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On the Milnor exact sequence for global function fields 

Marzena Ciemala 

Abstract: A new proof is given for the exactness of the Milnor sequence for the rational 
function field ¥(x) over a finite field F As a consequence an explicit construction of the 
generators of the cyclic direct summands of the Witt group W(¥(x)) is presented. 
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1. Introduction 
For a field F of characteristic different from two the structure of the Witt group of 
quadratic forms over the rational function field F(x) can be described in terms of 
Milnor's exact sequence provided we know the Witt groups W(F) and W(K) for all 
finite extensions K/F (see [3], p. 265). The proof of Milnor's theorem as presented 
in [3] Chapter 9.3 uses some techniques coming from K-theory. On the other hand 
the proof of the much more general result given in [4] Cor. (3.3), p. 93 (for the Witt 
group of a Dedekind domain and the Witt group of its field of quotients) is based 
on the arithmetic theory of lattices. 

In this paper we consider rational function fields with finite fields of constants and 
give a proof of Milnor's theorem using only purely quadratic form theory arguments. 
These include Hasse Principle and Hilbert Reciprocity. Our proof makes it possible 
to write down an explicit decomposition of the Witt group W(¥(x)) into direct 
sum of cyclic groups. That is, we show how to find the generators of the cyclic 
summands in a decomposition of the Witt group W(¥(x)) into direct sum of cyclic 
groups. 

This project follows closely the work of K. Szymiczek [5], who gave a proof of 
Milnor's theorem for the rational number field based on the Hasse Principle. 

2. Milnor's theorem 

Let F be a finite field of odd characteristic, Q the set of all monic irreducible 
polynomials in the ring F[x], and E := ¥(x) the rational function field over F. For 
every TX € 17 by En (resp. En) we denote the completion (resp. the residue class 
field) of the field E under 7r-adic valuation. 
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The Milnor sequence combines two maps, the natural ring homomorphism i : 
W(¥) -> W(E), and d : W(E) -> ® _ 6 Q IV(E-) called the boundary homomor­
phism. Let dn : W(E) ~» W(En) -> W(En) be the composition of the natural 
homomorphism with the second residue homomorphism defined as follows 

<9~(ai, . . .an ,7rb i , . . . ,7r6s) = (5_ , . . . ,6S) 

where aj,6j G F[x], TT f ai, 7r f fy for i G { 1 , . . . , n } , j € { 1 , . . . ,s} and 6 is the 
image of b G ¥[x] under canonical projection on En. Then we define 

d:= (57r)7r€Q. 

Now we can state Milnor's theorem for global rational function fields. 

Theorem 2 .1 . The following sequence is split exact 

(1) 0 —• W(¥) -i> W(E) -A 0 W(En) —> 0. 
7rGf2 

We give a proof in §3, and in §4 we discuss the decomposition of the Witt 
group W(¥(x)) into an internal direct sum of cyclic subgroups. In an Appendix we 
summarize the results on quadratic and Hilbert reciprocity needed in the proof. 

3. Proof 

3.1. Surjectivity of the boundary homomorphism d 
Since the residue class field En = W[x]/ir is a finite field of odd characteristic, for 
7T G fi the group W(E7T) is the cyclic group of order 4 generated by (1) when 

s(En) = 2, or the Klein four-group generated by (1) and (tt), u G En\ En when 
s(En) = 1. Here s(En) denotes the level of the field En. This implies that the 
elements of the following set generate the cyclic direct summands of (B^eo W(En): 

(2) A := {n* : n G ft} U {/*" : TT G fi with s(En) = 1}, 

where rf and fin are elements of © ^ Q W(En) whose p-th coordinates satisfy 

(n^ _ / ° for7r^> 
[T) )Q - I (I) for TT = ft 

{ 0 for 7r ?- D, 
, , 2 

(u) for 7T = £ and some u G E1K\E7t . 

To prove the surjectivity of d it is sufficient to check that 

A C im d. 
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First observe that rf £ im d for all 7r £ 0 , since (IT) £ W(E) satisfies <9(7r) = if. 
To show that pn £ im d we fix a 7r £ 0 with s(E7T) = 1. 

We choose and fix an a £ F \ F 2 . When —1 is not a square in F we set a = - 1 . 
Further, we choose p £ £1 satisfying the following conditions for the Legendre 
symbols: 

.9/ \9, 

There are infinitely many such p's (see [1] Lemma 2.3). Consider now the form 

(3) if = (aD,7rp) £ W(E) when s(E) = 1 

or 

(4) (p = (p, Trp) £ W(E) when s (£) = 2. 

In both cases we have 
dn(<p) = (p) € W(J5„). 

We claim that p is a non-square in E*. Consider first the case s(E) = 1. Then also 
5(F) = 1 and if Q = |F|, then Q = 1 (mod 4) by [3] p. 304. Hence ^ ~ - is even and 

(5) - 1 (?)" (?) 
by quadratic reciprocity law ([2] p. 103, see the Appendix). Hence p is a non-square 
in En. 

If s(E) = 2, then from s(En) = 1 we conclude that the degree of 7r is even (see 
Appendix) and again by reciprocity we get (5). This proves our claim. 

Now we compute the image of <p under dp. In the first case we have 

dp(<p) = (a,7t)eW (Ep). 

Here a and 7f are non-squares in Ep, hence they belong to the same square class of 
Ep. Thus dp(<p) = (d,a) = 0 £ W(EP), since s(Ep) = s(Ep) = s(E) = 1, It follows 
that d((f) = li71. 

In the second case (when (j> is given by (4)) we have 

dp(ip) = (In) = (h-1) =0 eW(Ep), 

since - 1 is a non-square in Ep and 7? is also a non-square in Ep, and so n and - 1 
are in the same square class of Ep. It follows <9(<p) = /i71", as required. 

This proves that each p? belongs to the image of d and so A C im d. 
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3.2. Splitting d 
Recall that the elements of the set A (see (2)) generate the direct summands of the 
group (&nen W(En). Hence there is a unique group homomorphism 

a:^W(E7T)~>W(E) 

such that for all 7r e fi, 
a(n") = (TT), o(tf) = v, 

where <p is defined by (3) or (4) when s(E) = 1 or s(E) = 2, respectively. Then we 
have d o a = id. Hence a splits d. 

3.3. Exactness at W(E) 
We only need to prove that ker<9 C im i since the opposite inclusion is obvious. 
We take an anisotropic quadratic form ip over E with (<p) £ ker<9. To prove that 
((D) £ im i we will use induction on k = dim ip. Observe that three-dimensional 
forms over F are isotropic, hence there are no three-dimensional anisotropic forms 
in im i. Thus we will have to show that there are no anisotropic forms <D in ker<9 
of dimension greater than 2. Accordingly, the proof splits into two parts. First we 
consider the dimensions k = 1,2, and then we prove by induction that there are no 
anisotropic forms of dimension > 3 in ker d. We begin with a lemma. 

Lemma 3.1. Let / i , . . . ,fk € F[x] \ {0}. If ( / i , . . . , fk) belongs to the kernel of 
the homomorphism d, then there exists an element a £ ¥ such that 

fl-..fkE
2=aE2. 

Proof Without loss of generality we can assume that each of the polynomials fi 
is square-free, that is, not divisible by the square of any irreducible polynomial. 
Assume now that <9(/i, . . . , /*) = 0. Hence ^ ( / i , . . . ,fk) = 0 for all TT £ fi. If 
the product f\ • • • fk is not a constant, then take any n £ fi dividing the product. 
Renumbering the / i ' s if necessary, we can write 

(/i»-••>/*) = (TT/I*- • • . * " / / . /M- I>- • • >/*)> 

where IT \ / / , 7r \ fj for all i = 1 , . . . , / and j = I 4 - 1 , . . . , k. Hence 

a 7 r ( / 1 , . . . ,A) = ( / { , . . . , / / ) = o. 

The form ( / { , . . . , / / ) is hyperbolic which implies that its dimension is even. Hence 
l = 2t for some t £ N and n2t | / i • • • fk- Since the polynomials fi are square-free, 
the product fi • • • fk is not divisible by any higher power of n. Thus the product 
fi - - • fk is a square up to a constant a £ F. rj 

Consider the case k = 1. If <9(/i) = 0, then by the Lemma there is an a £ F 
such that f\E2 = aE2. Hence (/i) = (a) £ im i. 
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Now consider the case when k = 2. So assume d(f\,J2) = 0. According to the 
Lemma, ( / i , /2) = (/>a/) for a nonzero square-free polynomial / in F[x] and an 
a G F. Write <p for the quadratic form (/, af). We are going to prove that ip = (1, a) 
over E. For this it is sufficient to show that p represents 1 over all completions En 

of.E. 
If p is isotropic over En for some 7r 6 0 U {oo} then clearly 1 G DE„(P)- So let 

us assume n € Q, and (pn is anisotropic. WTe claim that then n \ f. For otherwise 
there is / ' G_F[x] such that TT/' = / and this implies ( / ' , a / ' ) = dn(f,af) = 0. 
Hence ( / ' , a / ' ) would be isotropic over the residue class field and so (D would be 
isotropic over P^ (see [3] Prop. 1.9(1), p. 147). 

Thus we have ipn = (1*1,1x2) with u\,U2 units in E*. By [3] Cor. 2.5(2), p. 150, 
the ternary form (u\,U2,~l) is isotropic over En, hence (111,1/2) represents 1 over 
ET-, as required. 

We have shown that 1 is represented by p in all completions En except possibly 
EOQ. By Hilbert Reciprocity (see the Appendix), 1 is also represented over E^. 
Then, by Hasse principle, 1 is represented by p over E, and so (p = (I, a) over E. 
Thus (<p) € im t, as required. 

Now let k > 3. We will prove by induction on k that there are no k-dimensional 
anisotropic forms in ker<9. First consider the case k = 3. So let (p be 3—dimensional 
anisotropic form over E with d(p) = 0. By the Lemma we can assume that ip = 
= (/i>/2> a/1/2), where /1 . /2 are square-free polynomials in F[x] and a G F. Since 
^ - . - ( / I , / ^ a/1/2) = 0, the first or the second residue form of (p is isotropic, hence 
the form ip is isotropic over every En, n € ft by [3] Prop. 1.9(2), p. 147. By Hilbert 
Reciprocity, ip is also isotropic over Eoo. Hence, by Hasse principle, it is isotropic 
over E, a contradiction. So there are no 3—dimensional anisotropic forms p with 
d(tp) = 0. 

Assume now k > A. Let </? be a k—dimensional anisotropic form over E such 
that <9(<̂ ) = 0. Consider the form xp = (I) ± ip. The dimension of ij> is at least 
five, so the form is isotropic over any completion of E ([3] Thm. 2.2(2), p. 149]. By 
the Hasse principle, i/> is isotropic over E, and so - 1 G DE(<P)- Thus there is an 
anisotropic form (p' satisfying ip = (—1) ± </A Obviously we have d i m ^ = k - 1 
and 0 = d(<p) = d(ip'). By induction hypothesis <D' is isotropic, hence </? is isotropic 
as well, a contradiction. 

Summing up we have shown that when (<p) G ker<9 and ip is anisotropic, then 
dim (D < 2 and (ip) G im i. 

4. The Witt group W(¥(x)) 
Since Milnor's sequence (1) is split exact it yields the decomposition of the Witt 
group W(E) into the direct sum of the kernel and of the image of the boundary 
homomorphism d, 

W(E)^W(F)^^W(E7T). 

Alternatively, we get the internal direct sum decomposition 

W(E) = ker<9eim a, 
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where a is the injective group homomorphism splitting d, constructed in §3.2. In 
the decompositions given below we write Z„(e) for the cyclic group of order n 
generated by (e). 

When s(E) = 1, we have 

W(E) = Z 2 ( l ) 0 Z2(a) © 0 ( Z 2 ( T T ) 0 Z2fo>», 
TTGQ 

where <D is chosen as in (3), and when s(E) — 2, we have 

vV(F) = z4(i)e 0 z4(7r)© 0 (z2(7r)©z2((D)), 
7rG!T2, s ( E ^ ) = 2 TTGO, ? ( . © w ) = l 

where <p is chosen as in (4). 

5. Appendix: Quadratic Reciprocity and Hilbert Reciprocity 

We collect here some information on Legendre and Hilbert symbols, in particular we 
state all results used in this paper. The Legendre symbol and quadratic reciprocity 
law for rational function field over a finite field of constants is discussed in detail in 
[2] pp. 100-103 (even for n-th power residues). On the other hand Hasse omitted the 
discussion of Hilbert symbols and Hilbert Reciprocity for function fields. Actually, 
we have not found anything in the literature on that for the field F(x) (except 
for the discussion of the most general case of all global fields). While the case of 
a rational function field with finite field of constants is analogous to the case of 
rational number field, we nevertheless need precise formulation of the results and 
that is why we try to summarize them in this appendix. We retain the notation 
introduced in §2. 

From [2] p. 103 we cite the Quadratic Reciprocity Law. For 7r,p € ft, IT ^ p and 
Q = |F|, we have 

(E-\ — t_1 )deg7 rdegp -^ - i 

Further, if a € F \ F 2 , then 

(Al) ( £ ) = ( - i ) d e g W < 

For if n = degTT is odd, then the field En = F[x]/ir has no quadratic subfields so 
that a remains a non-square in E^. On the other hand if the degree n is even, then 
by Galois theory En contains a quadratic extension of F and since F has only two 
square classes we must have F(y/a) C En. Hence a is a square in En. In particular, 
if s(E) — 2 and s(En) = 1, then the degree of 7r is even. 

We write (a,(3)n for the 7r-adic Hilbert symbol for a,/? G En and TT in ft Uoo. 
By definition, this equals 1 or —1 depending on whether or not the quadratic form 
(a,/5) represents 1 over En. 

For TT € ft, / , g € F[x] with TT \ fg, and a G F \ P we have 

( 7 r , / ) 7 r " ( 9 ' (^a)- = -l> (/,»)* = 1. 
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For IT = oo, the crucial observation is that a monic polynomial is a square in E^ if 
and only if its degree is even. This follows from the identity 

xn + aiXn-l + ...+an=(}\-n-(l + - + --- + —) 
\X/ X xn 

and from the fact that the expression in the parentheses is a square in the completion 
Foo — En((^)). This leads to the following evaluation of the symbol for monic 
f,ge¥[x}\¥: 

(/,g)oc = ( ~ l ) d e g / d e g p ^ . 
This is clear when at least one of the polynomials has even degree. Otherwise, each 
/ and g can be written as the product of y :-= - and a square in EQQ, hence 

(f,9)<x> = (yiy)oo = (y,-l)oo-
Now it remains to notice that —1 is a square in Eoo if and only if it is a square in 
F if and only if ̂ ™- is even. 

For TT eft and a G F \ P we also have 

(A2) fr-a)^ (~l)de«\ 
Finally we state the Hilbert Reciprocity Law. It asserts that for any nonzero / , 0 G 
C- F[x], 

n(/^)-=L 
a 

Here a runs over HUoo. The proof can be obtained by mimicking the proof in the 
rational number field case (see [2] pp. 95-96). We split / and g into irreducible 
factors and use multiplicativity of the Hilbert symbol to reduce the proof to the 
three cases: (/, g) = (a, b), (n, a), (7r, p), where a, b G F and 7r, p G ft, n 7- p. In the 
first case all symbols (a,b)a are equal to 1, in the second case the product reduces 
to (/T, a)n • (?r, a)oo and this is 1 by (Al) and (A2). And in the third case the product 
reduces to 

(TT.p). • (n,P)p • {n^U = ( J ) • (j) • (_l)deg-degp2- = . 
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