Leo Zippin On a problem of Čech

Časopis pro pěstování matematiky a fysiky, Vol. 65 (1936), No. 2, 49--52

Persistent URL: http://dml.cz/dmlcz/120838

Terms of use:

 $\ensuremath{\mathbb{C}}$ Union of Czech Mathematicians and Physicists, 1936

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY A FYSIKY

ČÁST MATEMATICKÁ

On a Problem of Čech.

Leo Zippin, Princeton.

(Received Novembre 4, 1935.)

Prof. Čech has introduced the following definition of local connectedness:

Def. A topologic space is said to be locally connected provided every finite covering by open sets contains a finite covering by connected sets.

He has proposed to us the question whether such a space is necessarily bicompact. We shall show, ultimately by a counterexample, that the answer to the question is in the negative. We shall also give a slight discussion of this quite interesting idea. We begin with the following simple

Theorem: For a regular topologic space S (in the sense of Hausdorff), local connectedness in the sense of Čech (above) implies local connectedness in the usual sense. That is, given any point x of our space and any neighborhood $U_x \supset x$, there exists an open connected set V_x , $x \in V_x \in U_x$.

Proof. Let U_x be any neighborhood of the point x and W any open set containing x such that $\overline{W} \in U_x$, where \overline{W} denotes the closure of W. Such a set exists, by the *regularity* of space. Now the two sets, $O_1 = U_x$ and $O_2 = S - \overline{W}$ form a finite covering by open sets of the space S. That is trivial. But, by our hypothesis, there must exist a finite set M_1, M_2, \ldots, M_n of connected sets such that each of them belongs to O_1 or to O_2 and such that every point of space belongs to at least one of them.

Let j be any integer, $1 \leq j \leq n$, such that $\overline{M}_j \supset x$. Since W is open and contains x, it is clear that W. M_j is not vacuous. Therefore M_j cannot belong to $O_2 = S - \overline{W}$, and we have the inclusion $M_j \subset O_1 = U_x$. Let $M = \sum_j M_j$ for all values of j such that $\overline{M}_j \supset x$. It is clear that M is connected, that it contains x (since at

Časopis pro pěstování matematiky a fysiky. 4

49

least one M_j must contain x), and is contained in U_x . Further, if $N = \sum \overline{M}_k$ for all values k such that $M_k \supset x$, then S - N is open,

contains x, and belongs to M. This means that x is an inner point of M. But now if we denote by M^* the component (i. e. the maximal connected subset) of U_x which contains x, the considerations above show that *every* point of this set is an inner point. Then we may take $V_x = M^*$ and our theorem is established.

Theorem: If a regular topologic space S is locally connected in the sense of $\check{C}ech$, then it is compact.*)

Proof: Suppose there exists, in the space S, an infinite sequence x_1, x_2, \ldots , of points such that the set $X = \sum x_n$ has no limit point. Then X is closed, and S - X is open. Since, in particular, no point x_n is a *limit point* of X it follows that $X - x_n$ is closed, and therefore by the *regularity* of space there exists, for every *n*, a neighborhood $U_n \supset x_n$ such that $U_n \, (X - x_n) = 0$. Let us write $V_1 = U_1$. There exists in U_2 a neighborhood V_2 of x_2 such that $V_1 \cdot V_2 = 0$, otherwise x_2 would be a limit point of U_1 which it is not, by construction. Similarly, if $V_1, V_2, \ldots, V_{n-1}$ have been defined, let V_n be a neighborhood of $x_n, x_n \in V_n \in U_n$, such that the intersection of V_n with $\sum_{i=1}^{n-1} \overline{U}_i$ is vacuous. It is clear that such a V_n exists because x_n is not a point of \overline{U}_i , for any $i \neq n$, and therefore not a point of any finite sum (necessarily closed) of these sets. At last, we take $O_1 = \sum_{1}^{\infty} V_n$, and take $O_2 = S - X$. This is a finite covering by open sets. Since V_i . $V_n = 0$, if i is fixed and $n \neq i$, it follows that a connected subset of O_1 containing x_i cannot contain any other point x_n . But this is true for every *i*, so that no connected subset of O_1 can contain as many as two points of X. No subset

of O_2 contains any point of X. It is now trivial that O_1 and O_2 contain no finite covering by connected sets. This contradiction establishes the compactness.

We come now to the most interesting, perhaps, of these observations.

Theorem: If a compact topologic space S^* (not necessarily regular) is locally connected in the usual sense then it is locally connected in the Čech sense.

Proof. Let U_1, U_2, \ldots, U_n be any finite covering of S^* by

(*) This result was known to Prof. Čech.

open sets. For each point x and each U_i , let $C^i(x)$ denote the component of U_i containing x. Of the components $C^1(x)$, $x \in S^*$, let us retain those only which are not covered by $\sum_{i} U_i$. Suppose that there are infinitely many distinct components of this sort and let C_{1}^{1} , $C^{1}_{2}, \ldots, C^{1}_{n}, \ldots$, denote some such infinite sequence. Then each C_n^1 contains at least one point x_n such that x_n belongs to no U_i , $i \neq 1$. The set $X = \sum x_n$ has at least one limit point x, by the compactness of space. Now $x \subseteq U_i$, $i \neq 1$, for otherwise at least one $x_n \in U_i$ because these sets are open. Therefore $x \in U_1$. But $C^{1}(x)$ is open, from the local connectedness of space. Therefore at least two distinct points x_i and x_j belong to $C^1(x)$. Then $C^1(x_i)$ and $C^{1}(x_{i})$ cannot be distinct. The contradiction shows that there exists a finite set of components of U_1 , call them K_1, K_2, \ldots, K_m , such that together with $\hat{U}_2, U_3, \ldots, U_n$ they form a finite covering by open sets of the space S^* . But now if we consider the components of U_2 we see, by the very argument above, that there must exist a finite set of these, call them $K_{m+1}, \ldots, K_{m'}$, such that:

$$K_1, K_2, \ldots, K_m, K_{m+1}, \ldots, K_{m'}, U_3, \ldots, U_n$$

is a finite covering of the space. It is clear that we can now replace U_3 by a finite set of components, enlarging the number of connected open sets, perhaps, but *certainly* diminishing the number that are not connected. In a finite number of steps we obtain a finite covering, $K_1, \ldots, K_{m'}, \ldots, K_N$, by open *connected* sets such that each K_i by its construction belongs to some U_i . This completes the proof.

We see now that any topologic space which is compact and locally connected, in the usual sense, but not bicompact furnishes a negative solution to the question proposed by Čech. As the simplest of such spaces, in a sense, we may recall the space S which consists of a set of points in (1 - 1) correspondance with all ordinal numbers of the first and second class such that between any two consecutive members of this class there is interpolated a "linear" segment. That is, each point of S corresponds uniquely to a coordinate (τ, t) where τ is a number of the first or second ordinal class and $0 \leq t < 1$. The points are *linearly* ordered by the convention that (τ, t) precedes (τ', t') if $\tau < \tau'$ or if $\tau = \tau'$ and t < t'. A generic open set is the set of points between two distinct points, not including these.

The Institute for Advanced Study, Princeton, New Jersey.

51

4*

O jednom Čechově problému.

(Obsah předešlého článku.)

Čech zavedl tuto definici lokální souvislosti: Topologický prostor je lokálně souvislý, když každé pokrytí prostoru konečným počtem otevřených množin obsahuje pokrytí prostoru konečným počtem souvislých množin.

V tomto článku zodpovím otázku, vyslovenou Čechem, zda každý takový prostor je bikompaktní; odpověď je negativní. Při tom dokáži též tyto věty:

I. Pro regulární topologický prostor Čechova lokální souvislost implikuje lokální souvislost v obvyklém smyslu. II. Je-li regulární topologický prostor lokálně souvislý v Čechově smyslu, je kompaktní. III. Je-li kompaktní topologický prostor lokálně souvislý v obvyklém smyslu, je také lokálně souvislý v Čechově smyslu.