft, oo) x {x e Rn : a; < 0}. 
Consider the function 

v^ = {V%\ 
Then the set ft is defined by the equality 

for x > 0, 
x < 0. 

fi = {x G PC [ I i+ , I t n ] : < x(s),x(s) >< 

< < x(t),x(t) >, t~h<s<t, t e R+}. 

For t > 0 and x E i l w e have 

D W / r(t)) - J 2 < *(*)»£(*)*(* ~ &) >> *(*) > 0, t # r , , 
l ' l j j ~ \0, xW<0,^r , 

f 2 <*(*), 
- 10, «(*) 

_-(t)x(t) > , _(ŕ) > 0 , * - . - > , 
(*) < 0 , í ^ т f c . 

Hence 

K(t + ü,x + i f c ( x ) ) _ ţ 0 i / o r x ( t ) < 0 j ŕ = r ь 

F(т f c + 0,x(т fc) + / f c(x(т f c))) < V(т f c,x(т f c)), fc = 1,2,. 

Let B(t) = diag(b\(t),... ,bn(t)) and £>*(£) < - 7 * < 0 for fc = 1,2, . . . , n and 
t > 0. 

Since d(x,M(t)) = \x\ for £ > 0 and x > 0, then the conditions of Theorem 3 
are satisfied. 

Hence the set M is uniformly globally asymptotically stable with respect to 
problem (20). 
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