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Tert problems on quadratic fortns 

Kazimierz Szymiczek 

Abstract. Problem 1 asks for the structure of the Wit t group of a general field, 
problems 2-6 ask questions about the relations between breaking up number 
fields into Wit t equivalence classes and class numbers of the fields. Problem 7 is 
about counting Wi t t equivalence classes of number fields containing cyclotornic 
fields, and problem 8 about the number of wild primes in a Hilbert equivalence 
of number fields. Problems 9 and 10 are about the cokernel of the total residue 
homomorphism and Wit t equivalence of Dedekind rings. 

Introduction 

In 1975 I at tended the second Czech &; Slovak conference on number theory in 
Kocovce and gave a talk Ten problems from the algebraic theory of quadratic forms 
(see [16, Chapter 7] for the complete list of problems). Five of these have been 
solved in the meantime, in the remaining some progress has been made but the 
complete solutions are still not known. The problems had very little in common 
with number theory and so I am not going to discuss them here. There is one 
annoying exception dealing with the group structure of the Wit t ring of a general 
field which I will include in the new list of problems. All the other problems in the 
list below arose from papers presented at the Czech & Slovak conferences since the 
Kocovce conference in 1975. 

By the way, it is a melancholy thought to recall that in Kocovce I was the only 
foreign participant. Then in the next conference in the series, also held in Kocovce 
in 1977, there were three foreign participants: A. Schinzel, V. G. Sprindzuk, and 
myself. 
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1. The group structure of the Witt ring 
Let W(F) be the Witt ring of quadratic forms over of a field F of characteristic 
not two and let X be the set of orderings of F. Then we have the total signature 
homomorphism 

a : W(F) -> ZX 

(for unexplained notation and terminology see [9, p. 63] or [15, p. 128]). For any 

/ € W(F) the image a(f) £ Z x is a bounded function from Ar to Z. Indeed, if 
dim f = n, then |erp(/) | < 2n for all P € X . Hence, by a theorem of Nobeling, the 
image irn a is a free Abelian group. Since the kernel of a is known to be the torsion 
subgroup Wt(F) of the Witt group W(F), we get the decomposition 

W(F) =Zr®Wt(F) 
where r is the rank of the free Abelian group imcr. It is well known tha t the torsion 

subgroup Wt(F) is a 2-primary Abelian group. Nevertheless we do not know the 

answer to the following question: 

Problem 1. Is the Witt group W(F) always a direct sum of cyclic groups, or equiv
alent^, is the torsion subgroup Wt(F) always a direct sum of cyclic groups ? 

When F is a nonreal field and has level s (the smallest number of terms in a 
representation of — 1 as a sum of squares of elements of F), then 2sW(F) = 0, i.e. 
the Wit t group is a bounded Abelian group (see [8, Theorem 3.6, p. 312]). By a 
classical theorem of Priifer, such a group is a direct sum of cyclic groups. A similar 
argument applies to formally real fields with a finite Pythagoras number. Then 
the torsion subgroup is bounded ([8, Theorem 3.6, p. 312]) and so a direct sum of 
cyclic groups. 

For formally real fields one can show that when the torsion subgroup Wt(F) 
is countable, then it is a direct sum of cyclic groups. This follows from another 
theorem of Priifer saying that a countable Abelian group without elements of infinite 
height is a direct sum of cyclic groups (and from the fact that the Wit t group has no 
elements of infinite height, which can be proved using the techniques of quadrat ic 
form theory). 

There is also an example of a field F where the group Wt(F) is neither count
able nor bounded yet it is a direct sum of cyclic groups (see [6]). Here F is the 
rational function field in countably many indeterminates over the field of real num
bers. 

2. Conner's Problem 
We say that two number fields K and L are Witt equivalent when they have isomor
phic Wit t rings of quadratic forms. It is known that Wit t equivalent number fields 
have the same degree over Q, and that for a given positive integer n the number 
fields of degree n split into a finite number of classes of Wit t equivalent fields. For 
n > 2 each class of Wit t equivalent number fields of degree n is an infinite set. 

Quadratic number fields split into 7 classes of Wit t equivalence. These are 
represented by the fields 

d= - 1 , ± 2 , ± 7 . ± 1 7 . 
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The class of Q ( \ / — l ) is a singleton set, but the remaining classes are all infinite. 
It is amusing to notice that 6 out of the 7 above fields have class number 1. 

The field Q(\/—17) has class number 4 and, as it turns out, it cannot be replaced 
with a field in the same Wit t class and class number 1. For the class of fields 
Witt equivalent to Q(\/—17) consists of all quadratic fields Q ( \ / d ) , where d < — 1 
is a square-free integer = 7 (mod 8). The discriminant of such a field equals Ad 
and so has at least two distinct prime factors. Hence, according to Gauss, the 
class number of the field is even (for a non-real quadratic field the 2-rank of the 
ideal class group is t — 1, where t is the number of distinct prime factors of the 
discriminant). Actually one can show that in the class of fields Wit t equivalent to 
Q(\/—17) all fields have class numbers divisible by 4. 

Pierre E. Conner offered the following more general version of this phenomenon. 
We say that a number field K satisfies the Conner's Level Condition (CLC, for 
short) if 

s(K) = 2 and s(KPi) = 1, i = l,,..,g, 

where s(F) denotes the level of the field F and KPl,..., KPg are all of the dyadic 
completions of the field K. For instance, the field Q(\/—17) satisfies CLC. Conner 's 
observation was the following theorem. 

/ / a number field K satisfies CLC, then the class number of K is even. 

Proof. Two distinct proofs have been published in [5] (see corrigendum) and [18], 
and here we sketch a third proof using some class field theory. The idea has been 
suggested to the author of [20] by an anonymous referee. 

Let K satisfy CLC and set L = K(yf^l). Then L is an Abelian unramified exten
sion of K. This follows from the following observations. 

1. In L all infinite primes of K split completely. 
The complex infinite primes split by definition and there are no real infinite primes 
since s(K) — 2. 
2. In L all dyadic primes of K split completely. 
This follows from the fact tha t all local dyadic levels are 1. Indeed, since for a dyadic 
prime p there is a 0 e Kp with 02 = - 1 , the congruence a 2 = - 1 (mod p m ) , where 
m is arbitrarily large, is solvable in OK, and this implies that p splits in L (by [4], 
Satz 119). 
3. None of the finite primes of K ramifies in L . 
The dyadic primes split and the nondyadic primes are unramified by [4], Satz 118. 

Now let H be the maximal Abelian unramified extension of K (the Hilbert class 
field of K). Then L is a subfield of Lf, hence H has even degree. On the other 
hand the Galois group of H/K is isomorphic to the ideal class group of K hence 
the class group has even order. D 

By [13], Wit t equivalent number fields have the same global levels and their 
dyadic primes can be matched up so that the local levels agree at corresponding 
dyadic primes. Hence, if K is the class of all number fields Wit t equivalent to K, 
and if K satisfies CLC, then all the fields in the class K satisfy CLC. It follows tha t 
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if K satisfies CLC, then the class K is even in the sense that all fields in the class 
K have even class numbers. 

In a letter to the author, dated September 8, 1989, Conner posed the following 
question: 

Problem 2. If the number field K does not satisfy CLC then is K Witt equivalent 
to some number field with odd class number? 

In other words, Conner asked whether any even class K of Witt equivalent 
number fields has to satisfy CLC. This question has been answered for Wit t equiv
alence classes of fields of degree < 4 (see [5]) and the answer is YES. Some further 
results are proved in [20]. 
We believe that the role of the prime p = 2 in the Conner's problem cannot be 
played by any other prime number. In other words we conjecture that the follow
ing statement can be proved. 

Problem 3 . / / a prime p divides the class numbers of all fields in a class of Witt 
equivalent number fields, then p = 2. 

There is a variant of Conner's problem involving 5—class numbers. It turns 
out that for the set S of all infinite and all dyadic primes of a number field K, 
CLC implies that the S—class number of K is even (see [20, Prop. 2]). Hence, if 
the class K satisfies CLC, it is S-even, that is, all fields in K have even 5—class 
numbers. 

So it appears reasonable to ask whether any 5—even class K of Wi t t equivalent 
number fields has to satisfy CLC. Even this modified question is still open. For 
some results towards the solution of the problem see [20]. 

3. Witt equivalence classes of number fields 
A class of Wit t equivalent number fields is said to be even (resp. odd), when every 
field in the class has even (resp. odd) ideal class number. A class that is neither 
even nor odd is said to be mixed. 

We know that even classes do exist: Conner's level condition implies evenness 
of the class number. But we do not know whether odd classes of degree n > 2 do 
exist. The only exceptions are the singleton classes determined by the fields Q and 
Q{\/-~ 1 ) . These are the only Wit t classes of algebraic number fields consisting of 
finitely many fields. Hence our question is as follows. 

Problem 4. Do there exist infinite odd Witt equivalence classes of algebraic number 
fields ? 

I conjecture tha t odd classes do not exist in degrees n > 2. Here is what we 
know about the non-existence of odd classes. 

Each class of Witt equivalent number fields of even degree contains a field with 
even class number (see [18]). In fact, each class of even degree contains a field with 
the 2-rank of the class group larger than any given number. Hence an odd class 
must have odd degree. For the degree 3 it is known tha t there are no odd classes: 
each of the 8 cubic classes contains a field with even class number. Actually each 
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class contains a field with class number 2, and also a field with class number 4. 
Moreover, the field with class number 4 can be chosen to have prescribed class 
group (i.e. either cyclic or Klein 4-group). For details see [18]. 

There is also a more general version of the above results for fields of arbitrary 
degree n and p—ranks of 5—class groups, where p is a prime factor of n. We quote 
a special case of the main result of [19]. 
Let K, be an infinite class of Wit t equivalent number fields of degree n and let p be 
a prime factor of n. Then for any positive integer r there is a field F G AC such that 

r k p C ( F ) > r . 

We consider here only the case when p is a prime factor of n since in the case when 
pj(n it is not known whether there exist number fields of degree n with arbitrarily 
large p—ranks of class groups. 

The best result known in this direction is due to S. Nakano [10]. He proved that 
for any pair of natural numbers n > 1, m > 1 there exist infinitely many number 
fields of degree n with the ideal class numbers divisible by m. One can conjecture 
that the fields of degree n with class numbers divisible by m occur in all classes of 
Wit t equivalent number fields of degree n. So we state the following 

Problem 5. Prove that for every natural numbers m > l,n > 1 each infinite class of 
Witt equivalent number fields of degree n contains fields with class numbers divisible 
by m. 

We conclude this section by discussing the occurrence of fields with class num
ber one in Wit t equivalence classes. Number fields of degree < 4 split into 45 
Witt equivalence classes. For fields of degrees 1,2,3,4, the numbers of classes are 
1,7,8,29, respectively (see [17] for details). Of these there are exactly 3 classes 
satisfying CLC, one of degree 2 and two of degree 4. They are represented by the 
fields Q[A r]/7, where 

/ = X2 + 17, X4 + 18X2 - 60A + 50, X4 - 2X3 - 9 x 2 + 10X + 34. 

These have class numbers 4 ,2 ,2 , respectively. Each of the remaining 42 classes of 
fields of degree < 4 contains a field with class number one (see [5]). In general we 
cannot hope that each class not satisfying CLC contains a field with class number 
one. Actually we do not know whether there are infinitely many number fields of 
class number one. There are serious doubts about the existence of number fields of 
large degrees with class number one (see [11], p. 481). A more promising conjecture 
seems to be the following guess. 

Problem 6. There is a number N with the property that for each n > N there is a 
Witt class of number fields of degree n which does not contain any field with class 
number one. 

As we have seen above, /V, if it exists, must be at least 4. 
It is also interesting to know how some particular classes of number fields 

are distributed in Wit t equivalence classes. We consider the case of cyclotomic 
fields. The general theory in [13] implies that cyclotomic fields are classified up 
to Witt equivalence by three invariants: the degree, the level and the number of 
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dyadic primes (see [7]). Let wcyc\{2N) be the number of Witt equivalence classes 
of number fields of degree 2N containing some cyclotomic fields. It appears to be 
very difficult to find a formula for wcyc\(2N) so we switch to the function 

CW(x) = J2 ™cycl(2N), 
2N<x 

tha t is, the number of Witt equivalence classes generated by all cyclotomic fields 
of degrees < x. The following estimates have been found in [7]: 

x 1 4 
J — exp(~(loglog logs ) 2 ) < CW(x) < - x 

for all sufficiently large x. This prompts the 

Problem 7. Determine the order of magnitude of the function CW(x). 

4. Tame equivalence 

A Hilbert-symbol equivalence (HSE, for short) between two global fields K and L is 
a pair of maps 

t : K/K2 --> L/L2, T : QK -> 0 L , 
where t is an isomorphism of the square class groups and T is a bijective map 
between the sets of all primes of K and L, preserving Hilbert symbols in the sense 
that 

(a,b)p = (ta,tb)Tp V a , & G K / K 2 , V p G QK. 

Using standard results such as the Strong Hasse Principle for quadratic forms over 
global fields and the Harrison criterion for Wit t equivalence of fields one shows that 
HSE implies Wit t equivalence of global fields. Thus HSE is a set of local conditions 
for Wit t equivalence of global fields. Actually, the two equivalences coincide, but 
the proof of the converse is not so straightforward (see [13] for a proof). 

Let (t, T) be a HSE between number fields K and L. It is said to be tame at 
the finite prime p C H/c if 

ordpa = ordrp ta mod 2 

for all a G K/K2. Otherwise the equivalence is said to be wild at p. The set of all 
wild primes of an equivalence (t,T) is denoted Wild( i ,T) . 
If (t,T) is tame at every finite prime p G QK, it is said to be a tame HSE. The 
tameness of a HSE amounts to the fact that , for every finite p, if a G K is a unit 
at p, the square class ta G L/L2 contains an element b G L which is a unit at Tp. 

It turns out tha t tame HSE is far more restrictive than the ordinary HSE. 
A. Czogala [2] classified quadratic number fields up to tame HSE. He proved tha t 
there are infinitely many tame equivalence classes in contrast to the 7 ordinary HSE 
classes. An interesting property of tame HSE is the preservation of 2-ranks of class 
groups. In [1] we have the following result. 

If K and L are tamely Hilbert-symbol equivalent, then 

rk2 C(K) = rk2 C(L) and rk2 C+(K) = rk2 C+(L). 
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Thus tamely equivaient number fields háve class groups of the samé 2-rank and also 
narrow class groups of the samé 2-rank. As an example consider the quadratic fields 
K = Q(\/2) and L = Q(\/3 ). They are known to be Hilbert-symbol equivaient but 
they are not tamely equivaient. Although each has class number 1, the narrow class 
number of K is 1 while the narrow class number of L is 2. Thus, the 2-ranks of the 
narrow class groups are not equal, so every Hilbert-symbol equivalence between K 
and L must háve at least one wild prime. 

The main result of [1] gives a lower bound for the number of wild primes in a HSE 
in terms of the 2-ranks of class groups, A speciál čase reads as follows. Let (t, T) 
be a Hilbert-symbol equivalence between number fields K and L with finite wild 
set Wi ld( í ,T) . Further, let 

d(K,L) = max{\rk2 C(K) - r k 2 C ( L ) | , \rk2C
+(K) - r k 2 C + ( L ) | } -

Then 
d{K,L) < # W i l d ( í , T ) . 

Thus, in particular, when the equivalence is tame the set Wild(ť,T) is empty, so 
t h a t d(K, L) = 0 and so the 2-ranks coincide. The number d(K, L) is thus a lower 
bound on the size of the wild set for any Hilbert-symbol equivalence between K 
and L. This raises the 

Problém 8. Does d(K, L) equal the minimal number of wild primes that can occur 
in a Hilbert-symbol equivalence between K and L ? 

5. Dedekind rings 
We begin with the Knebusch-Milnor sequence for Witt groups of a Dedekind domain 
O and its field of fractions K. This contains condensed information on quadratic 
forms over O and K and on the arithmetic of the ring O. We gather here known 
examples of computation of the cokernel of the total residue homomorphism and 
ask some natural questions about the cokernel of the total residue homomorphism 
for Dedekind rings. 

Let K be the field of fractions of a Dedekind ring O. In 1978 Knebusch proved 
that the natural homomorphism of Witt rings 

W(O) -^ W(K) 

is injective. Milnor extended the result in the following way. 
We will refer to the maximal ideals p C O as primes of K. Then, with p 

running through the primes of K we háve the following exact sequence for the 
additive Witt groups 

(5.1) 0 -> W{G) -U W(K) A ]J W{0/p) 
p 

where d is the total residue homomorphism. 
We recall now the definition of d. For each prime p of K we consider the second 

residue class homomorphism 

dp:W(K)—>W(0/p) 
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as defined in [9, pp. 85-86, 91]. This can be defined only after fixing a prime 
element n in K for the p-adic valuation on K. Then every element a G W(K) can 
be written as 

a = (o i , . . . ,Ojk ,6i7r , . . . ,6 m 7r) , 

where a;, bj are units in the p-adic valuation ring in K. Then we set 

dp(a) : = ( & i , . . . , 6 m ) £ W(K), 

where b is the canonical image of the p - a d i c unit b in the residue class field K of the 
p-adic valuation on K. Since K can be identified with O/p this construction yields 
for each maximal ideal p of O the group homomorphism dp : W(K) —> W(0/p). 
For any fixed a € W(K) we have dp(a) = 0 for almost all primes p. Hence we can 
aggregate these residue homomorphisms into one total residue homomorphism 

d:W(K)—>]IW(0/p), d(a) = (dp(a)). 
p 

The sequence (5.1) is said to be the Knebusch-Milnor exact sequence. We direct 
the reader to [9, Ch. IV] for the background and proofs. 

The sequence (5.1) can be extended to the right in some important special cases. 
When O = k[X] is the ring of polynomials in one indeterminate over a field k and 
K = k(X) is the field of rational functions over k, the cokernel is known to be the 
zero group (Milnor's theorem, see [15, p. 211]). 
When O is the ring of integers of a number field K and C = C(K) is the ideal 
class group, Milnor proves that with a suitable choice of the homomorphism A the 
sequence 

(5.2) 0 -> W(O) ---> W(K) ---+ J ] W(0/p) - A C/C2 -> 0 
p 

is exact. In other words, the cokernel of the total residue homomorphism d is the 
finite elementary Abelian 2 - g r o u p C/C2. This result is stated in [9, pp. 93-94], 
see also [15, p. 227]. 

Milnor and Husemoller [9, p. 94] give another example of computation of the 
cokernel of d in the case when O is the ring of polynomial functions on the circle: 

(5.3) O = R[X, Y]/(X2 + Y2 - 1). 

They sketch a proof that 

coker<9 = Z 

so that this time the cokernel turns out to be the infinite cyclic group. 
Observe that the field of fractions K of the ring O in (5.3) is isomorphic to the 

rational function field R(X). Roughly speaking, the circle is a rational curve, hence 
its function field is the rational function field. An elementary and direct argument 
is as follows. We have 

K = R(x,y) where x = X + / , y = Y + 1, I = (X2 + Y2 - 1). 

Here the generators satisfy the relation x2 + y2 = 1. Write t := --*--;. Then t € K, 

hence U(t) C K. On the other hand 

l - . r 2 = < , 2 = *2( l + .r)2, 
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hence it follows tha t x = ™fy and y = - ^ - belong to R(t). This proves that 
K = R(t) is isomorphic to the rational function field R(X). 

Thus both O and R[X] have R(X) as the field of fractions but the cokernels 
of the total residue homomorphisms defined on R(X) are Z and 0, respectively. 
Observe tha t the kernels of the total residue homomorphisms also differ for O and 
R[X). In the first case we can identify the kernel (which is the additive group of 
the ring WO) as isomorphic to Z ® 2,2. This follows from the computation of the 
Wit t group of conies in [12, Theorem 6.1). In the second case the kernel of the total 
residue homomorphism is the additive group WJR[X] = WR = Z (see [15, p. 211]). 

Yet another example of computation of the cokernel of the total residue ho
momorphism comes from Pfister [14] who studies the Milnor sequence in the case 
when O = k[X, y/aX2 + b] is a quadratic extension of the polynomial ring k[X] 
such that for K = k(X, \JaX2 + b), the field of fractions, K/k is a function field 
of genus 0 but is not a rational function field. This assumption is equivalent to the 
condition that the 2-fold Pfister form (1, - a , —b,ab) be anisotropic over k. Pfister 
[14, Theorem 5] proves that in that case 

cokero S ann( l , —a, —b,ab)f ann( l , —a) =: A 

where the annihilators are taken in the Witt ring W(k). Using this result one 
can construct a Dedekind domain O with the cokernel of do containing torsion 
elements of any given 2-power order. Indeed if we choose a, b € k so tha t not only 
(1, —a, —b, ab) but also tp := (1, —a, b, —ab) is anisotropic, then the coset 

t/> = (1,6) + a n n ( l , - a ) € A 

is a nonzero element of the cokernel. Moreover 

2niJj = 0eA <=> 2 > = 0 6 W(k). 

Thus we need an example of a field k with the property that there is a 2-fold Pfister 
form if over k having exactly the order 2 n in the Wit t group W(k). One possible 
choice is to consider 

k = R(h,t2,...,t2n), n>2, 

the rational function field in 2 n > 4 variables over E, and to take 

a = t\ + ••• + t\n, b = tY. 

Then the forms (1, — a, ±b, +ab) are anisotropic over k. This follows from the ar
gument below showing that 2 n _ 1 (1, -a, ±b, +ab) ^ 0 in W(k). 

First observe tha t 2nip = 0 in W(k), since 2 n ( l , -a) = 0. On the other hand, 
suppose tha t 2n-1<,o = 0. Then -b is represented by 2 n - 1 ( l , ~ a ) over k. Set 
F = R(t2,...,t2n) so that k = F(h). By Cassels-Pfister theorem ([8, p. 256]), 
—6 = —1\ is represented by the form already over the polynomial ring F[t\]. Hence 
there are polynomials Ui,Vi € F[ti] satisfying 

2 n - l 2 „ - l 

-*- = Yl U? ~ a S Vi' 
t = l i - 1 

Clearly, not all Ui, V{ can be divisible by t\, hence substituting ti = 0 in the identity 
we get a representation of a as the quotient of two sums of 2 n _ 1 squares over the 
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field F. Since sums of 2" "2 squares in a field form a subgroup of the multiplicative 
group of the field, it follows that a itself is a sum of 1n~~l squares in F. Since 
2?i-i < 2 n - l , this contradicts a theorem of Cassels (see [8, Cor. 2.4, p. 262]). 
Hence tp has exactly the order 2 n in the group W(k). 

It would be too demanding to ask for the description of the cokernels of the 
total residue homomorphisms do for all Dedekind rings O. Instead we concentrate 
on possible cokernels: 

Problem 9. Characterize the class of Ahelian groups which occur as cokernels of 
total residue homomorphisms do for all Dedekind rings O. 

We end the list of open problems with a general question about Wit t equiv
alence of Dedekind rings. Very little is known about the structure of Wit t rings 
of Dedekind domains. In case of rings of 5-integers in global fields some sufficient 
conditions for the isomorphism of Witt rings are proved in [3] and as a result ex
amples are given of Witt equivalent Dedekind rings in number fields of non-equal 
degrees. An explicit computation of Witt groups of some Dedekind domains can 
be found in [12] where the Wit t groups of rings of polynomial functions on conies 
are determined. In the lack of any substantial hints how the general theory could 
look like we state flatly 

Problem 10 . Classify Dedekind rings up to isomorphism of their Witt rings. 

References 
[1] P. E. C O N N E R , R. P E R L I S , AND K. SZYMICZEK, Wild sets and 2-ranks of class groups. Acta 

Arith. 79 (1997), 83-91. 
[2] A. CZOGALA, On reciprocity equivalence of quadratic number fields. Acta Arith. 58 (1991), 

27-46. 
[3] A. CZOGALA, Wit t rings of Hasse domains of global fields. J. Algebra 244 (2001), 604-630. 
[4] E. H E C K E , Vorlesungen iiber die Theorie der algebraischen Zahlen. Akademische Verlagsge-

sellschaft, Leipzig 1923. 
[5] S. J A K U B E C , F. M A R K O , AND K. SZYMICZEK, Parity of class numbers and Wit t equivalence 

of quartic fields. Math. Comput. 64 (1995), 1711-1715. Corrigendum, ibid. 66 (1997), 927. 
[6] K. KOZIOL, On a decomposition of the Wit t group into direct sum of cyclic groups. Ann. 

Math. Siles. 6 (1992), 7-8. 
[7] R. KUCERA AND K. SZYMICZEK, Wit t equivalence of cyclotomic fields. Math. Siovaca 42 

(1992), 663-676. 
[8] T. Y. L A M , The algebraic theory of quadratic forms. Second printing. Benjamin, Reading, 

Mass. 1980. 
[9] J. MILNOR, D. HUSEMOLLER, Symmetric Bilinear Forms. Springer Verlag, Berlin - Heidelberg 

- New York 1973. 
[10] S. N A K A N O , On ideal class groups of algebraic number fields. J. Reine Angew. Math. 3 5 8 

(1985), 61-75. 
[11] W. NARKIEWICZ, Elementary and Analytic Theory of Algebraic Numbers. Second ed. P W N 

and Springer-Verlag, Warszawa and Berlin Heidelberg New York 1990. 
[12] R. PARIMALA, Wit t groups of conies, elliptic, and hyperelliptic curves. J. Number Theory 28 

(1988), 69-93. 
[13] R. P E R L I S , K. SZYMICZEK, P . E. CONNER, AND R. LITHERLAND, Matching Wit ts with global 

fields. Contemp. Math. 155 (1994), 365-387. 
[14] A. P F I S T E R , Quadrat ic lattices in function fields of genus 0. Proc. London Math. Soc. (3)66 

(1993), 257-278. 



Ten problems on quadratic forms 1 4 3 

[15] W. SCHARLAU, Quadratic and Hermitian Forms. Springer Verlag, BerlinHeidelberg-New York-
Tokyo, 1985. 

[16] K. SZYMICZEK, Quadrat ic forms over fields. Dissert. Math. 52 (1977), 1-63. 
[17] K. SZYMICZEK, Wi t t equivalence of global fields. Commun. Algebra 19(4) (1991), 1125-1149. 
[18] K. SZYMICZEK, 2-ranks of class groups of Wi t t equivalent number fields. Ann. Math. Siles. 

12 (1998), 53-64. 
[19] K. SZYMICZEK, p-ranks of class groups of Wi t t equivalent number fields. J. Number Theory 

78 (1999), 99-106. 
[20] K. SZYMICZEK, Conner 's level condition. In: Algebraic Number Theory and Diophantine 

Analysis, Eds. Franz Halter-Koch, Robert F . Tichy. Walter de Gruyter , Berlin - New York 
2000, 445-452. 

INSTYTUT MATEMATYKI , UNIWERSYTET SLASKI, KATOWICE, POLAND 

E-mail address: szyai iczekl .ux2.niath.us .edu.pl 


		webmaster@dml.cz
	2013-10-22T11:20:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




