
Acta Mathematica et Informatica Universitatis Ostraviensis

Predrag Stanimirović; Svetozar Rančić
Implementation of penalty function methods in LISP

Acta Mathematica et Informatica Universitatis Ostraviensis, Vol. 7 (1999), No. 1, 119--141

Persistent URL: http://dml.cz/dmlcz/120543

Terms of use:
© University of Ostrava, 1999

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/120543
http://project.dml.cz

Acta Mathematica et Informatica Universitatis Ostraviensis 7 (1999) 119-141 119

Implementation of penalty function methods in LISP

Predrag Stanimirovic

Svetozar Rančič

Abstract: We describe implementation of several varieties of penalty function methods for
constrained nonlinear optimization in programming languages LISP and MATHEMATICA.
Our main goal is application of symbolic processing in implementation of constrained op
timization programs, which is so far considered only numerically Developed routines are
simpler and more universal than the corresponding in procedural programming languages.
A few numerical examples are given.

Key Words: Constrained optimization, LISP, MATHEMATICA, symbolic processing

Mathematics Subject Classification: 90C30, 68N15

1. introduction
Consider the following general nonlinear programming problems:

Minimize: Q(x), x G E n

Subject to: f{(x) < 0, i E V = {1 , . . . ,p} (1.1)

hj(x)=Q, j € Q = { I , - . . , f f } .

Minimize: Q(x), x € E n

Subject to: f{(x) < 0, i e P = { l , . . . ,p} .
(1.2)

The essence of the penalty function methods is to replace a constrained nonlinear
programming problem to a sequence of unconstrained problems, whose solutions in
the limit approximate the minimum of the nonlinear constrained problem [1], [6],
[19].

In the literature are known computational systems for implementation of numer
ical optimization, which are written in procedural programming languages, mainly
in FORTRAN [1], [2], [9], [14] and C [8]. But, procedural programming languages are
not completely convenient for implementation of the optimization methods, which
will be investigated in this paper.

On the other hand, in the programming package MATHEMATICA [17], [18] are
available a few functions for numerical optimization. The function FindMinimum

120 Predrag Stanimirovic, Svetozar Rancic

starts at the specified points, and follows the path of steepest descent on the surface
in approximation of the local minimum.

The functions ConstrainedMin and ConstrainedMax allow you to specify a linear
objective function to minimize or maximize, together with a set of linear inequality
constrains on variables. In all cases it is assumed that the variables are constrained
to have non-negative values. More precisely, only the linear programming is imple
mented in MATHEMATICA.

ConstrainedMin [f , { i n e q u a l i t i e s } , {x, y, . . . }] find the global mini
mum of / , in the region specified by inequalities]

ConstrainedMax [f , { i n e q u a l i t i e s } , {x, y, . . . }] find the global maxi
mum of / , in the region specified by inequalities.

Maximal precision of these functions is 14 digits.

This is an incomplete system in consideration of numerous optimization methods.

Main purpose of this paper is to describe implementation of penalty function
methods for nonlinear constrained programs, using possibilities of the symbolic
processing in functional programming languages LISP and MATHEMATICA.

Although LISP is evolved primarily as a support tool for artificial intelligence
research and applications, its becomes increasingly popular among non-artificial
intelligence programmers. SCHEME - dialect of LISP [11] is one of the most ver
satile programming language available today, useful for a variety of programming
projects, available in both symbolic and numeric processing.

Additionally, we investigate application of the functionality of the programming
language MATHEMATICA in implementation of the same penalty function methods .

This gives a basis for application of an arbitrary functional programming lan
guage, or an arbitrary functional technique, in implementation of constrained min
imization methods.

This paper is first attempt to unite both symbolic and numeric processing in
implementation of constrained optimization methods .

We suggest the following advantages which arise during the implementation of
the constrained optimization methods in functional programming languages.

1. It is possible to apply an objective function for unconstrained optimization
to some arguments under the program control.

2. It is possible, on an elementary way, to take the objective function and given
constrains in the list of formal parameters of an arbitrary implementation
procedure.

3. Simple implementation of symbolic differentiation in functional program
ming languages [4], [5], [10], [13], [17], [18]. Furthermore, the functions
representing the partial derivative of the objective function can be easily
applied to a list of arguments and incorporated as elements in the gradient
of the objective function.

4. Possibility of symbolic processing in transformation of the internal form of
given constrained nonlinear programming problem into the internal form
of the corresponding unconstrained problem, according to the principles of

Implementation of penalty function methods in LISP 121

a few varieties of the penalty function methods. Generated internal form,
applicable in unconstrained optimization, can be placed in the list of formal
parameters of a selected procedure for unconstrained optimization.

5. It is possible to include symbolically generated slack variables and weighting
coefficients in the internal form of the transformed function.

6. Simple extension of parameter list of the objective function by the list of
slack variables.

7. Possibility to generate a vector or a list whose elements are selected func
tions. In the programming language LISP, elements of such a vector can be
later transformed into the corresponding lambda-expressions and applied.
In the package MAT HEMATIC A, functions placed in a list can be used directly.

The paper is organized as follows: In Section 2 we briefly describe the internal
representation of nonlinear constrained programs and necessary declarations. Also,
we point out a few advantages of the symbolic processing. In section 3 we describe
transformations of a given nonlinear constrained problem into the corresponding
unconstrained nonlinear problem. In section 4 we are concerned with the main
implementation details for nonlinear constrained programs. In Section 5 a few nu
merical results are reported, and relations with the corresponding results, obtained
by means of the procedural programming languages, are discussed.

2. Internal representations and preliminaries

In programs written in the procedural programming languages, only the set of
objective functions defined in subroutines (so called test-functions) can be used [1],
[8], [9], [14]. For example, in [2], the objective function is rewritten as a sequence
of calls to subroutines. Also, in gradient methods, the computer subroutines that
specify the partial derivatives of the objective functions are also defined.

For example, the function /(.r,H ,z) — (x — I) 2 4- (y — l) 2 + (z — l) 2 is given by
[8]

f l o a t func(x)
f l o a t x [] ;
{ i n t i ; f l o a t f=0 .0 ;

f o r (i = l ; i<=3; i++) f + = - (x [i] - 1 . 0) * (x [i] - 1 . 0) ;
r e t u r n f;

}
The sequence of its partial derivatives is generated in the following subroutine

[8]

void d func(x ,d f)
f l o a t x [] , df [] ;
{ i n t i ;

f o r (i = l ; i<=3; i++) d f [i] + = 2 . 0 * (x [i] - l . 0) ;

}

122 Predrag Stanimirovic, Svetozar Rancic

If the objective function is changed, an user must to change both of these rou
tines. The same principle is used in the programming language FORTRAN [1], [2],
[9], [14],

In the language FORTRAN, it is possible to use any selected objective function in
the list of formal parameters of an arbitrary optimization procedure, only by means
of the lexical and syntax analysis of the entered expression.

In the language C, an arbitrary objective function can be used in the list of formal
parameters by means of the pointer to this function.

In the literature there are derived a lot of methods for automatic differentia
tion in the procedural programming languages, mainly in FORTRAN, C or C++ (see
for example [2], [3], [7]). Automatic differentiation in the procedural programming
languages is divided to numerical differentiation (which produces an approximation
for f'(x)) and symbolic differentiation which produces a formula for f'(x). Numer
ical evaluation of the derivatives by difference schemes can be implemented in an
arbitrary programming language, and we leave it out of consideration. Symbolic dif
ferentiation is more convenient problem for functional programming languages. In
the procedural programming languages symbolic algebraic expressions are parsed,
i.e. converted into the reverse Polish notation and into a binary tree form [7]. Since
parsing is done, according to differentiation rules, tree derivative is made. After
differentiation, the binary tree is simplified to remove useless operations [7]. In [2]
is stated that automatic differentiation (in the procedural languages) is suited to
languages such as C, PASCAL or ADA which permit the introduction of data types
and additional definitions of the operator symbols to manipulate such types. In [2]
the problem of automatic differentiation is solved using a set of ordered triplets.

On the other hand, these problems can be easily solved in functional program
ming languages. Firstly, in functional programming languages an arbitrary function
can be used as argument during unconstrained and constrained optimization.

In the functions implementing unconstrained optimization methods in LISP [12],
[13], an arbitrary real objective function Q(xx,... xn) = Q(x) is represented by the
list of two elements in the form

>(Q(x) (f))
The first element of this list is a selected PC SCHEME arithmetic function and the
second represents its argument list.

The internal representation, denoted by g, of a given objective function, used
in unconstrained optimization, can be transformed into the corresponding lambda-
function [12], [13]:

(s e t ! fun (eva l (l i s t ' lambda (cadr q) (ca r q)))) .

This lambda function can be applied to an argument list v:

(apply fun v)

Assume that G_ is the parameter denoting the objective function Q in MATH-
EMATICA. Let the variable var denotes the parameter list of Q and xO is the list
representing a given point. Then the expression q[xO] can be computed as follows

qO=q; Do[qO=qO/ .var [[i]] - >x0 [[i]] , { i , n }] ;

Implementation of penalty function methods in LISP 123

This is essence of the advantage 1.

Furthermore, symbolic differentiation in functional programming languages is an
easily solvable problem [4], [5], [10], [15], [17], [18].

In the programming language LISP, we need to modify the known routines for
symbolic differentiation [10], [15], to be applicable to an arbitrary LISP arithmetic
expression. Also, it is desirable to implement several routines for simplification of
the resulting partial derivatives [15].

A relationship between the numerical and symbolic differentiation is studied
in [3]. Symbolic differentiation is free from function error, but the naive formula
manipulation for differentiation will require far more time and space than numerical
differentiation [3]. There has been a lot of progress in formula manipulators to make
improvement on those disadvantages by incorporating techniques similar to those
employed in automatic differentiation [3]. Also, an application of the symbolic
differentiation in computation of the formula for the gradient or Jacobian is well
known problem [3]. We now investigate possibilities of the languages LISP and
MATHEMATICA in symbolic construction of the gradient and Jacobian.

If the function making the symbolic partial derivative of the function /(a?), de
pending on the independent variable x{i 1 < i < n is defined by the function
(deriv f £•), then the gradient of the internal form

((Q(x))(x)) = ((Q(x1,...,xn))(x1,...,xn))

can be represented by the following list

V ((Q(x)) (£)) = ((deriv Q xx) • • • (deriv Q xn)) .

Elements of the list, representing the value of gradient in a given vector xO =
= (x[, . . . Xn) , can be obtained forming the lambda-expressions from the corre
sponding expressions representing partial derivatives of the objective function, and
applying these expressions on the successive elements of the vector xO.

(def ine (gradfor q xO)
(l e t ((f (car q)) (p (cadr q)) (p i p) (n l n i l))

(do (fc)
((n u l l ? p i) n l)
(s e t ! fc (eva l (l i s t l ambda p (de r iv f (car p i)))))
(s e t ! p i (cdr p i))
(s e t ! n l (append n l (l i s t (apply fc xO))))

)))
Gradient of a given objective function a in a given point xO in MATHEMATICA can

be formed using the differentiation operator D, as follows, where var. denotes the
list of variables.

gradfor [q_,var_List ,xOJ_ist] : =
Block[{n=Length[var] , i ,dqdx={}} ,

Do[dqdx=Append[dqdx ,D[q ,va r [[i]]]] , { i , n}] ;

124 Predrag Stanimirovic, Svetozar Rancic

D o [d q d x = d q d x / . v a r [[i]] - > x O [[i]] , { i , n }] ;
dqdx

]

In this way, we just describe the advantage 3.

Consider now implementation of constrained programs in the procedural pro
gramming languages. In the procedural programming languages it is an inconve
nient problem to place an arbitrary objective function and constrains in the list
of parameters of the subroutine which implements an optimization problem. Usu
ally, the selected objective function and constrains are defined by a subroutine, and
placed into an array [1], [14]. Consequently, application of a new objective func
tion and constrains are conditioned by these definitions. For example, in [1] each
equality constraint, inequality constraint, and the objective function are identified
by the subscripted variable - R[i]. In this way, program (1.1) is stored as follows:

R(l) = fx (x),..., JR(p) = / p (f) ,

R(p + 1) = hx{x), ...,R(p + q) = hq(x),

R(p + q + l) = Q(x).

Each application of the constrained minimization procedure requires a modification
of the array R. Moreover, size of the problems is limited by the dimension of R.

For example, the following constrained program

Minimize: ~ xx — x2

Subject to: fl(xl)x2) = x\ + x\ — 1 < 0,

fb-l l . t /1 , X r\ J Jb 1 "T" Xf\ \)

is represented as follows:

R(\) = X(l) **2 + X(2) * *2 - 1,

R(2) = -X(l) + X(2)**2,

R(3) = -X(l)-X(2).

Consequently, definition of the objective function and the constrains are strictly
bounded with the values of the global array X.

However, it is possible to avoid this problem in the language C, using linked lists
generated by means of dynamic memory allocation.

On the other hand, we describe algorithm which makes possible to use the ob
jective function and constrains in the role of formal parameters in LISP and MATHE-
MATICA. For this purpose, in this paper we introduce the internal form appropriate
for nonlinear constrained problems. The nonlinear constrained problem (1.1) is
transformed in the following LlSP's form:

; (Q(f) (£)
(fx(x) ••• fp(x))

Implementation of penalty function methods in LISP 125

(h,(x) ••• hq(x))

)

Analogous internal form in MATHEMATICA is

{ Q(f) , {£} ,
{ / . (f) ••• / p (x) }
{ /..(a?) ••• /.,(af) }

}
If one of the inequality or equality constrains absent, the corresponding list is

empty.

Example 2 .1 . The nonlinear constrained programming problem

Minimize: — xx — x2

Subject to: x\ + x\ - 1 = 0

is represented in the internal following LISP's form

? ((- 0 (+ x l x2)) (x l x2)

0
((- (+ (* x l x l) (* x2 x2)) 1))

)
Corresponding internal form in MATHEMATICA is

{ -xl-x2, {xl,x2},

{}.
{xl~2+x2~2-l}

}
The first element of the internal form is an arbitrary PC SCHEME or MATHEMATICA
arithmetic function, the second represents its argument list, the third element is
a list of functions forming the inequality constrains, and the fourth is interpreted
as a list of functions contained in the set of equality constrains. Consequently,
the function contained in the internal form q of an arbitrary constrained nonlinear
program can be selected by the expression (car g), and the corresponding param
eter list by the expression (cadr q). Similarly, the list of functions forming the
inequality constrains can be extracted by the expression (caddr g), and the list of
functions forming the inequality constrains using (cadddr q). Analogous expres
sions in MATHEMATICA are g[[l]], g[[2]], g[[3]] and g[[3]].

Note that the user must to set task of the constrained optimization problem into
the described internal form. Our motivation for application of such an internal
form is the similar internal form for linear constrained programs in MATHEMATICA
(see the function ConstrainedMin.)

In this way, we show the advantage 2.

The vector vf containing the functions in equality constrains in a PC SCHEME
internal form g can be constructed as follows:

126 Predrag Stanimirovic, Svetozar Rancic

(s e t ! vf (make-vector (s e t ! If (l eng th (caddr q)))))
(i f (< 0 I f) (s e t ! vf (l i s t - > v e c t o r (caddr q))))

In a similar way we generate the vector vh of inequality constrains:

(s e t ! vh (make-vector (s e t ! lh (l eng th (cadddr q)))))
(i f (< 0 lh) (s e t ! vh (l i s t - > v e c t o r (caddr q))))

The list of inequality and equality constrains in MATHEMATICA can be selected
by the following expressions, respectively:

v f = q [[3]] , vh=q[[4]]

In these routines we use possibility of functional programming languages to place
arbitrary selected functions in a list or a vector, which is an inconvenient problem
in procedural programming languages. This is a part of the advantage 7.

3. Construction of the corresponding unconstrained problem

In this section we describe symbolic transformation of a given internal form of a con
strained problem into the internal form of the corresponding unconstrained prob
lem, i.e. the advantage 4. As far as we know, this problem is not employed before.
Assume that a constrained program is given by the internal form (Q (x) (/) (h)) or
{Q {£} {/} {h}} where / = /-_,. . . , / and h = hX)... ,hq denote given inequal
ity and equality constrains, respectively. We develop procedures in PC SCHEME and
MATHEMATICA for transformation of a given constrained program into the formula,
which represents the objective function Qu of the corresponding unconstrained
program. Then the internal form of the unconstrained program is equal to the list
{Qu (*)) or {Qu {£}}.

In one of the exterior point methods, the nonlinear constrained problem (IT) is
converted into the following sequence of unconstrained problems [1], [6], [19]:

min F(x) ~ min (Q(x) + —-rrP(x)
(x) (*) V P{k)

(- { v q 1\ (3-1)
= ?J)n [Q{S) + W) &lM*)]+a + g W

where [fi(x)]+ = max{0 , / i (x)} , pW is strongly decreased sequence of positive
numbers, and a, 0 > 1 are two integers.

In the LISP's internal form Qu of the objective function of the corresponding
unconstrained program, the strings "ro'\ "alpha" and "beta" are used instead of the
parameters p{k\ a, 0. The internal form (Qu (£)) can be symbolically generated
by means of the following routine.

PROCEDURE GO ALL

Step 1. To form the formula Qu, called fgoal, which has the form

G (£ , W , " a l p ^ ^

Implementation of penalty function methods in LISP 127

(s e t ! fgoa l 0)
(do ((i 1))

((= i I f))
(s e t ! fgoa l

(l i s t > +
(l i s t ' exp t (l i s t 'max 0 (v e c t o r - r e f vf i)) "a lpha")
fgoa l

))
(s e t ! i (+ i 1)))

(do ((i 1))
((= i I n))
(s e t ! fgoa l

(l i s t >+
(l i s t ' exp t (abs (v e c t o r - r e f vh i)) "be ta")
fgoa l

))
(s e t ! i (+ i 1)))

(s e t ! fgoa l (l i s t J+ (car q) (l i s t (l i s t V 1 n ro") f g o a l)))

Step 2. Append the parameter list to the list Qu:

(set! fgoal (list fgoal (cadr q)))

We now describe an analogous routine in MATHEMATiCA.

Step 1. Decreased sequence pk can be determined by means of the following
recursive definition

r o [l] = l ;
ro[n_] : = r o [n - l] / 2

Then the function fgoal in the ith iteration can be formed as follows:

f goal=q [[1]]+l / ro [[i]] (Sum[Max [0, vf [[i]] "a lpha , {i , Length [vf] }]
+ S u m [(A b s [v h [[i]]) " b e t a , { i , L e n g t h [v h] }) ;

Also, we can use the symbol ro instead of the function rO, and write

fgoa l=q[[i]]+ l / ro (Sum[Max[0 , v f [[i]] " a l p h a , { i ,Leng th [v f]}]

+ Sum [(A b s [v h [[i]]) " b e t a , { i ,Length [vh]}) ;

Step 2. The internal form {Qu {£}} is formed using the built-in function List.

f g o a l : = L i s t [f g o a l , q [[2]]] ;

Example 3.1. The LlSP's internal form of the objective function Qu, corresponding
to the nonlinear programming problem stated in Example 2.1, is equal to

((+ (- 0 (+ x l x2))
(* (/ 1 " ro")

(expt (~ (+ (* x l x l) (* x2 x2)) 1) "be ta")
))
(x l x2)
)

128 Predrag Stanimirovic, Svetozar Rancic

Corresponding internal form in MATHEMATICA is

- x l - x 2 + 1/ro (Abs[- l+x l~2-x2~2])~be ta .

One of the most popular interior point methods converts the nonlinear program
ming problem (1.2) into the following sequence of unconstrained problems [1], [6],
[19]:

mmF(x) = mm(Q(x) + p(k)p(x))=mm [Q(f) + p<*> £ _ _ , (3.2)
(*) (*) V ' (*) \ ~{ [fi\X)\ J

where the weighting factors p(k) are positive and form a monotonically decreasing
sequence of values.

The internal form f goal of the function Qu is the formula

P

G(x,ro) = Q(ï) + '>ro»Yu±w

where the string nro^ is placed in positions of the parameter p. Now, the internal
form of the generated constrained program can be formed applying the following
code in PC SCHEME:

(s e t ! fgoa l 0)
(do ((i 0))

((= i I f))
(s e t ! fgoa l

(l i s t ;+
(l i s t V 1 (l i s t ' exp t (v e c t o r - r e f vf i) 2))
fgoa l

))
(s e t ! i (+ i 1)))
(set! fgoal (list »+ (car q) (list >* "ro" fgoal)))
(set! fgoal (list fgoal (cadr q)))

The internal form of the corresponding unconstrained minimization problem can
be produced using only the following two expressions in MATHEMATICA:

f g o a l = q [[l]] + r o Sum[l/vf [[i]] ~ 2 , { i , L e n g t h [v f] }] ;
f g o a l : = L i s t [f g o a l , q [[2]]] ;

To generalize the technique of Lagrange multipliers, the inequality constrains
must be treated as equations by introduction of appropriate slack variables, one
for each inequality constraint [1], [6], [19]. In this way, the general constrained
optimization program (1.1) is converted to the following equivalent program, which
uses only equality constraints:

Minimize: Q(x), x € Rn

Subject to: g.(x) = f{(x) + z] = 0, i € V (3.3)

/ i i(f) = 0, j e Q.

Implementation of penalty function methods in LISP 129

Finally, the program (3.3) is transformed into the following sequence of uncon
strained minimization problems:

min L(x, z) = min (Q(x) + P(x, z))
(x, z) (x, z)

(P Q \ (3 . 4)

= min Q(x) + ^lii(fi(x) + z}) + £ / i ; + p + i 1^(^)1 .

where p,i, i = 1 , . . . ,p + q are nonnegative weighting factors independent of x,
identifiable as the Lagrange multipliers, and the vector z contains the slack variables
z{, i = 1 , . . . ,p.

We now describe possibility of symbolic processing to generate the slack variables
z{ and nonnegative weighting factors \i{, as well as their incorporation in the internal
form of transformed function for unconstrained optimization. In this manner, we
justify the advantage 5.

Let / / = p + 1 denotes the number of inequality constrains, and Ih = q + 1
represents the number of equality constrains. The extended Lagrange's function
(3.4) requires lf auxiliary variables z{, i.e. the corresponding symbolic expression
in PC SCHEME requires / / symbols. For this purpose, we use the symbols given in a
list, denoted by alzi, and externally declared by

alzi = (zO z\ z2 z3 z4 zb z6 zl zS z9).

Now, the vector (s e t ! vecz (l i s t - > v e c t o r a l z i)) contains the symbols zi.

The list of used fi{ coefficients, denoted by listm = / i= (p,Q,... , / i p + < ? + 1) , can be
formed by means of the following routine which generates the lists whose elements
are strings:

(def ine (g e n - s t r - l i s t pf begin n)
(l e t ((vec (make-vector n)) (i 1) (i v 0))

(do ((i begin) (iv 0))
((= n iv) (v e c t o r - > l i s t vec))
(v e c t o r - s e t ! vec iv (s t r i n g - a p p e n d pf

(number->s t r ing i ' (i n t))))
(s e t ! iv (+ iv 1))
(s e t ! i (+ i 1)))))

Now, the value of the expression

(s e t ! l i s t m (l i s t - > v e c t o r (g e n - s t r - l i s t "m" 0 (+ l f l h 1))))

is the list of strings corresponding to weighting JJL coefficients:

vecm = ("mO" " m l " • • • "mt"), t = lf + lh + 1.

Now, the internal form of the objective function Qu is generated using the pattern

p q

G(x,vecz,vecm) = Q(x) + ^^vecmi (f{(x) + vecz?) +s)^yecmj+v\hj(x)\

130 Predrag Stanimirovic, Svetozar Rancic

The internal form (Qu (x)) is generated in the following procedure.

PROCEDURE GOAL2.

Step 1. Form the first part (i.e. the function Qu) of the internal form:

(set! fgoal 0)
(do ((i 1))

((= i I f))
(set! fgoal

(l i s t ' + fgoal
(l i s t ,* (vector-ref vecm i)

(l i s t '+ (vector-ref vf i)
(l i s t ' expt (vector-ref vecz i) 2)

))))
(do ((i 1))

((= i lh))
(set! fgoal

(l i s t >+ fgoal
(l i s t '* (vector-ref vecm (+ i If 1))

(l i s t ' abs (vector-ref vh i))
)))
(set! i (+ i 1))

)
(set! fgoal (l i s t '+ (car q) fgoal))

Step 2. Append the list of x and z parameters to the first element of the internal
form:

(set! fgoal (list fgoal (append (cadr q) (alzi)))

In this way, the parameter list (x) of the initial constrained problem is extended
to the new parameter list (x z), where the vector z contains unbounded slack
variables. This is the essence of the advantage 6. Note that in [13] we describe
transformation of the multiargument objective function into the function of one
argument. Also, the advantages 1. and 3. are used during implementation of
unconstrained optimization (see [13].)

The slack variables zi and weighting coefficients tx{ in MATHEMATICA can be
implemented using the symbols of the form z[i] and vecm[i], where i denotes a
variable used in the cycle.

The internal form fgoal of the objective function Qu, in MATHEMATICA is formed
as follows:

fgoal=q[[l]]+Sum[vecm[i] (v f [[i]]+z [i]~2) , {i,Length [vf]}]
+Sum[vecm[i+Length[vf]] Abs[vh[[i]]] , {i , Length [vh] }]

The list of parameters can be extended by the slack variables and appended to
the internal form fgoal in the following way:

Do[q[[2]]=Append[q[[2]],z[i]],{i,Length[vf]}];

Implementation of penalty function methods in LISP 131

Note that z[i] are symbols whose values are not defined. In this way, an un
limited number of slack variables z[i] is included into the internal form of the just
constructed unconstrained optimization program. More precisely, we are in a posi
tion to include slack variables into the analytic expression of the objective function,
as well as in its argument list.

Similar principles are valid for implementation of the Rockafellar's extension of
the Lagrange's function, which is defined by:

L(x, X,») = Q(x) + ±J2i tA« + 2aU£)1+ - A? }
" i€V

 n (3.5)
-J2^jhj(x) + -Y/[hJ(S)}2,

jeQ jeQ

where a > 0 is sufficiently large real number. The constrained nonlinear pro
gramming problem (3.3) is converted into the following sequence of unconstrained
problems [19]:

\) — 0, Mo a r e arbitrary

Minimize L(£, \\k\^k)),

where A(*+1) = [A(*> + 2a/,(£ (*))]_ f , i G V (3 ' 6)

^X)^[ixf-h.(^)l jeQ, A: = 0,1,. . .

The internal representation of the Rockafellar's extended lagrangian, denoted by

L(x,vecl,vecm) = Q(x) + — V^ {[vec^ + 2afi(x)]2
+ — vecl2}

iev

-] T vecmjh^x) + - ^ [/ ^ (f)] 2

jeQ jeQ

is formed by means of the following algorithm:

Step 1. The vectors of used Ai and /i i coefficients, denoted by vecl = A =
= (A 0 , . . . , Ap) and vecm = \± = (Lt0,... , /i) are symbolically formed as follows:

(s e t ! vec l (l i s t - > v e c t o r (g e n - s t r - l i s t " 1 " 0 I f)))
(s e t ! vecm (l i s t - > v e c t o r (g e n - s t r - l i s t "m" 0 l h)))

Step 2. The internal form of the function

i £ {[\ + 2afi(x))l-Xf} = i £ {[vecl, + 2afi(x)]\ - vecl\}
iev iev

can be generated as follows:

(de f ine (p lus x) (i f (< x 0) O x))

(s e t ! fgoa l 0)

132 Predrag Stanimirovič, Svetozar Rančič

(do ((i 1))
((= i l f))
(s e t ! fgoal (l i s t ?+ fgoal

(l i s t >-
(l i s t ' expt

(l i s t ' p l u s
(l i s t >+ (v e c t o r - r e f v e c l i)

(l i s t ' * 2 a
(v e c t o r - r e f vf i)

))
) 2

)
(l i s t ' e x p t (v e c t o r - r e f v e c l i) 2)

)))
(s e t ! i (+ i 1))

)
(s e t ! fgoal (l i s t >/ fgoa l (l i s t ' * 4 a)))
Step 3. To form the internal representation of the parts

X X ' M f) =] C vecmjhj(x), and - ^ [^ (- c)] 2 :
j€Q jeQ jeQ

(s e t ! hgoa l 0) (s e t ! hhgoal 0)
(do ((i D)

((= i l h))
(set! hgoal (list '+ hgoal

(list ** (vector-ref vecm i)
(vector-ref vh i)

)))
(set! hhgoal (list '+ hhgoal

(list ,* (vector-ref lh i)
(vector-ref lh i)

)))

(set! i (+ i D)

)
(set! hhgoal (list '* a hhgoal 0 . 5))

Step 4- Internal representation of the function L(x,vecl,vecm).

(s e t ! fgoa l (l i s t ' - (l i s t >+ fgoa l hhgoal) h g o a l))
(s e t ! fgoa l (l i s t '+ (ca r q) f g o a l))
(s e t ! fgoa l (l i s t fgoa l (cadr q)))

Implementation of penalty function methods in LISP 133

4. Evaluation of nonlinear constrained methods

The general algorithm used in symbolic implementation of nonlinear constrained
methods can described as follows:

Step 1. Select the corresponding values of the formal parameters:
- State the internal form of a selected objective function and given constrains,

as it is described in Section 2.
- Select a starting point vx = x^°\ satisfying given constrains.
- Select a small real number, which determines the stopping criterion.

Step 2. Declare the local variables and construct the vectors vf and vh, arising
from the given inequality and equality constrains, respectively, using the routines
described in Section 2.

Step 3. Make the internal form of the type (Qu(x) (x)) in PC SCHEME or the
tyPe {Qu^)-> {%}} m MATHEMATICA. These internal forms are applicable in the
procedures implementing a set of unconstrained optimization methods, described
in [12], [13]. The corresponding algorithms are described in Section 3.

Step 4- To form the initial values for adjustable parameters. In the problems

(3.1) and (3.2) the adequate values for the symbols ro, alpha, beta must be given:

(s e t ! ro (r e ad)) (s e t ! a lpha (r ead)) (s e t ! b e t a (r e a d)) .

ro=Input [] ; a lpha =Input [] ; b e t a =Input [] ;.

The problems (3.4) and (3.5) use the vectors vm and vl, containing the values for
the elements of the vectors vecm and vecl, respectively. The corresponding initial
values can be selected by means of the following procedure, which generates values
contained in a vector v = (v0,... , vn).

(def ine (vecv n)
(do ((i 1) (v (make-vector n)))

((= i n) v)
(vector-set! (vector-ref v i) (read))

(set! i (+ i 1))

))

For the problem (3.4) we use the starting values for \x coefficients and the initial
point vx = x^, generated by:

(s e t ! vm (vecv (+ If lh 1)))
(s e t ! vx (vecv (l eng th (cadr q))))

Also, the initial values of the slack variables vz = i^0) can be computed using the
values of the entered starting point vx = x^°\ according to (3.3), as follows:

(0)
z) / Ä - iЄP:

In PC SCHEME we wr i te

(do ((i 1))
((= i l f))
(v e c t o r - s e t ! \

134 Predrag Stanimirovic, Svetozar Rancic

(* (s q r t (apply (eva l (l i s t ' lambda (cadr q) (car q)))
(v e c t o r - > l i s t v x)))) -1)

(s e t ! i (+ i 1)))

In MATHEMATICA we suggest the following code

vz=Input [] ;
D o [v z = A p p e n d [S q r t [- s u b [v f [[i]] , q [[2]] , v z]] , { i , L e n g t h [v f] }] ;

where sub is a function which substitutes each variable xi from varl by the corre
sponding value x0{:

sub [equa t ion . , va r l_L i s t ,x_Lis t] : =
B lock [{eq=equa t ion , i , va r=va r l , xO=x} ,

D o [e q = e q / . v a r [[i]] - > x 0 [[i]] , { i , L e n g t h [v a r] }] ;
R e t u r n [e q] ;

] ;

The problem (3.5) uses initial values for the symbol a and the vectors vf, vh:

(s e t ! a (r e ad)) (s e t ! v l (vecv I f)) (s e t ! vm (vecv l h))

Step 5. A do cycle which terminates when a selected stopping criterion is satis
fied. In the cycle perform the following:

Step 5.1. Substitute each string or symbol, corresponding to one of the ad
justable parameters with the corresponding value, in the internal form of the
corresponding unconstrained problem, formed in Step 3. In PC SCHEME this can
be done by means of the function subst, which is described in [5], [16]. Evalu
ation of the expression (subs t n p a r t o l d p a r t l i s t) substitutes oldpart with
npart in all levels of list.

For the problem (3.1) we can write

(s e t ! fgoa l (subs t r o " r o " f g o a l))
(s e t ! fgoa l (subs t a lpha "a lpha" f g o a l))
(s e t ! fgoa l (subs t b e t a "be ta" f g o a l))
The problem (3.2) uses

(s e t ! fgoa l (subs t r o " ro" f g o a l))

The problem (3.4) uses the following:

(do ((i D)
((= i (+ I f l h)))
(set! fgoal (subst (vector-ref vm i)

(vector-ref vecm i) fgoal))
(set! i (+ i D)

)
(do ((i 1))

((= i lh))
(set! fgoal (subst (vector-ref vz i)

(vector-ref vecz i) fgoal))
(set! i (+ i 1))

Implementation of penalty function methods in LISP 135

)
and in the problem (3.5) we write

(do ((i 1))
((= i I f))
(set! fgoal (subst (vector-ref vl i)

(vector-ref vecl i) fgoal))
(set! i (+ i D)

)
(do ((i 1))

((= i In))
(set! fgoal (subst (vector-ref vm i)

(vector-ref vecm i) fgoal))
(set! i (+ i 1))

)

In MATHEMATICA this goal can be achieved in the same way, using the re
placement operator /.

Step 5.2. Perform the unconstrained minimization, using one of the methods
presented in [12], [13]. In this way, we give the new approximation of the optimal
point.

Step 5.3. Select new values for the adjustable parameters. In the Rockafellar's
method the adjustable parameters must be generated, according to (3.6). The
new values in the vectors vm and vl can be computed by means of the following
code, where vx denotes the vector of values for x{

;To form the v e c t o r s of t he f u n c t i o n s
; con ta ined in vf and vg
(do ((i D)

((= i I f))
(vector-set! vffun i (eval (list lambda (cadr q)

(vector-ref vf i))))
(vector-set! vhfun i (eval (list 'lambda (cadr q)

(vector-ref vh i))))
(set! i (+ i 1))

)

;using the formed functions to set the new values
;for A and fi
(do ((i D)

((= i If))
(vector-set! vl i

(plus (+ (vector-ref vl i)
(* 2 a

(apply (vector-ref vffun i)
(vector->list vx))

))))
(set! i (+ i 1))

136 Predrag Stanirnirovic, Svetozar Rancic

)
(do ((i 1))

((= i In))

(vector-set! vm i

(- (vector-ref vm i)

(* a (apply (vector-ref vhfun i) (vector->list vx)

))))

(set! i (+ i 1)))

)

In the above presented code, functions contained in the vectors vf fun and vhfun
can be extracted, transformed into the corresponding lambda-expressions, and ap
plied to the supplied argument list. In this way we describe the advantage 7.

5. Computational experience

Example 5.1. Consider the following nonlinear programming problem:

Maximize: — xx — x2

Subject to: f1(xlJx2) = x\ + x\ — 1 = 0.

Using the exterior point method, for the case /? = 1, p0 = 1, pW = ^ , and
using the Newton's method with the precision 1 0 " 1 4 in the generated unconstrained
optimization problem, we obtain the following results:

k p(k) Jk)
x i

r
(*0

љ2

QOrW)

0 1. 1. 1. -2.

1 1 0.80901699437494 0.80901699437494 -1.5225424859373

2 0.2 0.73089310318622 0.73089310318622 -1.4383869376311

3 0.04 0.71205472555989 0.71205472555989 -1.4191786979486

4 0.008 0.70810466782927 0.70810466782927 -1.4152121521447

5 0.0016 0.70730669639767 0.70730669639767 -1.4144135058365

6 3.2e-4 0.70714677779294 0.70714677779294 -1.4142535601106

7 6.4e-5 0.70711478105078 0.70711478105078 -1.4142215622825

8 1.28e-5 0.70710838118111 0.70710838118111 -1.4142151623694

9 2.56e-6 0.70710710118633 0.70710710118633 -1.4142138823729

10 5.12e-7 0.70710684518653 0.70710684518653 -1.4142136263730

15 1.6384e-10 0.70710678120702 0.70710678120702 -1.4142135623935

20 5.24288e-14 0.70710678118655 0.70710678118655 -1.4142135623731

21 1.048576e-14 0.70710678118654 0.70710678118654 -1.4142135623731

22 2.097152e-15 0.70710678118654 0.70710678118654 -1.4142135623731

23 4.194304e-16 0.70710678118654 0.70710678118654 -1.4142135623731

Implementation of penalty function methods in LISP

Table 1.

137

The following figures show trajectories which are formed using computed approxi
mations of the local minimum:

p - 1.0 p- 103

The analogous results, for pk — yp-, given by means of traditional implementa
tion of the exterior point method are arranged in Table 2. [19]:

k plk) т(*0
x\

XW Q(Ќk))

1 1 0.809017 0.809017 -1.618034

2 ІO"
1

0.719290 0.719290 -1.438580

3 ю-2
0.708354 0.708354 -1.416708

4 ІO"
3

0.707232 0.707232 -1.414464

5 1 0
-4 0.707119 0.707119 -1.414238

6 10~
5

0.707108 0.707108 -1.414216

7 1 0 - 6 0.707107 0.707107 -1.414214

8 ю-7
0.707107 0.707107 -1.414214

Table 2.

Example 5.2. Consider the following nonlinear programming problem:

Minimize: — xY— x2

Subject to: fY (xx, x2) — x\ + x\ — 1 < 0,

J2\Xli X2l ~ ~~X\ + X2 — 0*

Using the interior point method, for the case pW = A , and the DFP method
with the precision 10~7 in the generated unconstrained optimization, we obtain the
following results:

138 Predrag Stanimirovič, Svetozar Rančic

k т
(*)

x i
т
(*)

x2
Q(x^)

0 0.5 0.5 -1.

1 0.63085851 0.09223888 2.56860712

2 0.70733854 0.67997758 -1.35642624

3 0.70670616 0.70666650 -1.41252669

4 0.70709348 0.70709348 -1.41416037

5 0.70710636 0.70710636 -1.41421188

6 0.70710676 0.70710676 -1.41421350

7 0.70710677 0.70710677 -1.41421352

Table 3.

On the other hand, by means of the well-known traditional implementation, the
interior point method produces the following results [19]:

k r
(Ч

x i
т
(*)

x2
Q(x^)

2 0.6884721 0.3952927 -1.0837648

3 0.7106337 0.3713147 -1.0819484

4 0.7349830 0.4535905 -1.1785735

5 0.7276601 0.5228195 -1.2504796

6 0.7251426 0.5758051 -1.3009477

7 0.7203736 0.6143570 -1.3358093

8 0.7151591 0.6446030 -1.3597621

9 0.7105652 0.6567412 -1.3763306

10 0.7072276 0.6803946 -1.3876222

14 0.7048593 0.7027896 -1.4076489

18 0.7063525 0.7062206 -1.4125731

30 0.7070938 0.7070938 -1.4141876

53 0.7071067 0.7071067 -1.4142134

Table 4.

It is evident that the functional implementation requires less iterations with
respect to a traditional implementation. For example, precision 10~6 in Table 3. is
achieved in 5th iteration, and in Table 4 in 53th iteration.

Using the Rockafellar's method with A0 = 1, a = 10, we obtain the following results:

Implementat ion of penalty function methods in LISP 139

k r(*)
xi

x2 Q(&k))

0 1. 1. -2.

1 0.70705940 0.70705056 -1.41410996

2 0.70711190 0.70710163 -1.41421353

3 0.70710735 0.70710626 -1.41421361

4 0.70711125 0.70710225 -1.41421351

5 0.70710709 0.70710651 -1.41421361

6 0.70710707 0.70710648 -1.41421356

7 0.70710679 0.70710676 -1.41421356

Table 5.

' Note that in the generated unconstrained minimizations are used search method
(DSK-Powell) with the precision 10"7 . trajectories generated by A0 = 1 and two
different values of parameter a are illustrated in the following figures:

,9 = 1 . 0 , 9 = 1 0

Analogous results, given by means of traditional implementation are presented
in Table 6 (see [19]):

k r(*)
xi

r(*)
x2

1 0.70200159 0.702000159

2 0.70701744 0.70701746

3 0.70710524 0.70710522

4 0.70710676 0.70710675

5 0.70710678 0.70710678

6 0.70710678 0.70710680

7 0.70710678 0.70710679

Table 6.

Observed decreasing of the number of iterations is implied by symbolic compu
tations of derivatives, with respect to their inexact numerical computations.

A smaller number of iterations implies also a smaller number of function and
gradient calls. But, each iteration in the functional implementation requires a

140 Predrag Stanimirovic, Svetozar Rancic

transformation of a constrained optimization problem, given in an appropriate in
ternal form into the internal form of the corresponding unconstrained problem.
Also, interpreter-based languages are slower than the languages implemented by
compilers.

6. Conclusions

Our tendency is primarily to improve implementation of the constrained optimiza
tion methods, which are written in procedural programming languages. Also, our
motivation is the absent of functions for nonlinear constrained optimization which
are available in MATHEMATICA. The improvements are ensured primarily apply
ing possibility of symbolic processing of the functional programming languages PC
SCHEME and MATHEMATICA. Of course, similar principles are valid for the other
functional programming languages. But, we prefer PC SCHEME and MATHEMATICA,
because of their ability in symbolic processing as well as in numeric processing.
The main purpose is to point out that the proper selection of the programming
language in nonlinear optimization is not FORTRAN, but a language applicable in
symbolic processing and powerful in numerical computations.

We improve greater part of the criteria used as the best in evaluating a nonlinear
programming algorithm [1]:

1. Size (dimensionality, number of inequality and/or equality constrains) of the
problem. The inequality and equality constrains are stored in the list, so that its
number is not limited in advance. On the other hand, in FORTRAN and C, if the
set of constrains is stored in the array K(l),... , X(N), then allowance has been
made for a TV-dimensions problem. In the programming language C it is possible
to implement a list of constrains by means of linked list, using dynamic memory
allocations.

2. Simplicity of use (time required to introduce data and functions into the
computer program) . The objective function is given as an arbitrary PC SCHEME
arithmetic expression, incorporated in the internal form of the problem.

3. Simplicity of computer program to execute the algorithm. Using the func
tional programming languages we ensure the following.

- Possibility to use the objective function and constrains, without a lexical or
syntax analysis.

- Simple implementation of the partial derivatives of the objective function.

- An elegant method of transformation of a given internal form which represents
a constrained program into the internal form of the corresponding unconstrained
program.

This paper is a contribution toward a new approach to implementation of con
strained optimization methods. This approach can be called symbolic implementa
tion.

Implementa t ion of penalty function methods in LISP 1 4 1

References

David, M.H., Applied Nonlinear Programming, McGraw-Hill Book Company,
1972.

Dixon, L .C and Price, R.C., Truncated Newton method for sparse uncon
strained optimization using automatic differentiation, J. Optimiz. Theory
Appl. 60 (1989), 261-275.

Griewank, A. and Corliss, G.F., Automatic differentiation of algorithms, Pro
ceedings of the first SIAM Workshop on Automatic Differentiation, SIAM,
Philadelphia, 1991.

Henessey, L.W., Common LISP, McGraw-Hill Book Company, 1989.

Hyvonen, E. and Seppanen, J., Introduction to LISP and functional program
ming, Moskva, "Mir", 1990. (In Russian)

Jacoby, S.L.S., Kowalik, J.S. and Pizzo, J.T., Iterative methods for nonlinear
optimization problems, Prentice-Hall, Inc, Englewood, New Jersey, 1977.

Parker, T.S. and Chua, L.O., INSITE- a software toolkit for the analysis of
nonlinear dynamic systems, Proceedings of the IEEE 75 (1987), 1081-1089.
Press, W.H.; Flannery, B.P.; Teukolsky, S.A. and Vetterling, W.T., Numerical
recipes in C, Cambridge University Press, New York, Melbourne, Sydney, 1990.
Press, W.H.; Flannery, B.P.; Teukolsky, S.A. and Vetterling, W.T., Numerical
recipes, Cambridge University Press, New York, Melbourne, Sydney, 1986.

Richard, W.S., LISP, Lore and Logic, Springer-Verlag, 1990.

Smith, J.D., An Introduction to Scheme, Prentice Hall, Englewood Cliffs, New
Jersey, 1988.

Stanimirovic, P. and Rancic, S., Unidimensional search optimization in LISP,
Proceedings of the II Mathematical Conference in Pristina (1996), 253-262.

Stanimirovic, P. and Rancic, S., Unconstrained optimization in LISP, in: XI
Conference on Applied Mathematics, Budva (1996), 355-362.

Stojanov, S., Methods and Algorithms for Optimization, Drzavno izdatelstvo,
Tehnika, Sofija, 1990. (In Bulgarian)

Sussman, G.J., Structure and interpretation of computer programs, MIT Press,
Cambridge, Massachusetts, 1985.

Wilensky, R., Common LISPcraft, Norton, New York, 1986.

Wolfram, S., Mathematical a system for doing mathematics by computer,
Addison-Wesley Publishing Co, Redwood City, California, 1991.

Wolfram, S., Mathematica Book, Version 3.0, Wolfram Media and Cambridge
University Press, 1996.

Zlobec, S. and Petric, J., Nonlinear programming,, Naucna Knjiga, Beograd,
1989. (In Serbian)

Author's address: University of Nis, Faculty of Philosophy, Depar tment of Mathemat ics ,

Cirila i Metodija 2, 18000 Nis, Yugoslavia

Received: July 7, 1997

		webmaster@dml.cz
	2013-10-22T11:02:14+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

