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Automorphisms of products of Wi t t ring s of local type 

Marcin Stepitn 

Abstract. Given an (abstract) Wit t ring W, there is only one quaternionic 
s t ructure (G,Q,q) associated to it (cf. M. Marshall [2]). This paper is con
cerned with automorphisms of Wit t rings described in the terminology of 
quaternionic structures. The main goal is to describe the Harrison automor
phisms of products of Wi t t rings of local type. 

1. Introduction 
We consider an abstract Wit t ring in the terminology of Marshall [2]. For the 
reader's convenience we state the definition. A Witt ring is a pair W = (R,G), 
where R is a commutative ring with unity 1 and G is a subgroup of the multiplicative 
group of units R* which has exponent 2 and contains —1. Let I denotes the 
fundamental ideal of R generated by elements of the form x + y, where x, y € G. 
Moreover the following three axioms hold: 
W i : G generates R additively, that means every element of R is of the form 
a = a\ + • • • + an with o i , 0 2 , . . . , an € G and n > 1. 
W 2 : The following Arason-Pfister property holds for k = 1 and 2. 
If a = ai -h \-an e Ik with n <2k, then a = 0. 
W 3 : If 01 -\ h o n = 61 H h bn and n > 3, then there exist o, b, C 3 , . . . , cn 6 G 
such tha t 02 -I h o n = a + C3 -I h c n , a\ + a = b\ + b (and, hence, 62 + • • • + bn = 
b + c3 + ••• + cn). 

In this paper we describe the group of all automorphisms of a product of 
Witt rings of local type. A Harrison automorphism of W = (R,G) is a ring 
automorphism a of R, such tha t a(a) € G for every a G 67. A convenient tool for 
investigations of Harrison automorphisms is a notion of quaternionic structure. 

Let G be an elementary 2-group (i.e., o2 = 1 for all a € G) with distinguished 
element - 1 , with - a := - 1 • o. Let Q be a pointed set with distinguished element 
9, and let q: G x G —> Q be a surjective mapping. 
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Definition 1 .1. The triplet (G,Q,q) is said to be a quaternionic structure (Q-
structure, for short) , if g satisfies: 
Q\\ q(a,b) = g(6,a) 
Q2: g ( a , - a ) -0 
Q3 : g(a, b) = g(a, c) <̂> g(a, 6c) = 0 

Q4 : g(a, 6) = q(c, d) => l G G g(a, 6) = g(a, x), g(c, d) = g(c, x) 
for all a, b, c,d € G. 

A (quadratic) form of dimension n > 1 over G is an n-tuple <p = (a\,... ,an), 
where a i , . . . , a n 6 G. There is defined an isometry relation of one and two-
dimensional forms by: 

/ (a) =* (6) <^ a = 6 ( (a) 
1 («,« ,, 6) = (c, d) <=> a6 = cd and g(a, 6) = g(c, d), 

and for forms of dimension n > 2 inductively by: 
(ii) ( a i , . . . , a n ) = ( 6 i , . . . , 6 n ) <$• 3a, 6, C3 , . . . , c n € G such tha t ( 0 2 , . . . ,an) = 
(a,c:i,... ,cn), (ai,a) = (61,6), and ( 6 2 ) . . • ,6n) = ( 6 , c 3 ) . . . , c n ) . 
Isometry is an equivalence relation. Wre say that a form 0 of dimension n represents 
an element x 6 G if there exist X2 , . . . , x n 6 G such that <£ = (x,X2, • • • , x n ) . We 
shall write D(<f>) for the set of all elements x € G represented by the form 0 in this 
sense (the value set of the form <f>). 

Example 1.2. Let F be a field of characteristic -£ 2, G(F) := F*/F*2. A /orra 
over G of dimension n is a sequence 0 = ( a i , . . . , a „ ) , where a i , . . . , a n 6 G(F). 
Let Q ( F ) be the pointed set of all isometry classes of quadratic forms of the type 
( l , - a , - 6 , a 6 ) with the point 0 = ( 1 , - 1 , 1 , - 1 ) . Finally, let g F : G(F) x G(F) -> 
Q(F) be the map sending (a, 6) to the isometry class of (1, —a, ~b,ab). The triplet 
(G(F),Q(F),qF) is a Q-structure called the quaternionic structure associated to F 
(for the proof see [2]). 

The category of Wit t rings and the category of Q-structures are naturally 
equivalent ([2], Th. 4.5). This means that for given an abstract Wit t ring one 
can construct a Q-structure (G,Q,g) associated to it and conversely, for given a 
Q-structure (G,Q,g) there exists a Wit t ring R with the Q-structure (G ' ,Q ' , g ' ) 
isomorphic to (G, Q,g) . 

For W = (R, G) an arbitrary Wit t ring we define Q to be the subset of R 
consisting of all elements (1 - a) (1 - 6), with a, b € G and the mapping q: GxG —> Q 
by q(a,b) = (1 — a ) ( l - 6). The triplet (G,Q,g) is a Q-structure associated to W 
(cf. [2], Prop. 4.2). 

Conversely, let (G,Q,g) be a Q-structure. Define R to be the quotient of the 
integral group ring Z[G] obtained by factoring by the ideal J generated by [1] + [-1] 
and all elements ([1] - [a])([l] - [6]), where a, 6 e G satisfy 1 € D(a,b) and by [a] 
we denote an element of Z[G]. Then W = (R,G) is a Wit t ring associated to the 
Q-structure (G,Q,g) . 

Let G - (G, Q,g) and Q' - (G ' ,Q ' ,g ' ) be Q-structures and let tp: G -> G' 
be a group isomorphism with </-(—!) = — 1 ' . If for every a, 6 G G, q(a,b) = 9 <£> 
q'(<p(a), (p(b)) = 9' then ip is said to be a Q-isomorphism. The structures will be 
called equivalent and we shall write ( G , Q , g ) ~ (G ' ,Q ' , g ' ) . If for the Q-structure 
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(G.Q.g) there is a field F such that (G(F),Q(F),qF)~(G,Q,q), then we say that 
the structure (G,Q,q) is realized by the field F. If for a quaternionic structure 
(G, Q,g) there is a mapping a: G -+ G, which is a Q-isomorphism of the structure 
(G,Q,q) onto itself, then a is said to be a Q-automorphism or an automorphism of 
the quaternionic structure (G, Q, q). The group of all Q-automorphisms of (G, Q, q) 
will be denoted by Au t (G ,Q ,g ) . 

If (G, Q, q) is the Q-structure of a Witt ring W = (R, G) and a € Aut(C7, Q, q), 
then the mapping a\ + • • • + a.n —> cr(ai) + • • • + a(an) is well defined Harrison 
automorphism of W. This establishes a canonical isomorphism of the group of Q-
automorphisms of (G,Q,q) with the group Aut#(W r) of Harrison automorphisms 
oiW. 

Example 1 .3 . Let F be a field and / € A u t F . It is easy to see tha t the map
ping a: G(F) —> G(F), a(aF2) := f(a)F2 is a Q-automorphism of the structure 
(G(F),Q(F),qF). 

Now we recall well-known facts concerning quaternionic structures, which will 
give us a convenient tool for future investigations. 

Lemma 1.4. Let (G,Q,q) and (G',Q',q') be Q-structures and let <p: G —» G' be a 
group isomorphism with <p(—l) = —V. Then 
(a) 6 € D(l, -a) iff q(a,b) = $ for alla,beG. 
(b) (p is a Q-isomorphism iff (p(D(l,a)) = D'(l',(p(a)) for every a € G. 

Proof, see [2], Chapter 2, section 1. • 

A Q-structure (C7,Q,g) is said to be of local type if (7 is finite and | D ( l , a ) | = 
~|G | for all - 1 ^ a € G. Note that in this case |Qj = 2. A Wit t ring is said to be 
of local type if the associated Q-structure is of local type. 

Construction of the product of quaternionic structures 

Let (Gk,Qk,qk), I < k < n be quaternionic structures, such that — lfc € 
Gk, OkeQk.PutG:=GiX-xGn, Q := Qi x • • • x Q n , - 1 := [ - 1 - , . . . , - l n ] , 
0 := [0X,..., 9n], q : G x G -> Q, q := gi x • • • x qn, q([ai,... an], [fei, . . . , bn]) := 
[qi(a>i,bi),... ,qn(an,bn)]. The triplet (G ,Q,g) is a quaternionic structure called 
the product of the quaternionic structures and is denoted by T\^=i(Gk,Qk,qk) or 
( G i . Q i . 9 i ) n ••• n (G n ,Q n>gn)- Applying the lemma 1.4 one can conclude the 
expression of the value set of the binary forms (1-fold Pfister forms) in the product 
of Q-structures. It 's D(l,a) = D([1i, • • • , l n ] , [a-. , . . . ,a„]) = Di(1i,gi) x ••• x 
Dn(ln,an) for a l i a € G. 

Product of Witt rings 

Let (R i , Gi),..., (R n , C7n) be Wit t rings. Let R denote the subring of Ri x • • • x Rn 

generated (additively) by Gi x • • x Gn. The pair W = (R,G) is called a product 
of Witt rings. Obviously the Q-structure associated to a product of Wit t rings is 
isomorphic to the product of the Q-structures associated to the Wit t rings which 
are the factors of the product. 
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2. Auto= ms of Q-structures and Witt rings 
First we shall notice an easy 

Proposition 2 . 1 . Let (G,Q,g) := nJb=i(G'> Q'»g') ^e ^ e product of n copies of 
a quaternionic structure (G',Q',q'). For every automorphisms a\,a^, • • • ,an G 
Aut(G' , Q' ,g ') and every permutation a G S(n) the mapping a: G —> G defined by 

or ( [a i , . . . , a n ] ) := [ax ( a a ( 1 ) ) , . . . , a n ( a a ( n ) ) ] 

is a Q-automorphism of the structure (G,Q,q). 

Proof. It is clear, that a is well defined automorphism of the group G and 
cr(-1) = - 1 . Now let a = [oi ,-•.. -, an],b - [&i , . . . , 6„] 6 G and let g(a, 6) = 9 (in the 
product). By definition of g it is equivalent to q'(ak,bk) = 9' G G' for all 1 < k < n. 
Since ak are Q-automorphisms, then q'(ak,bk) = 9' if and only if q'(ak(ai), ak(hi)) ~ 
9' for all 1 < k < n and 1 < / < n. In particular, applying the permutation 
a G S(n) to this items we get that the above is equivalent to [g ,(ai(aa(1)),<Ti(6a ( 1))), 
. . . ,q'(an(aa{n)),an(ba(n)))] = 9 and by definition of g that means that q([ai(aa{1)), 
. . . , a n (a t t ( n ) ) ] , [a\ ( 6 a ( i ) ) , . . . , a n(6 a( n))]) = 9. Finally by the definition of a the last 
statement is equivalent to 
g ( a [ a ] , . . . , a n ] , a [ b i , . . . , b n ] ) = q(a(a),a(b)) = 9, as required. H 

Let (G,Q,g) be a Q-structure of local type. Since |Q| = 2, one can regard 
the group G as a bilinear space (C7,g) over the field F 2 of order two with the 
non-degenerate bilinear mapping q: G x G —> F 2 (cf. [2]). Hence the group of 
automorphisms of the Q-structure (G, Q,q) is a group of automorphisms of the 
orthogonal space (G ,g) over F 2 . 

Let us consider the (finite) product of structures of local type n * = i (G*» Q*> Qk)-
In the sequel the subgroup {1} x • • • x {1} x Gk, x { l } x • • • x {1} of Gi x • • • x C7n 

will be denoted by G'k. 

Lemma 2.2. Let (Gk,Qk,qk) for k = l , . . . , n be quaternionic structures of local 
type and a G Aut(nit--i (G*>Q*>0fc))- Por every k € { l , . . . , n } there exists j G 
{ 1 , . . . , n} such that a(G'k) —G'y In this case (Gk,Qk,qk) — (G j , Qj,Qj)-

Proof. Let a = [a\,..., a„] G G, a ^ — 1. Since all G/fc are of local type, | D ( 1 , a ) | = 
| D i ( l i , a i ) x •• • x Dn(ln,an)| = -~~-\G\ x • • • x Gn j if k of a i , . . . , a n equals to 
— 1. Since a is an automorphism of a quaternionic structure, hence by Lemma 
1.4(b) we get a([-l,..., -1]) = [ - 1 , . . . , - 1 ] and if ak ^ - 1 , ak G Gk for some 
k £ { l , . . . , n } , then a ( [ - l , . . . , -l,ak, - 1 , . . . , -1 ] ) = [ - 1 , . . . , —1,6,-, - 1 , . . . , - 1 ] , 
where - 1 ^ bj G Gj. It follows that for ak as above a([l,..., 1, - a * , 1 , . . . , 1]) = 
[ ! , . . . , ! , - 6 j , 1 , . . . , 1] and - 6 j / 1. This shows that for every a/t G G^ there exists 
/ G { 1 , . . . , n} such that 

(2.1) a ( [ l , . . . , l , a f c , l , . . . , l ] ) G G ; . 

Moreover, if ak ^ 1 then a([l,..., l ,a f c , 1 , . . . , 1]) ^ 1. Assume, tha t for a'k,a'k G 
G * \ { l } , f c € { l , . . . , n } 
t T ( [ l , . . . 1 l , a i , 1, ...,1]) = [ l , . . . A , d ; A , . . . , l ] G G ' i 
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a([l,..., 1, a'/, 1 , . . . , 1]) = [1, , 1,<f/. 1, • • •, 1] € G'j 
where i -£ j , 1 < i,j < n. 
Suppose, tha t i < j . Then 
tT([ l , . . . 1 l ,OJfcOj , l , . . . , l ] ) = 
= a([l,..., 1, a'k, 1 , . . . , 1] • [ 1 , . . . , 1, a'/, 1 , . . . , 1]) = 
= a ( [ l , . . . , l , a i A , . . . , l ] ) . o ( [ l , . . . , l , a ' / A , . . . , l ] ) = 
= [1,... ,l,d\,l,... ,1) • [1,... ,\,d'l ,1,... ,1) = 
= [1, 1 , ^ , 1 , . . . , l ,dy, 1 , . . . , 1] 
which contradicts to (2.1), hence i = j and consequently a(G'k) C G ' . 
Therefore we have G'k C a~-(G'j). Analogously, one can show that there exists / ~ 
{1, . . . ,n} such that a"l(G'j) C Gj. This provides the inclusion G'k C a'~1(G'J) C G\ 
and consequently k = /. 

Now we show tha t the map <p: Gk —> Gj, <p(a) = b, where a([l,... ,a,..., 1]) = 
[ 1 , . . . , 6 , . . . , 1] is a Q-isomorphism of the Q-structures (Gk,Qk,qk) and (Gj, Qj ,q3). 
Indeed, let ak,bk G Gk, aj,bj € Gj be such that a([l,... ,ak,..., 1}) = [ 1 , . - , 
aj, . . . , 1 ] and a([l,... ,bk,... ,1)) = [ 1 , . . . , 6 j , . . . , 1] and let qk(ak,bk) = 6k. Then 
[g(l, 1 ) , . . .,q(ak,bk),... ,q(l, 1)} = 6 in the product. Next we obtain g ( [ l , . . . ,ak, 
..., 1], [ 1 , . . . ,bk,..., 1]) = 9 and by the property of a we get g(cr([ l , . . . ,ak,..., 1]), 
a([l,...,bk,...,l})) = 9, which means that g ( [ l , . . . , a J 5 . . . , 1], [ 1 , . . . ,bj,..., 1]) = 
9. By the definition of g we have now [g(l, 1 ) , . . . , q(aj,bj),..., g ( l , 1)] = 9 hence, 
in particular qj(aj,bj) = 9j. Similarly one can prove the converse implication 
qj(aj,bj) = Qj => qk(ak,bk) = 9k. 

Finally the fact tha t ip is a group isomorphism with ^p(-l) — — 1 is obvious. • 

Corollary 2 .3 . Under the hypothesis of Lemma 2.2 there exists a permutation a E Sn 

and Q-isomorphism aa(i): Gj —> Ga(j) for i = 1 , . . . , n such that 

o ( [ o i , . . . , a n ] ) = [ a i ( a a - i ( 1 ) ) , . . . , a n ( a a - . ( n ) ) ] 

for all [ a i , . . . , a n ] € Gi x • • • x G n . 

Now we can express the main result. 

Theorem 2 .4. Let W be a finite product of Witt rings W\,..., Wn of local type. 

Then kutH(W) S r] n=i Aut/f(W . ) K 5 „ . 

ProoI First we establish two preliminary results: 

Claim 1: For any quaternionic structure (G, Q, g) of local type holds: 

A u t ( ( G , Q , g ) n ) =* ( A u t ( G , Q , g ) ) n ix 5 n 

Define a map $ : (Aut(G, Q ,g ) ) n tx 5 n -> A u t ( G , Q , g ) n by 

$ ( ( [ o - i , . . . , a n ] , a ) ) ( [ a 1 , . . . , a n ] ) : = c r 

such that 

a([ai,...,an}) = [ o i ( a a - i ( 1 ) ) , . . . ,on(aa-i{n))} for all [au...,an] € G n . 

By the Proposition 2.1 we have tha t a is the Q-automorphism of the Q-structure 

(G,Q,q)n. 
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For proving tha t $ is a group homomorphism compare the values of 

# ( ( [ o 1 , . . . , a n ] , a ) * ( [ r 1 , . . . , r n ] , / i ) ) a n d $ ( ( [ o 1 , . . . , o n ] , a ) o $ ( [ T 1 , . . . , T n ] , / 5 ) ) 

for all [ o i , . . . , a „ ] € C7n. 
By the definition of operation * in semidirect product of groups we get 

$([oi oT f t - i ( i ) , . . . , tT n o T a - i ( n ) ] , a o / 5 ) [ a i , . . . , a n ] = 

k i °Ta-i{i)(a{a0f3)-i{l)),... ,on °Ta-Hn)(a{aol3)-i{n))}. 

On the other hand 

$ ( [ 0 ! , . . . ,on\,a) o $ ( [ T I , . . . , r n ] , / j ) [ o i , . . . ,an] = 

$([<7i , . . . , o n ] , a ) [ r i ( a / 3 - , ( 1 ) ) , . . . , Tn(a0-i(n))] = 

[(Jl(Ta-i(l)(a0-i(a-Hl))))^ • • •^(Tn(Ta-i(n)(a0-t(a-^(n))))] = 

Wi ° r a - i ( i ) ( a ( a o / 9 ) - i ( i ) ) , . . . , o n °Ta-i{n)(a{ao0)-i{n))} 

like in the previous computing. This shows that $ is a group homomorphism. 

^From Corollary 2.3 it follows that $ is a surjection. 
Now suppose tha t ([<Ti,... ,on],a) e (Aut(G,Q,q))n and tha t $ ( [ o i , . . . ,on],a) 

is the identity map . Then for all [ a i , . . . , an] G C7n we have 

(2.2) $ ( [ o i , . . . , o n ] , a ) ( [ o i , . . . , a n ] ) = [ o i , . . . , a n ] 

Suppose that a is not the identity permutation, i.e. there exists i such tha t a~l (i) ^ 
i. Denote a~l(i) = j . Consider a sequence 

Í 1 i t l ф j 
a , = \ a, i f í = j 

where aj ^ 1. 
By (2.2) we get o t ( a a - i ( i ) ) = a* for all 1 < i < n. Hence OJ(OJ) = a, = 1 since 
i / j . Tha t contradicts to the choice of the element [ a i , . . . , a n ] . Tha t means tha t 
a is identity. Therefore Oj(a;) = a t for all 1 < i < n , so o is identity map and it 
follows that $ is an injection. Tha t finishes the prove tha t $ is an isomorphism of 
groups ( A u t ( G , Q , g ) ) n tx Sn and Aut(C7, Q , g ) n . 

Claim 2: If the quaternionic structures (G, Q, q) and (G1, Q', q') are equivalent, 
then Aut (G,Q,g ) £. Aut(C7', Q',q'). 
Let </?: G —> G' be the Q-isomorphism of the structures (G, Q,q) and (G',Q',q'). 
Let o e Aut(G, Q, q). Easy verification shows, that the mapping $ : Aut(C7, Q, q) —• 
Aut(G ' , Q' ,g ') defined by $ = i p o a o y ? - 1 is well defined isomorphism of the groups 
of automorphisms of the Q-structures. 

Combining claims 1 and 2 we get that for the quaternionic structures (C7j,Qi,qi), 

1 < i < n of local type holds: A u t ( n r = i (G».Qn0.)) - n r = i ( A u t ( G i > Qi.9i)) * Sn-
According to the mentioned one-to-one correspondence between automorphisms 

of Q-structures and the Harrison automorphisms of Wit t rings we obtain the the
orem. H 
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Now we investigate the group of automorphisms of a finite product of Wit t rings 
of local type, in general. Consider a finite set *S of Wit t rings of local type. Di
vide these Wi t t rings into isomorphism classes C\,..., Cm of cardinality k\,..., km, 
respectively. Choose a unique representative W. of the class C{ for all i = 1 , . . . , m. 

Theorem 2 .5. Under the above notation 

Aut„( J} W) a. f[(AutH(Wi))k< K Skl. 

Proof. If a is a Harrison automorphism of n ^ ' e s w tnen ^Y Lemma 2.2 a{WT
t) G d 

for all i — 1 , . . . , m . This implies that 
m 

Aut„( [J W) *< Jl AutH( J ] W)-
WES t=i wed 

Now, by the previous theorem we get 

Auttf( J ] w) ~ (Aut/f(Wi))*' <̂ S*., 
W€Ci 

which completes the proof. B 

The following corollary is an immediate consequence of Theorem 2.5. 

Corollary 2 .6 . Let W be a finite product of Witt rings W\,..., Wn of local type 
which are prairies non-isomorphic. Then A u t / / ^ ) = n ? = i Antn(Wi). 
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