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Fuzzy Controller Design Based on Stability Criteria 

Thomas Möllers 

Abstract: The paper deals with the stability of control systems with fuzzy controllers. The 
principle of stability in the first approximation is applied to fuzzy controllers. To do so 
a mathematical formulation of a certain class of Sugeno-Takagi fuzzy controllers is intro
duced and sufficient differentiability conditions are given in terms of the fuzzy parameters. 
The Jacobian of a fuzzy controller is explicitly calculated. This is used to derive stability 
intervals for the fuzzy parameters with the aid of stability theory for interval matrices. 
Key Words: fuzzy control, Lyapunov stability, Sugeno-Takagi fuzzy controller, interval ma
trices, robust stability 
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1. Introduction 
A well known and successful application of fuzzy logic is fuzzy control. Therein 
the ideas of Zadeh's fuzzy sets (Zadeh 1965) are used to model certain vague and 
imprecise knowledge like human experience. The fuzzy controller can be interpreted 
as a logical device which tries to imitate human decisions. But in recent years 
fuzzy controllers are more and more regarded as nonlinear functions / : W —> 
—> E m with a special design algorithm, namely the fuzzy method. Especially 
Sugeno-Takagi fuzzy-controller can be viewed as approximation and interpolation 
methods (Mollers & van Laak 1998). 

The situation in control theory is the following. Let a continuous time, dynamical 
system 

x(t) = g(x(t)Mt))> (1) 
y(t) = h(x(t)) (2) 

with g : E n + m —•> E n and h : E n —•> Ep be given. We omit the time variable t in 
the sequel. 

According to Figure 1 we choose the control u as 

u = f(y). (3) 

In this regard the problem of stability (in the sense of Lyapunov) arises, that is 
the question whether the solution x of the system (l)-(2) with the feedback (3) tends 
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u 
x ~ P(X u 

x 
y - h(x) 

У 
y - h(x) 

f(y) f(y) 

Figure 1: Nonlinear control loop 

to infinity or not. For a definition of several kinds of stability see (Vidyasagar 1993). 
Stability theory for linear systems is well developed, but for nonlinear systems the 
problem is much more complicated and a general theory does not exist, indeed for 
special situations various stability criteria are known. 

Since fuzzy controllers are nonlinear mappings we want to apply nonlinear sta
bility theory. The analysis of stability properties of fuzzy controllers has been 
discussed in the literature in the last years, overviews are given by Bretthauer& 
Opitz (1994), Kiendl (1997), Mollers (1998). The next step beyond stability anal
ysis is the controller design in terms of stability criteria. On this, Verbruggen & 
Bruijn (1997) have stated the following: 

"The real d e s i g n p r o b l e m is not only to assess stability, but to describe the 
influence of the design parameters (the controller) and the process parameters 
on the stability, and to use stability criteria not only as an analysis tool but 
also as a design tool." 

This paper tries to make a contribution to this goal and to give explicit conditions 
for the parameters of the fuzzy controller in order to assure the stability of the closed 
loop. 

The paper is organized as follows. We recall the principle of stability in the 
first approximation in Section 2. In Section 3 we develop a notation of fuzzy 
controllers suitable to derive sufficient differentiability conditions and a formula for 
the Jacobian of a fuzzy controller. In Section 4 the stability theory for interval 
matrices together with results from Section 3 are used to give stability intervals for 
fuzzy controller parameters. We conclude with some remarks in Section 5. 

2. Stability in the first approximation 

In order to determine the stability of a nonlinear differential equation 

x = g{x) with a(0) = 0 

we have a closer look at the linearized system 

x — Ax 

(4) 

(5) 
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where A := jfe- - is the Jacobian of a at the equilibrium 0. A matrix A is called 
\x=0 

stable if and only if all its eigenvalues have negative real part, it is called unstable 
if one eigenvalue has positive real part. Observe that we consider only continuous 
time systems in this paper, therefore we say stable instead of Hurwitz stable (Rohn 
1994). The following Theorem is known as the Principle of Stability in the First 
Approximation or as the Linearization Principle (Zabczyk 1992, p. 101). 

Theorem 2.1. Consider the system (4) and let g be continuously differentiable in 

0. The equilibrium 0 is exponentially stable if and only if the Jacobian of g in 0 

A — d g ^ 
дx 

is stable. 

If one is interested in asymptotic stability we have the following (Hahn 1967, 
p. 122). If A is stable, then the equilibrium 0 is asymptotically stable. If A is 
unstable, then the equilibrium 0 is unstable. Therefore we have to assure the 
stability of the linearized system (5). 

3. Linearizing the fuzzy controller 

We are going to develop the basis for an application of the above mentioned Lin
earization Principle to control loops with fuzzy controllers. We describe a special 
class of fuzzy controllers and suggest a certain notation of the various fuzzy con
troller components. Then we give sufficient differentiability conditions for this class 
of fuzzy controllers. Moreover the Jacobian of a fuzzy controller is explicitly calcu
lated in terms of the fuzzy parameters, such as certain entries of the rule base and 
membership functions. 

3 . 1 . A standardized Sugeno-Takagi fuzzy control ler 
This section is concerned with the development of an formula of a multivariate 

Sugeno-Takagi fuzzy controller. Let denote y = (yx,... >2/p)
T G F C l p the vector 

of inputs and u = (uXl... , um)T G U C Mm the vector of outputs of the controller. 

For every single input there are fuzzy sets defined on the universe of discourse. Let 

us label the fuzzy sets with integers. We use the same symbol \i for fuzzy sets and 

membership functions, i.e., we say the input yx is ji_x or the input y2 is /i5 instead 

of something like yx is negative small or y2 is positive very big. This notation will 

shorten the subsequent statements. The membership functions for different inputs 

are distinguished by there arguments, e.g. u_1(yl) or ^(y2). If there might be 

some misunderstandings to which component of the input the membership function 

belongs we write fJ>_l(0) or /i5 ^(0), to indicate fi_l belongs to the first input yx 

and li5 to the second y2. 
The Sugeno-Takagi fuzzy controller has a collection of rules of the type 

I F yx Is \x_x A N D y2 Is /z5 T H E N U{ = u_\tb(y1,y2) (6) 
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The A N D combination in the premise can be modeled by ť-Norms (Bandemer & 
Gottwald 1993). In the conclusion the i-th component of the output ui is deter-
mined by a reál valued function depending on the inputs. To indicate to which rule 
the conclusion function belongs we use the subscript "-1,5". The superscript " ( i ) " 
indicates the i-th output. This notation describes unambiguously the rule (6). If 
we háve specified the conclusion function, say u_\ 5{yi,y2) = y\ + 2y2 ) the rule 
is well defined and we can omit the long notation (6). In generál, if we consider 
p inputs we use an multiindex a = (ax,... ,a ) £ Zp of integers to describe the 
conclusion function and in fact the rule. 

The concept of the Sugeno-Takagi fuzzy controller determines the degree of truth 
of a single rule by the degree of truth of the premise. Therefore the conclusion 
function must be combined with this degree of truth. That could be doně by the 
use of a í-Norm. We choose here the algebraic product, i.e., the conclusion function 
has to be multiplied with the value of truth of the premise. Due to Sugeno and 
Takagi the finál output of the controller is determined by a weighted average. Hence 
we get a formula for the Sugeno-Takagi fuzzy controller. 

The following Definition summarizes up the previous notations and assumes 
some additional properties. Therefore we get a speciál class of Sugeno-Takagi fuzzy 
controllers. 

Definition 3.1. A Sugeno-Takagi fuzzy controller with the following structure is 
called a standardized Sugeno-Takagi fuzzy controller (SFC), for short. 

(SFC 1) For every input yk there is an odd number of normalized fuzzy sets, labeled 
with Nk := {—i/fc,... , vk] C Z. Let the support of each membership function 
be a reál interval. 

(SFC 2) The conclusion functions are continuously differentiable. 
(SFC 3) The AND composition in the premise is modeled by a continuous č-Norm. 
(SFC 4) The i-th output component of the (SFC), i € { 1 , . . . , r a} , is 

/< (* )= E « f ( y l ; ? ° ( y ) f o r a l l . e r . (7) 

The symbol Yla
 s t a n ( 3s for the p-times sum ^ l • • • ]T^P =_„ with vk, k = 

= 1 , . . . ,p as in (SFC 1). For a chosen í-norm t we abbreviate the rule premise 

ata(Vv- >VP) :=A*aifoi)* M a ^ ) * ••* tV>ap(yp)
 f o r a11 (l/l > • • • 'Vpť € Y 

and call a^ premise function. For the £-norm Minimum, tM := min, the premise 
function in rule (6) is ať

a
M (y) = min{/x_ 1(y 1),^5(í/2)}. 

The above algebraic formula for the fuzzy controller (7) is well known (Dri-
ankov, Hellendorn & Reinfrank 1993). Here we háve just introduced some addi
tional assumptions and a different notation. This will lead to a deeper insight in 
the structure of fuzzy controllers. 
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3.2. The Jacobian of the standardized Sugeno-Takagi fuzzy controller 
We only consider the standardized Sugeno-Takagi fuzzy controller according to Def
inition 3.1 with the £-norm minimum in this paper. Without great effort analogous 
results can be shown for the t-norms algebraic product and bounded difference 
(Mollers 1998). 

Let us collect some assumptions needed in the sequence. First we assume some 
properties of the membership functions. In real applications they are often fulfilled. 

Let all membership functions be 

• continuous in 0, 

• left- and right-hand differentiable in 0, 

• differentiable in a neighborhood of 0 except in 0. 

The zero membership functions have the value 1 in the point 0, i.e., for all 
k € { 1 , . . . .p} let 

4k)(o) = i. 

Every other membership function vanishes in 0, i.e., for all k £ { 1 , . . . ,p} 
and all ak <E Nk \ {0} let 

^ f c ( 0 ) - = 0 . 

(PІ) 

Next we assume that there is always a pair of symmetric membership functions 
in a neighborhood of 0. 

For all k G {1 , . . . ,p} and all ak 6 Nk exists an e > 0, such that 

(P2) 

Finally we suppose a in a certain sense symmetric rule base. Denote the set of 
all fuzzy sets which right-hand derivative D+fi doesn't vanish in 0 with 

N?° :={akeNk\D+n (0)-i 0}. 

Foг all i € { 1 , . . . , m } , k Є {!,... ,p} and all ak € Nf° let 

x0-0o f c 

(i) 
o-o(0) = -Ч;.o-afcO...o(0) 

(PЗ) 

The properties of the (SFC) are sufficient to prove the Linearization Formula (8) 
in the next Theorem. Indeed a lot of fuzzy controllers developed for real applications 
are (SFC) with the properties (P1)-(P3). 

We are able to express the Jacobian of the (SFC) in terms of certain fuzzy 
parameters. For a proof of the following Theorem see (Mollers 1998, Th. 4.10, 
pp. 47). 
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Theorem 3.2. (Linearization Formula) Let f : W — • E m be a (SFC). As
sume properties (P1)-(P3). Then f is continuously differentiate in 0 and for 
j E {!,... ,p} the j-th column of the Jacobian in 0 is 

FЄj = 
дu0_0(y) 

дУi 
y=o 

+ Uj {D+^yj)\yi=0) (8) 

where 

F : = 
дf(y) 

- y=o 

e • : j — th unity vector, 

uo...o(y) : = 

\4ni)o(v)J 
u o...Oi/,o...o(^) 

wo...o^;o...o(^) -

J D + : right hand derivative of the subsequent function, 

v(yj) -= 

For an application of the Linearization Formula see Example 4.4. 

4. Robust fuzzy controller design with interval matrices 

Due to the Linearization Formula (8) we can use interval matrices to design robust 
fuzzy controllers. First we recall the definition of interval matrices and give an easy 
to use stability criterion. Then we state Lemma 4.3 which allows to transfer the 
stability theory of interval matrices to controller design. The application of this is 
shown in Example 4.4 which ends up with certain stability intervals for the fuzzy 
parameters. 

We define interval matrices according to Rohn (1994). 

Definition 4.1. Let the matrices L, U G M n x n 

G {1, . . . ,n} be given. The set of matrices 
with l{j < uitj for all i.j E 

[L,U] := {X e E n x n | 1{J < x{J < u{J for all ij G {1 , . . . ,n}} 

is called in terva l m a t r i x . We define the c e n t e r ma tr ix X0 := | ( U -f L) and 

the radius m a t r i x AX := | ( U — L). An interval matrix is called stable if all its 
elements are stable matrices. 
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It is obvious that an interval matrix can either be given by lower and upper 
bounds L and U or its center XQ and radius AX. In the latter case we write 
(XQ,AX) to denote the interval matrix. We denote the symmetric part of a real 
matrix by S(X) := \(X + XT). 

Stability of interval matrices is still an challenging problem of current research. 
In recent years many different sufficient stability conditions were stated. The inter
ested reader is referred to Mansour (1989) and Wang & Michel (1993). For further 
use we cite an stability criterion given by Delgado-Romero & Rojas-Estrada (1995, 
Th. 3.1). Let Xmax denote the maximum eigenvalue of an symmetric matrix. 

Theorem 4.2. Let (X0,AX) be an interval matrix. If 

\max(S(X0)) + \max(S(AX)) < 0 

then the interval matrix (X0 , AX) is stable. 

In the sequel we apply stability theory for interval matrices to controller design 
and in the end to fuzzy controller synthesis. For the remainder of this section we 
introduce the following notations. For a matrix M := (Tnij)l<ij<n we denote the 
componentwise modulus by \M\ := (1^ - |)1 < :- < n . The componentwise less than 
or equal to relation is denoted by ^ , i.e., M •< N :<£> m- < n{- for all 1 < i,j < n. 

Let us consider the linear differential equation 

x^(A + BF)x (9) 

where the state feedback matrix F is to be chosen appropriately. We intend to 
give upper and lower bounds for F in terms of an interval matrix which assures the 
stability of the system (9). 

Lemma 4 .3. Let the interval matrix (A -f J5F0 , \B\ AF) be stable. Then for all 
F G (F0, AF) the matrix A -h B F is stable. 

Proof: For F £ (F0 , AF) there exists a matrix SF with |<5F| < AF and 

F = F0 -{- 6F. 

Set 
M := A + B F = A + B F0 4- B SF. 

We have the componentwise inequality 

BSF -<\B SF\ * \B\ \SF\ * \B\ AF, 

hence Me (A + BF0,\B\ AF) and therefore M is stable. rj 
In the following Example we use Theorem 4.2, Lemma 4.3 and the Linearization 

Formula (8) to give stability intervals for certain parameters of the fuzzy controller. 

Example 4.4. Let us consider the following system 

"2 -VK" -V" 
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-a, 0 a, Yi 

Figure 2. Membership functions for the two inputs y1 and Vi 

As center matrix for the feedback we choose 

-1 .5 0.5 
- 2 7 7 Iv= 

and as radius matrix 

AF:= 
0.1 
0.1 

0.05 
0.1 

Then the closed loop matrix A + B F0 is stable. With Theorem 4.2 we show that 
(A + BX01 \B\ AX) is stable. We get 

A m o I ( 5 ( ^ + B F 0 ) ) < - 0 . 6 4 

and 

with 

\B\AF = |4| II 
0.1 
0.1 

0.05 
0.1 

0.2 
0.5 

0.15 
0.3 

Xmax(S(\B\AF)) < 0.58 

According to Lemma 4.3 the matrix A + B F is stable for all 

•1.6,-1.4] [0.45,0.55]' 
FЄ 

-27.1, -26.9] [6.9,7.1] 

Now we interpret the matrix F as the Jacobian of a fuzzy controller. Suppose 
a fuzzy controller / : R2 —> E 2 has five membership functions for each input 
according to Figure 2 and suppose the rule base has the following structure with 
constant entries, observe that the free spaces in the rule base are not included in 
the Linearization Formula (8) and therefore do not influence the Jacobian of the 
fuzzy controller in 0. 

Rule base for output /-
\ У2 

У\ \ 
-2 -1 0 1 2 

-2 -u{1) 

u 2 , 0 
-1 -u{1) 

u l , 0 
0 -u{1) 

u 0 , 2 
-u{1) 

U 0 , l 
0 u{1) 

u 0 , l 
u{1) 

" 0 , 2 
1 u{1) 

U l , 0 
2 u{1) 

W 2 , 0 
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Rule base for output /-
\ У2 -2 -1 0 1 2 

-2 (2) 
U 2 , 0 

-1 - - Í 2 
0 (2) 

^ 0 , 2 -ugì o (2) (2) 
^ 0 , 2 

1 (2) 

Ч,o 
2 (2) 

U 2 , 0 

This fuzzy controller fulfills the assumptions of Theorem 3.2. With the Lin
earization Formula (8) we have 

( 

Fex = 0 + 
—гt, 

( i ) 
•'.,>} 

i ( 2 ) 

x 2 , 0 

— ІÍ 1,0 
.(2) 
''1,0 

•̂  I ,0 гz 2 , 0 

( 2 ) . , ( 2 ) 

1,0 2 , 0 

0 ' 

1 

V ój 
_ rÄ-íîïЛ 

Fe2 
íi-ЛÌ) 

The condition 

F = ( a U l ,0 o U0,l 
l 1 , (2) l J 2 ) 
\ a i W l , 0 a 2

U 0 , l 

[-1.6,-1.4] [0.4,0.6] 
[-27.1,-26.9] [6.95,7.05] 

assures the stability of the closed loop with fuzzy controller. It can be seen that 
we have four conditions but six free parameters. Therefore it is possible to design 
such a fuzzy controller. 

5. Concluding Remarks 

The notation of fuzzy controllers introduced in this paper leads to a deeper insight 
into there structure and enables us to calculate the linearization of the fuzzy con
troller in 0. This linearization is used both for controller analysis and design based 
on the Principle of Stability in the First Approximation. An application of inter
val matrix theory to the Linearization Formula is presented which leads to fuzzy 
stability intervals. 

It should be mentioned that due to the Linearization Formula it is now possible to 
apply methods from linear control theory to fuzzy controllers. This can be regarded 
as a first step in dealing with stability of fuzzy controllers for design purpose. The 
next step, namely the analysis and design of the fuzzy controller's behavior far away 
from the linearization point, must be evaluated additionally, several methods for 
this purpose are given in Mollers (1998). 
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