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Implementation of penalty function methods in LISP 
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Abstract: We describe implementation of several varieties of penalty function methods for 
constrained nonlinear optimization in programming languages LISP and MATHEMATICA. 
Our main goal is application of symbolic processing in implementation of constrained op
timization programs, which is so far considered only numerically Developed routines are 
simpler and more universal than the corresponding in procedural programming languages. 
A few numerical examples are given. 
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1. introduction 
Consider the following general nonlinear programming problems: 

Minimize: Q(x), x G E n 

Subject to: f{(x) < 0, i E V = {1 , . . . ,p} (1.1) 

hj(x)=Q, j € Q = { I , - . . , f f } . 

Minimize: Q(x), x € E n 

Subject to: f{(x) < 0, i e P = { l , . . . ,p} . 
(1.2) 

The essence of the penalty function methods is to replace a constrained nonlinear 
programming problem to a sequence of unconstrained problems, whose solutions in 
the limit approximate the minimum of the nonlinear constrained problem [1], [6], 
[19]. 

In the literature are known computational systems for implementation of numer
ical optimization, which are written in procedural programming languages, mainly 
in FORTRAN [1], [2], [9], [14] and C [8]. But, procedural programming languages are 
not completely convenient for implementation of the optimization methods, which 
will be investigated in this paper. 

On the other hand, in the programming package MATHEMATICA [17], [18] are 
available a few functions for numerical optimization. The function FindMinimum 
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starts at the specified points, and follows the path of steepest descent on the surface 
in approximation of the local minimum. 

The functions ConstrainedMin and ConstrainedMax allow you to specify a linear 
objective function to minimize or maximize, together with a set of linear inequality 
constrains on variables. In all cases it is assumed that the variables are constrained 
to have non-negative values. More precisely, only the linear programming is imple
mented in MATHEMATICA. 

ConstrainedMin [f , { i n e q u a l i t i e s } , {x, y, . . . }] find the global mini
mum of / , in the region specified by inequalities] 

ConstrainedMax [f , { i n e q u a l i t i e s } , {x, y, . . . } ] find the global maxi
mum of / , in the region specified by inequalities. 

Maximal precision of these functions is 14 digits. 

This is an incomplete system in consideration of numerous optimization methods. 

Main purpose of this paper is to describe implementation of penalty function 
methods for nonlinear constrained programs, using possibilities of the symbolic 
processing in functional programming languages LISP and MATHEMATICA. 

Although LISP is evolved primarily as a support tool for artificial intelligence 
research and applications, its becomes increasingly popular among non-artificial 
intelligence programmers. SCHEME - dialect of LISP [11] is one of the most ver
satile programming language available today, useful for a variety of programming 
projects, available in both symbolic and numeric processing. 

Additionally, we investigate application of the functionality of the programming 
language MATHEMATICA in implementation of the same penalty function methods . 

This gives a basis for application of an arbitrary functional programming lan
guage, or an arbitrary functional technique, in implementation of constrained min
imization methods. 

This paper is first attempt to unite both symbolic and numeric processing in 
implementation of constrained optimization methods . 

We suggest the following advantages which arise during the implementation of 
the constrained optimization methods in functional programming languages. 

1. It is possible to apply an objective function for unconstrained optimization 
to some arguments under the program control. 

2. It is possible, on an elementary way, to take the objective function and given 
constrains in the list of formal parameters of an arbitrary implementation 
procedure. 

3. Simple implementation of symbolic differentiation in functional program
ming languages [4], [5], [10], [13], [17], [18]. Furthermore, the functions 
representing the partial derivative of the objective function can be easily 
applied to a list of arguments and incorporated as elements in the gradient 
of the objective function. 

4. Possibility of symbolic processing in transformation of the internal form of 
given constrained nonlinear programming problem into the internal form 
of the corresponding unconstrained problem, according to the principles of 
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a few varieties of the penalty function methods. Generated internal form, 
applicable in unconstrained optimization, can be placed in the list of formal 
parameters of a selected procedure for unconstrained optimization. 

5. It is possible to include symbolically generated slack variables and weighting 
coefficients in the internal form of the transformed function. 

6. Simple extension of parameter list of the objective function by the list of 
slack variables. 

7. Possibility to generate a vector or a list whose elements are selected func
tions. In the programming language LISP, elements of such a vector can be 
later transformed into the corresponding lambda-expressions and applied. 
In the package MAT HEMATIC A, functions placed in a list can be used directly. 

The paper is organized as follows: In Section 2 we briefly describe the internal 
representation of nonlinear constrained programs and necessary declarations. Also, 
we point out a few advantages of the symbolic processing. In section 3 we describe 
transformations of a given nonlinear constrained problem into the corresponding 
unconstrained nonlinear problem. In section 4 we are concerned with the main 
implementation details for nonlinear constrained programs. In Section 5 a few nu
merical results are reported, and relations with the corresponding results, obtained 
by means of the procedural programming languages, are discussed. 

2. Internal representations and preliminaries 

In programs written in the procedural programming languages, only the set of 
objective functions defined in subroutines (so called test-functions) can be used [1], 
[8], [9], [14]. For example, in [2], the objective function is rewritten as a sequence 
of calls to subroutines. Also, in gradient methods, the computer subroutines that 
specify the partial derivatives of the objective functions are also defined. 

For example, the function /( .r,H ,z) — (x — I) 2 4- (y — l ) 2 + (z — l ) 2 is given by 
[8] 

f l o a t func(x) 
f l o a t x [ ] ; 
{ i n t i ; f l o a t f=0 .0 ; 

f o r ( i = l ; i<=3; i++) f + = - ( x [ i ] - 1 . 0 ) * ( x [ i ] - 1 . 0 ) ; 
r e t u r n f; 

} 
The sequence of its partial derivatives is generated in the following subroutine 

[8] 

void d func(x ,d f ) 
f l o a t x [ ] , df [] ; 
{ i n t i ; 

f o r ( i = l ; i<=3; i++) d f [ i ] + = 2 . 0 * ( x [ i ] - l . 0 ) ; 

} 
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If the objective function is changed, an user must to change both of these rou
tines. The same principle is used in the programming language FORTRAN [1], [2], 
[9], [14], 

In the language FORTRAN, it is possible to use any selected objective function in 
the list of formal parameters of an arbitrary optimization procedure, only by means 
of the lexical and syntax analysis of the entered expression. 

In the language C, an arbitrary objective function can be used in the list of formal 
parameters by means of the pointer to this function. 

In the literature there are derived a lot of methods for automatic differentia
tion in the procedural programming languages, mainly in FORTRAN, C or C++ (see 
for example [2], [3], [7]). Automatic differentiation in the procedural programming 
languages is divided to numerical differentiation (which produces an approximation 
for f'(x)) and symbolic differentiation which produces a formula for f'(x). Numer
ical evaluation of the derivatives by difference schemes can be implemented in an 
arbitrary programming language, and we leave it out of consideration. Symbolic dif
ferentiation is more convenient problem for functional programming languages. In 
the procedural programming languages symbolic algebraic expressions are parsed, 
i.e. converted into the reverse Polish notation and into a binary tree form [7]. Since 
parsing is done, according to differentiation rules, tree derivative is made. After 
differentiation, the binary tree is simplified to remove useless operations [7]. In [2] 
is stated that automatic differentiation (in the procedural languages) is suited to 
languages such as C, PASCAL or ADA which permit the introduction of data types 
and additional definitions of the operator symbols to manipulate such types. In [2] 
the problem of automatic differentiation is solved using a set of ordered triplets. 

On the other hand, these problems can be easily solved in functional program
ming languages. Firstly, in functional programming languages an arbitrary function 
can be used as argument during unconstrained and constrained optimization. 

In the functions implementing unconstrained optimization methods in LISP [12], 
[13], an arbitrary real objective function Q(xx,... xn) = Q(x) is represented by the 
list of two elements in the form 

>( Q(x) ( f ) ) 
The first element of this list is a selected PC SCHEME arithmetic function and the 
second represents its argument list. 

The internal representation, denoted by g, of a given objective function, used 
in unconstrained optimization, can be transformed into the corresponding lambda-
function [12], [13]: 

( s e t ! fun (eva l ( l i s t ' lambda (cadr q) (ca r q ) ) ) ) . 

This lambda function can be applied to an argument list v: 

(apply fun v) 

Assume that G_ is the parameter denoting the objective function Q in MATH-
EMATICA. Let the variable var denotes the parameter list of Q and xO is the list 
representing a given point. Then the expression q[xO] can be computed as follows 

qO=q; Do[qO=qO/ .var [ [ i ] ] - >x0 [ [ i ] ] , { i , n } ] ; 
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This is essence of the advantage 1. 

Furthermore, symbolic differentiation in functional programming languages is an 
easily solvable problem [4], [5], [10], [15], [17], [18]. 

In the programming language LISP, we need to modify the known routines for 
symbolic differentiation [10], [15], to be applicable to an arbitrary LISP arithmetic 
expression. Also, it is desirable to implement several routines for simplification of 
the resulting partial derivatives [15]. 

A relationship between the numerical and symbolic differentiation is studied 
in [3]. Symbolic differentiation is free from function error, but the naive formula 
manipulation for differentiation will require far more time and space than numerical 
differentiation [3]. There has been a lot of progress in formula manipulators to make 
improvement on those disadvantages by incorporating techniques similar to those 
employed in automatic differentiation [3]. Also, an application of the symbolic 
differentiation in computation of the formula for the gradient or Jacobian is well 
known problem [3]. We now investigate possibilities of the languages LISP and 
MATHEMATICA in symbolic construction of the gradient and Jacobian. 

If the function making the symbolic partial derivative of the function /(a?), de
pending on the independent variable x{i 1 < i < n is defined by the function 
(deriv f £•), then the gradient of the internal form 

((Q(x))(x)) = ((Q(x1,...,xn))(x1,...,xn)) 

can be represented by the following list 

V ((Q(x)) (£)) = ((deriv Q xx) • • • (deriv Q xn)) . 

Elements of the list, representing the value of gradient in a given vector xO = 
= ( x[ , . . . Xn ) , can be obtained forming the lambda-expressions from the corre
sponding expressions representing partial derivatives of the objective function, and 
applying these expressions on the successive elements of the vector xO. 

(def ine (gradfor q xO) 
( l e t ( (f (car q) ) (p (cadr q ) ) (p i p) (n l n i l ) ) 

(do ( fc) 
( ( n u l l ? p i ) n l ) 
( s e t ! fc (eva l ( l i s t l ambda p (de r iv f (car p i ) ) ) ) ) 
( s e t ! p i (cdr p i ) ) 
( s e t ! n l (append n l ( l i s t (apply fc xO)))) 

) ) ) 
Gradient of a given objective function a in a given point xO in MATHEMATICA can 

be formed using the differentiation operator D, as follows, where var. denotes the 
list of variables. 

gradfor [q_,var_List ,xOJ_ist] : = 
Block[{n=Length[var ] , i ,dqdx={}} , 

Do[dqdx=Append[dqdx ,D[q ,va r [ [ i ] ] ] ] , { i , n} ] ; 
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D o [ d q d x = d q d x / . v a r [ [ i ] ] - > x O [ [ i ] ] , { i , n } ] ; 
dqdx 

] 

In this way, we just describe the advantage 3. 

Consider now implementation of constrained programs in the procedural pro
gramming languages. In the procedural programming languages it is an inconve
nient problem to place an arbitrary objective function and constrains in the list 
of parameters of the subroutine which implements an optimization problem. Usu
ally, the selected objective function and constrains are defined by a subroutine, and 
placed into an array [1], [14]. Consequently, application of a new objective func
tion and constrains are conditioned by these definitions. For example, in [1] each 
equality constraint, inequality constraint, and the objective function are identified 
by the subscripted variable - R[i]. In this way, program (1.1) is stored as follows: 

R(l) = fx (x),..., JR(p) = / p ( f ) , 

R(p + 1) = hx{x), ...,R(p + q) = hq(x), 

R(p + q + l) = Q(x). 

Each application of the constrained minimization procedure requires a modification 
of the array R. Moreover, size of the problems is limited by the dimension of R. 

For example, the following constrained program 

Minimize: ~ xx — x2 

Subject to: fl(xl)x2) = x\ + x\ — 1 < 0, 

fb-l l . t /1 , X r\ J Jb 1 "T" Xf\ \) 

is represented as follows: 

R(\) = X(l) **2 + X(2) * *2 - 1, 

R(2) = -X(l) + X(2)**2, 

R(3) = -X(l)-X(2). 

Consequently, definition of the objective function and the constrains are strictly 
bounded with the values of the global array X. 

However, it is possible to avoid this problem in the language C, using linked lists 
generated by means of dynamic memory allocation. 

On the other hand, we describe algorithm which makes possible to use the ob
jective function and constrains in the role of formal parameters in LISP and MATHE-
MATICA. For this purpose, in this paper we introduce the internal form appropriate 
for nonlinear constrained problems. The nonlinear constrained problem (1.1) is 
transformed in the following LlSP's form: 

; ( Q(f) (£) 
( fx(x) ••• fp(x) ) 
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( h,(x) ••• hq(x) ) 

) 

Analogous internal form in MATHEMATICA is 

{ Q(f) , {£} , 
{ / . ( f ) ••• / p (x) } 
{ /..(a?) ••• /.,(af) } 

} 
If one of the inequality or equality constrains absent, the corresponding list is 

empty. 

Example 2 .1 . The nonlinear constrained programming problem 

Minimize: — xx — x2 

Subject to: x\ + x\ - 1 = 0 

is represented in the internal following LISP's form 

? ( (- 0 (+ x l x2)) (x l x2) 

0 
( (- (+ (* x l x l ) (* x2 x2)) 1) ) 

) 
Corresponding internal form in MATHEMATICA is 

{ -xl-x2, {xl,x2}, 

{}. 
{xl~2+x2~2-l} 

} 
The first element of the internal form is an arbitrary PC SCHEME or MATHEMATICA 
arithmetic function, the second represents its argument list, the third element is 
a list of functions forming the inequality constrains, and the fourth is interpreted 
as a list of functions contained in the set of equality constrains. Consequently, 
the function contained in the internal form q of an arbitrary constrained nonlinear 
program can be selected by the expression (car g), and the corresponding param
eter list by the expression (cadr q). Similarly, the list of functions forming the 
inequality constrains can be extracted by the expression (caddr g), and the list of 
functions forming the inequality constrains using (cadddr q). Analogous expres
sions in MATHEMATICA are g[[l]], g[[2]], g[[3]] and g[[3]]. 

Note that the user must to set task of the constrained optimization problem into 
the described internal form. Our motivation for application of such an internal 
form is the similar internal form for linear constrained programs in MATHEMATICA 
(see the function ConstrainedMin.) 

In this way, we show the advantage 2. 

The vector vf containing the functions in equality constrains in a PC SCHEME 
internal form g can be constructed as follows: 
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( s e t ! vf (make-vector ( s e t ! If ( l eng th (caddr q ) ) ) ) ) 
( i f (< 0 I f ) ( s e t ! vf ( l i s t - > v e c t o r (caddr q ) ) ) ) 

In a similar way we generate the vector vh of inequality constrains: 

( s e t ! vh (make-vector ( s e t ! lh ( l eng th (cadddr q ) ) ) ) ) 
( i f (< 0 lh ) ( s e t ! vh ( l i s t - > v e c t o r (caddr q ) ) ) ) 

The list of inequality and equality constrains in MATHEMATICA can be selected 
by the following expressions, respectively: 

v f = q [ [ 3 ] ] , vh=q[[4]] 

In these routines we use possibility of functional programming languages to place 
arbitrary selected functions in a list or a vector, which is an inconvenient problem 
in procedural programming languages. This is a part of the advantage 7. 

3. Construction of the corresponding unconstrained problem 

In this section we describe symbolic transformation of a given internal form of a con
strained problem into the internal form of the corresponding unconstrained prob
lem, i.e. the advantage 4. As far as we know, this problem is not employed before. 
Assume that a constrained program is given by the internal form (Q (x) ( /) (h)) or 
{Q {£} {/} {h}} where / = /-_,. . . , / and h = hX)... ,hq denote given inequal
ity and equality constrains, respectively. We develop procedures in PC SCHEME and 
MATHEMATICA for transformation of a given constrained program into the formula, 
which represents the objective function Qu of the corresponding unconstrained 
program. Then the internal form of the unconstrained program is equal to the list 
{Qu (*)) or {Qu {£}}. 

In one of the exterior point methods, the nonlinear constrained problem ( IT) is 
converted into the following sequence of unconstrained problems [1], [6], [19]: 

min F(x) ~ min (Q(x) + —-rrP(x) 
(x) (*) V P{k) 

( - { v q 1\ (3-1) 
= ?J)n [Q{S) + W) &lM*)]+a + g W 

where [fi(x)]+ = max{0 , / i (x )} , pW is strongly decreased sequence of positive 
numbers, and a, 0 > 1 are two integers. 

In the LISP's internal form Qu of the objective function of the corresponding 
unconstrained program, the strings "ro'\ "alpha" and "beta" are used instead of the 
parameters p{k\ a, 0. The internal form (Qu (£)) can be symbolically generated 
by means of the following routine. 

PROCEDURE GO ALL 

Step 1. To form the formula Qu, called fgoal, which has the form 

G ( £ , W , " a l p ^ ^ 
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( s e t ! fgoa l 0) 
(do ( ( i 1)) 

((= i I f ) ) 
( s e t ! fgoa l 

( l i s t > + 
( l i s t ' exp t ( l i s t 'max 0 ( v e c t o r - r e f vf i ) ) "a lpha") 
fgoa l 

)) 
( s e t ! i (+ i 1 ) ) ) 

(do ( ( i 1)) 
((= i I n ) ) 
( s e t ! fgoa l 

( l i s t >+ 
( l i s t ' exp t (abs ( v e c t o r - r e f vh i ) ) "be ta" ) 
fgoa l 

) ) 
( s e t ! i (+ i 1 ) ) ) 

( s e t ! fgoa l ( l i s t J+ (car q ) ( l i s t ( l i s t V 1 n ro" ) f g o a l ) ) ) 

Step 2. Append the parameter list to the list Qu: 

(set! fgoal (list fgoal (cadr q))) 

We now describe an analogous routine in MATHEMATiCA. 

Step 1. Decreased sequence pk can be determined by means of the following 
recursive definition 

r o [ l ] = l ; 
ro[n_] : = r o [ n - l ] / 2 

Then the function fgoal in the ith iteration can be formed as follows: 

f goal=q [ [1] ]+l / ro [ [ i ] ] (Sum[Max [0, vf [ [ i ] ] "a lpha , {i , Length [vf ] }] 
+ S u m [ ( A b s [ v h [ [ i ] ] ) " b e t a , { i , L e n g t h [ v h ] } ) ; 

Also, we can use the symbol ro instead of the function rO, and write 

fgoa l=q[ [ i ] ]+ l / ro (Sum[Max[0 , v f [ [ i ] ] " a l p h a , { i ,Leng th [v f ]} ] 

+ Sum [ ( A b s [ v h [ [ i ] ] ) " b e t a , { i ,Length [vh]}) ; 

Step 2. The internal form {Qu {£}} is formed using the built-in function List. 

f g o a l : = L i s t [ f g o a l , q [ [ 2 ] ] ] ; 

Example 3.1. The LlSP's internal form of the objective function Qu, corresponding 
to the nonlinear programming problem stated in Example 2.1, is equal to 

( (+ (- 0 (+ x l x2)) 
(* ( / 1 " ro") 

(expt (~ (+ (* x l x l ) (* x2 x2)) 1) "be ta" ) 
) ) 
(x l x2) 
) 
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Corresponding internal form in MATHEMATICA is 

- x l - x 2 + 1/ro (Abs[ - l+x l~2-x2~2] )~be ta . 

One of the most popular interior point methods converts the nonlinear program
ming problem (1.2) into the following sequence of unconstrained problems [1], [6], 
[19]: 

mmF(x) = mm(Q(x) + p(k)p(x))=mm [Q(f) + p<*> £ _ _ , (3.2) 
(*) (*) V ' (*) \ ~{ [fi\X)\ J 

where the weighting factors p(k) are positive and form a monotonically decreasing 
sequence of values. 

The internal form f goal of the function Qu is the formula 

P 

G(x,ro) = Q(ï) + '>ro»Yu±w 

where the string nro^ is placed in positions of the parameter p. Now, the internal 
form of the generated constrained program can be formed applying the following 
code in PC SCHEME: 

( s e t ! fgoa l 0) 
(do ( ( i 0 ) ) 

((= i I f ) ) 
( s e t ! fgoa l 

( l i s t ;+ 
( l i s t V 1 ( l i s t ' exp t ( v e c t o r - r e f vf i ) 2) ) 
fgoa l 

) ) 
( s e t ! i (+ i 1 ) ) ) 
(set! fgoal (list »+ (car q) (list >* "ro" fgoal))) 
(set! fgoal (list fgoal (cadr q))) 

The internal form of the corresponding unconstrained minimization problem can 
be produced using only the following two expressions in MATHEMATICA: 

f g o a l = q [ [ l ] ] + r o Sum[l/vf [ [ i ] ] ~ 2 , { i , L e n g t h [ v f ] } ] ; 
f g o a l : = L i s t [ f g o a l , q [ [ 2 ] ] ] ; 

To generalize the technique of Lagrange multipliers, the inequality constrains 
must be treated as equations by introduction of appropriate slack variables, one 
for each inequality constraint [1], [6], [19]. In this way, the general constrained 
optimization program (1.1) is converted to the following equivalent program, which 
uses only equality constraints: 

Minimize: Q(x), x € Rn 

Subject to: g.(x) = f{(x) + z] = 0, i € V (3.3) 

/ i i(f) = 0, j e Q. 
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Finally, the program (3.3) is transformed into the following sequence of uncon
strained minimization problems: 

min L(x, z) = min (Q(x) + P(x, z)) 
(x, z) (x, z) 

( P Q \ ( 3 . 4 ) 

= min Q(x) + ^lii(fi(x) + z}) + £ / i ; + p + i 1^(^)1 . 

where p,i, i = 1 , . . . ,p + q are nonnegative weighting factors independent of x, 
identifiable as the Lagrange multipliers, and the vector z contains the slack variables 
z{, i = 1 , . . . ,p. 

We now describe possibility of symbolic processing to generate the slack variables 
z{ and nonnegative weighting factors \i{, as well as their incorporation in the internal 
form of transformed function for unconstrained optimization. In this manner, we 
justify the advantage 5. 

Let / / = p + 1 denotes the number of inequality constrains, and Ih = q + 1 
represents the number of equality constrains. The extended Lagrange's function 
(3.4) requires lf auxiliary variables z{, i.e. the corresponding symbolic expression 
in PC SCHEME requires / / symbols. For this purpose, we use the symbols given in a 
list, denoted by alzi, and externally declared by 

alzi = (zO z\ z2 z3 z4 zb z6 zl zS z9). 

Now, the vector ( s e t ! vecz ( l i s t - > v e c t o r a l z i ) ) contains the symbols zi. 

The list of used fi{ coefficients, denoted by listm = / i= (p,Q,... , / i p + < ? + 1 ) , can be 
formed by means of the following routine which generates the lists whose elements 
are strings: 

(def ine ( g e n - s t r - l i s t pf begin n) 
( l e t ( (vec (make-vector n ) ) ( i 1) ( i v 0) ) 

(do ( ( i begin) ( iv 0)) 
((= n iv) ( v e c t o r - > l i s t vec) ) 
( v e c t o r - s e t ! vec iv ( s t r i n g - a p p e n d pf 

(number->s t r ing i ' ( i n t ) ) ) ) 
( s e t ! iv (+ iv 1)) 
( s e t ! i (+ i 1 ) ) ) ) ) 

Now, the value of the expression 

( s e t ! l i s t m ( l i s t - > v e c t o r ( g e n - s t r - l i s t "m" 0 (+ l f l h 1 ) ) ) ) 

is the list of strings corresponding to weighting JJL coefficients: 

vecm = ("mO" " m l " • • • "mt"), t = lf + lh + 1. 

Now, the internal form of the objective function Qu is generated using the pattern 

p q 

G(x,vecz,vecm) = Q(x) + ^^vecmi (f{(x) + vecz?) +s)^yecmj+v\hj(x)\ 
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The internal form (Qu (x)) is generated in the following procedure. 

PROCEDURE GOAL2. 

Step 1. Form the first part (i.e. the function Qu) of the internal form: 

(set! fgoal 0) 
(do ( ( i 1)) 

((= i I f ) ) 
(set! fgoal 

( l i s t ' + fgoal 
( l i s t ,* (vector-ref vecm i) 

( l i s t '+ (vector-ref vf i) 
( l i s t ' expt (vector-ref vecz i) 2) 

) ) ) ) 
(do ( ( i 1)) 

((= i lh)) 
(set! fgoal 

( l i s t >+ fgoal 
( l i s t '* (vector-ref vecm (+ i If 1)) 

( l i s t ' abs (vector-ref vh i ) ) 
) ) ) 
(set! i (+ i 1)) 

) 
(set! fgoal ( l i s t '+ (car q) fgoal)) 

Step 2. Append the list of x and z parameters to the first element of the internal 
form: 

(set! fgoal (list fgoal (append (cadr q) (alzi))) 

In this way, the parameter list (x) of the initial constrained problem is extended 
to the new parameter list (x z), where the vector z contains unbounded slack 
variables. This is the essence of the advantage 6. Note that in [13] we describe 
transformation of the multiargument objective function into the function of one 
argument. Also, the advantages 1. and 3. are used during implementation of 
unconstrained optimization (see [13].) 

The slack variables zi and weighting coefficients tx{ in MATHEMATICA can be 
implemented using the symbols of the form z[i] and vecm[i], where i denotes a 
variable used in the cycle. 

The internal form fgoal of the objective function Qu, in MATHEMATICA is formed 
as follows: 

fgoal=q[[l]]+Sum[vecm[i] (v f [ [ i ] ]+z [ i ]~2) , {i,Length [vf]}] 
+Sum[vecm[i+Length[vf]] Abs[vh[[i]]] , {i , Length [vh] }] 

The list of parameters can be extended by the slack variables and appended to 
the internal form fgoal in the following way: 

Do[q[[2]]=Append[q[[2]],z[i]],{i,Length[vf]}]; 
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Note that z[i] are symbols whose values are not defined. In this way, an un
limited number of slack variables z[i] is included into the internal form of the just 
constructed unconstrained optimization program. More precisely, we are in a posi
tion to include slack variables into the analytic expression of the objective function, 
as well as in its argument list. 

Similar principles are valid for implementation of the Rockafellar's extension of 
the Lagrange's function, which is defined by: 

L(x, X,») = Q(x) + ±J2i tA« + 2aU£)1+ - A? } 
" i€V

 n (3.5) 
-J2^jhj(x) + -Y/[hJ(S)}2, 

jeQ jeQ 

where a > 0 is sufficiently large real number. The constrained nonlinear pro
gramming problem (3.3) is converted into the following sequence of unconstrained 
problems [19]: 

\ ) — 0, Mo a r e arbitrary 

Minimize L(£, \\k\^k)), 

where A(*+1) = [A(*> + 2a/,(£ (* ))]_ f , i G V ( 3 ' 6 ) 

^X)^[ixf-h.(^)l jeQ, A: = 0,1,. . . 

The internal representation of the Rockafellar's extended lagrangian, denoted by 

L(x,vecl,vecm) = Q(x) + — V^ {[vec^ + 2afi(x)]2
+ — vecl2} 

iev 

- ] T vecmjh^x) + - ^ [ / ^ ( f ) ] 2 

jeQ jeQ 

is formed by means of the following algorithm: 

Step 1. The vectors of used Ai and /i i coefficients, denoted by vecl = A = 
= (A 0 , . . . , Ap) and vecm = \± = (Lt0,... , /i ) are symbolically formed as follows: 

( s e t ! vec l ( l i s t - > v e c t o r ( g e n - s t r - l i s t " 1 " 0 I f ) ) ) 
( s e t ! vecm ( l i s t - > v e c t o r ( g e n - s t r - l i s t "m" 0 l h ) ) ) 

Step 2. The internal form of the function 

i £ {[\ + 2afi(x))l-Xf} = i £ {[vecl, + 2afi(x)]\ - vecl\} 
iev iev 

can be generated as follows: 

(de f ine (p lus x) ( i f (< x 0) O x ) ) 

( s e t ! fgoa l 0) 
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(do ( ( i 1)) 
((= i l f ) ) 
( s e t ! fgoal ( l i s t ?+ fgoal 

( l i s t >-
( l i s t ' expt 

( l i s t ' p l u s 
( l i s t >+ ( v e c t o r - r e f v e c l i ) 

( l i s t ' * 2 a 
( v e c t o r - r e f vf i ) 

) ) 
) 2 

) 
( l i s t ' e x p t ( v e c t o r - r e f v e c l i ) 2) 

) ) ) 
( s e t ! i (+ i 1)) 

) 
( s e t ! fgoal ( l i s t >/ fgoa l ( l i s t ' * 4 a ) ) ) 
Step 3. To form the internal representation of the parts 

X X ' M f ) = ] C vecmjhj(x), and - ^ [ ^ ( - c ) ] 2 : 
j€Q jeQ jeQ 

( s e t ! hgoa l 0) ( s e t ! hhgoal 0) 
(do ( ( i D ) 

((= i l h ) ) 
(set! hgoal (list '+ hgoal 

(list ** (vector-ref vecm i) 
(vector-ref vh i) 

) ) ) 
(set! hhgoal (list '+ hhgoal 

(list ,* (vector-ref lh i) 
(vector-ref lh i) 

) ) ) 

(set! i (+ i D ) 

) 
(set! hhgoal (list '* a hhgoal 0 . 5 ) ) 

Step 4- Internal representation of the function L(x,vecl,vecm). 

( s e t ! fgoa l ( l i s t ' - ( l i s t >+ fgoa l hhgoal) h g o a l ) ) 
( s e t ! fgoa l ( l i s t '+ ( ca r q) f g o a l ) ) 
( s e t ! fgoa l ( l i s t fgoa l (cadr q ) ) ) 
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4. Evaluation of nonlinear constrained methods 

The general algorithm used in symbolic implementation of nonlinear constrained 
methods can described as follows: 

Step 1. Select the corresponding values of the formal parameters: 
- State the internal form of a selected objective function and given constrains, 

as it is described in Section 2. 
- Select a starting point vx = x^°\ satisfying given constrains. 
- Select a small real number, which determines the stopping criterion. 

Step 2. Declare the local variables and construct the vectors vf and vh, arising 
from the given inequality and equality constrains, respectively, using the routines 
described in Section 2. 

Step 3. Make the internal form of the type (Qu(x) (x)) in PC SCHEME or the 
tyPe {Qu^)-> {%}} m MATHEMATICA. These internal forms are applicable in the 
procedures implementing a set of unconstrained optimization methods, described 
in [12], [13]. The corresponding algorithms are described in Section 3. 

Step 4- To form the initial values for adjustable parameters. In the problems 

(3.1) and (3.2) the adequate values for the symbols ro, alpha, beta must be given: 

( s e t ! ro ( r e ad ) ) ( s e t ! a lpha ( r ead ) ) ( s e t ! b e t a ( r e a d ) ) . 

ro=Input [] ; a lpha =Input [] ; b e t a =Input [] ;. 

The problems (3.4) and (3.5) use the vectors vm and vl, containing the values for 
the elements of the vectors vecm and vecl, respectively. The corresponding initial 
values can be selected by means of the following procedure, which generates values 
contained in a vector v = (v0,... , vn). 

(def ine (vecv n) 
(do ((i 1) (v (make-vector n))) 

(( = i n) v) 
(vector-set! (vector-ref v i) (read)) 

(set! i (+ i 1)) 

) ) 

For the problem (3.4) we use the starting values for \x coefficients and the initial 
point vx = x^, generated by: 

( s e t ! vm (vecv (+ If lh 1 ) ) ) 
( s e t ! vx (vecv ( l eng th (cadr q ) ) ) ) 

Also, the initial values of the slack variables vz = i^0) can be computed using the 
values of the entered starting point vx = x^°\ according to (3.3), as follows: 

(0) 
z) / Ä - iЄP: 

In PC SCHEME we wr i te 

(do ( ( i 1)) 
((= i l f ) ) 
( v e c t o r - s e t ! \ 
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(* ( s q r t (apply (eva l ( l i s t ' lambda (cadr q) (car q ) ) ) 
( v e c t o r - > l i s t v x ) ) ) ) -1) 

( s e t ! i (+ i 1 ) ) ) 

In MATHEMATICA we suggest the following code 

vz=Input [] ; 
D o [ v z = A p p e n d [ S q r t [ - s u b [ v f [ [ i ] ] , q [ [ 2 ] ] , v z ] ] , { i , L e n g t h [ v f ] } ] ; 

where sub is a function which substitutes each variable xi from varl by the corre
sponding value x0{: 

sub [equa t ion . , va r l_L i s t ,x_Lis t ] : = 
B lock [{eq=equa t ion , i , va r=va r l , xO=x} , 

D o [ e q = e q / . v a r [ [ i ] ] - > x 0 [ [ i ] ] , { i , L e n g t h [ v a r ] } ] ; 
R e t u r n [ e q ] ; 

] ; 

The problem (3.5) uses initial values for the symbol a and the vectors vf, vh: 

( s e t ! a ( r e ad ) ) ( s e t ! v l (vecv I f ) ) ( s e t ! vm (vecv l h ) ) 

Step 5. A do cycle which terminates when a selected stopping criterion is satis
fied. In the cycle perform the following: 

Step 5.1. Substitute each string or symbol, corresponding to one of the ad
justable parameters with the corresponding value, in the internal form of the 
corresponding unconstrained problem, formed in Step 3. In PC SCHEME this can 
be done by means of the function subst, which is described in [5], [16]. Evalu
ation of the expression ( subs t n p a r t o l d p a r t l i s t ) substitutes oldpart with 
npart in all levels of list. 

For the problem (3.1) we can write 

( s e t ! fgoa l ( subs t r o " r o " f g o a l ) ) 
( s e t ! fgoa l ( subs t a lpha "a lpha" f g o a l ) ) 
( s e t ! fgoa l ( subs t b e t a "be ta" f g o a l ) ) 
The problem (3.2) uses 

( s e t ! fgoa l ( subs t r o " ro" f g o a l ) ) 

The problem (3.4) uses the following: 

(do ( ( i D ) 
((= i (+ I f l h ) ) ) 
(set! fgoal (subst (vector-ref vm i) 

(vector-ref vecm i) fgoal)) 
(set! i (+ i D ) 

) 
(do ((i 1)) 

((= i lh)) 
(set! fgoal (subst (vector-ref vz i) 

(vector-ref vecz i) fgoal)) 
(set! i (+ i 1)) 
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) 
and in the problem (3.5) we write 

(do ( ( i 1)) 
((= i I f ) ) 
(set! fgoal (subst (vector-ref vl i) 

(vector-ref vecl i) fgoal)) 
(set! i (+ i D ) 

) 
(do ((i 1)) 

((= i In)) 
(set! fgoal (subst (vector-ref vm i) 

(vector-ref vecm i) fgoal)) 
(set! i (+ i 1)) 

) 

In MATHEMATICA this goal can be achieved in the same way, using the re
placement operator /. 

Step 5.2. Perform the unconstrained minimization, using one of the methods 
presented in [12], [13]. In this way, we give the new approximation of the optimal 
point. 

Step 5.3. Select new values for the adjustable parameters. In the Rockafellar's 
method the adjustable parameters must be generated, according to (3.6). The 
new values in the vectors vm and vl can be computed by means of the following 
code, where vx denotes the vector of values for x{ 

;To form the v e c t o r s of t he f u n c t i o n s 
; con ta ined in vf and vg 
(do ( ( i D ) 

((= i I f ) ) 
(vector-set! vffun i (eval (list lambda (cadr q) 

(vector-ref vf i)))) 
(vector-set! vhfun i (eval (list 'lambda (cadr q) 

(vector-ref vh i)))) 
(set! i (+ i 1)) 

) 

;using the formed functions to set the new values 
;for A and fi 
(do ((i D ) 

((= i If)) 
(vector-set! vl i 

(plus (+ (vector-ref vl i) 
(* 2 a 

(apply (vector-ref vffun i) 
(vector->list vx)) 

) ) ) ) 
(set! i (+ i 1)) 
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) 
(do ((i 1)) 

((= i In)) 

(vector-set! vm i 

(- (vector-ref vm i) 

(* a (apply (vector-ref vhfun i) (vector->list vx) 

)) ) ) 

(set! i (+ i 1))) 

) 

In the above presented code, functions contained in the vectors vf fun and vhfun 
can be extracted, transformed into the corresponding lambda-expressions, and ap
plied to the supplied argument list. In this way we describe the advantage 7. 

5. Computational experience 

Example 5.1. Consider the following nonlinear programming problem: 

Maximize: — xx — x2 

Subject to: f1(xlJx2) = x\ + x\ — 1 = 0. 

Using the exterior point method, for the case /? = 1, p0 = 1, pW = ^ , and 
using the Newton's method with the precision 1 0 " 1 4 in the generated unconstrained 
optimization problem, we obtain the following results: 

k p(k) Jk) 
x i 

r
(*0 

љ2 

QOrW) 

0 1. 1. 1. -2. 

1 1 0.80901699437494 0.80901699437494 -1.5225424859373 

2 0.2 0.73089310318622 0.73089310318622 -1.4383869376311 

3 0.04 0.71205472555989 0.71205472555989 -1.4191786979486 

4 0.008 0.70810466782927 0.70810466782927 -1.4152121521447 

5 0.0016 0.70730669639767 0.70730669639767 -1.4144135058365 

6 3.2e-4 0.70714677779294 0.70714677779294 -1.4142535601106 

7 6.4e-5 0.70711478105078 0.70711478105078 -1.4142215622825 

8 1.28e-5 0.70710838118111 0.70710838118111 -1.4142151623694 

9 2.56e-6 0.70710710118633 0.70710710118633 -1.4142138823729 

10 5.12e-7 0.70710684518653 0.70710684518653 -1.4142136263730 

15 1.6384e-10 0.70710678120702 0.70710678120702 -1.4142135623935 

20 5.24288e-14 0.70710678118655 0.70710678118655 -1.4142135623731 

21 1.048576e-14 0.70710678118654 0.70710678118654 -1.4142135623731 

22 2.097152e-15 0.70710678118654 0.70710678118654 -1.4142135623731 

23 4.194304e-16 0.70710678118654 0.70710678118654 -1.4142135623731 
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The following figures show trajectories which are formed using computed approxi
mations of the local minimum: 

p - 1.0 p- 103 

The analogous results, for pk — yp-, given by means of traditional implementa
tion of the exterior point method are arranged in Table 2. [19]: 

k plk) т(*0 
x\ 

XW Q(Ќk)) 

1 1 0.809017 0.809017 -1.618034 

2 ІO"
1 

0.719290 0.719290 -1.438580 

3 ю-2 
0.708354 0.708354 -1.416708 

4 ІO"
3 

0.707232 0.707232 -1.414464 

5 1 0
-4 0.707119 0.707119 -1.414238 

6 10~
5 

0.707108 0.707108 -1.414216 

7 1 0 - 6 0.707107 0.707107 -1.414214 

8 ю-7 
0.707107 0.707107 -1.414214 

Table 2. 

Example 5.2. Consider the following nonlinear programming problem: 

Minimize: — xY— x2 

Subject to: fY (xx, x2) — x\ + x\ — 1 < 0, 

J2\Xli X2l ~ ~~X\ + X2 — 0* 

Using the interior point method, for the case pW = A , and the DFP method 
with the precision 10~7 in the generated unconstrained optimization, we obtain the 
following results: 
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k т
(*) 

x i 
т
(*) 

x2 
Q(x^) 

0 0.5 0.5 -1. 

1 0.63085851 0.09223888 2.56860712 

2 0.70733854 0.67997758 -1.35642624 

3 0.70670616 0.70666650 -1.41252669 

4 0.70709348 0.70709348 -1.41416037 

5 0.70710636 0.70710636 -1.41421188 

6 0.70710676 0.70710676 -1.41421350 

7 0.70710677 0.70710677 -1.41421352 

Table 3. 

On the other hand, by means of the well-known traditional implementation, the 
interior point method produces the following results [19]: 

k r
(Ч 

x i 
т
(*) 

x2 
Q(x^) 

2 0.6884721 0.3952927 -1.0837648 

3 0.7106337 0.3713147 -1.0819484 

4 0.7349830 0.4535905 -1.1785735 

5 0.7276601 0.5228195 -1.2504796 

6 0.7251426 0.5758051 -1.3009477 

7 0.7203736 0.6143570 -1.3358093 

8 0.7151591 0.6446030 -1.3597621 

9 0.7105652 0.6567412 -1.3763306 

10 0.7072276 0.6803946 -1.3876222 

14 0.7048593 0.7027896 -1.4076489 

18 0.7063525 0.7062206 -1.4125731 

30 0.7070938 0.7070938 -1.4141876 

53 0.7071067 0.7071067 -1.4142134 

Table 4. 

It is evident that the functional implementation requires less iterations with 
respect to a traditional implementation. For example, precision 10~6 in Table 3. is 
achieved in 5th iteration, and in Table 4 in 53th iteration. 

Using the Rockafellar's method with A0 = 1, a = 10, we obtain the following results: 
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k r(*) 
xi 

x2 Q(&k)) 

0 1. 1. -2. 

1 0.70705940 0.70705056 -1.41410996 

2 0.70711190 0.70710163 -1.41421353 

3 0.70710735 0.70710626 -1.41421361 

4 0.70711125 0.70710225 -1.41421351 

5 0.70710709 0.70710651 -1.41421361 

6 0.70710707 0.70710648 -1.41421356 

7 0.70710679 0.70710676 -1.41421356 

Table 5. 

' Note that in the generated unconstrained minimizations are used search method 
(DSK-Powell) with the precision 10"7 . trajectories generated by A0 = 1 and two 
different values of parameter a are illustrated in the following figures: 

,9 = 1 . 0 , 9 = 1 0 

Analogous results, given by means of traditional implementation are presented 
in Table 6 (see [19]): 

k r(*) 
xi 

r(*) 
x2 

1 0.70200159 0.702000159 

2 0.70701744 0.70701746 

3 0.70710524 0.70710522 

4 0.70710676 0.70710675 

5 0.70710678 0.70710678 

6 0.70710678 0.70710680 

7 0.70710678 0.70710679 

Table 6. 

Observed decreasing of the number of iterations is implied by symbolic compu
tations of derivatives, with respect to their inexact numerical computations. 

A smaller number of iterations implies also a smaller number of function and 
gradient calls. But, each iteration in the functional implementation requires a 



140 Predrag Stanimirovic, Svetozar Rancic 

transformation of a constrained optimization problem, given in an appropriate in
ternal form into the internal form of the corresponding unconstrained problem. 
Also, interpreter-based languages are slower than the languages implemented by 
compilers. 

6. Conclusions 

Our tendency is primarily to improve implementation of the constrained optimiza
tion methods, which are written in procedural programming languages. Also, our 
motivation is the absent of functions for nonlinear constrained optimization which 
are available in MATHEMATICA. The improvements are ensured primarily apply
ing possibility of symbolic processing of the functional programming languages PC 
SCHEME and MATHEMATICA. Of course, similar principles are valid for the other 
functional programming languages. But, we prefer PC SCHEME and MATHEMATICA, 
because of their ability in symbolic processing as well as in numeric processing. 
The main purpose is to point out that the proper selection of the programming 
language in nonlinear optimization is not FORTRAN, but a language applicable in 
symbolic processing and powerful in numerical computations. 

We improve greater part of the criteria used as the best in evaluating a nonlinear 
programming algorithm [1]: 

1. Size (dimensionality, number of inequality and/or equality constrains) of the 
problem. The inequality and equality constrains are stored in the list, so that its 
number is not limited in advance. On the other hand, in FORTRAN and C, if the 
set of constrains is stored in the array K(l),... , X(N), then allowance has been 
made for a TV-dimensions problem. In the programming language C it is possible 
to implement a list of constrains by means of linked list, using dynamic memory 
allocations. 

2. Simplicity of use (time required to introduce data and functions into the 
computer program) . The objective function is given as an arbitrary PC SCHEME 
arithmetic expression, incorporated in the internal form of the problem. 

3. Simplicity of computer program to execute the algorithm. Using the func
tional programming languages we ensure the following. 

- Possibility to use the objective function and constrains, without a lexical or 
syntax analysis. 

- Simple implementation of the partial derivatives of the objective function. 

- An elegant method of transformation of a given internal form which represents 
a constrained program into the internal form of the corresponding unconstrained 
program. 

This paper is a contribution toward a new approach to implementation of con
strained optimization methods. This approach can be called symbolic implementa
tion. 
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