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Časopis pro pěstování matematiky a fysiky, roč. 75 (1950) 

A CONTRIBUTION TO EMBRACING THE BASIC CONCEP
TIONS OF THE INTEGRAL GEOMETRY W I T H I N THE SCOPE 

OF IDEAS OF LIE'S GROUP THEORY. 

J O S E P H R E Z E K . * ) 

(Received J a n u a r y 25, 1949.) 

Introduction: Since the publication of F. KLEIN'S SO called Erlangen 
Program in 1872 the conceptions of the group theory have proved extra
ordinarily useful in many branches of geometry. On the one hand, KLEIN 
recognized their value for a suitable classification of those partial bran
ches of geometry that were already developed at that time; on the other 
hand, these new conceptions gave many suggestions for extensive gene
ralizations, unthinkable without the basic ideas of group theory. Instead 
of being satisfied with the groups of classical geometry, KLEIN demanded, 
one should, starting from a highly arbitrary transformation group, de
velop for it a '"geometry" of its representative space, L e., from the 
algebraic-analytical standpoint, a "theory of invariants". There appea
red, however, an essential difficulty, while this development was being 
worked out. Between the transformation groups of classical geometry 
and a general LIE transformation group there is an essential difference: 
The underlying domain of a classical group is a total space, i.,e., a certain 
topological manifold, considered globally; the underlying domain of 
a general LIE transformation group is, on the* contrary, a neighborhood 
in a space (e. g. EUCLIDEAN), generally not further defined in detail. While 
building up the geometry of transformation groups, G. PICK took these 
circumstances in to consideration, restricting it, according to the sug
gestions of the Erlangen Program, above all to a "local geometry", espe
cially to the differential geometry. I t is, on the whole, without importance 
that we are able to "continue analytically" a transformation group in 
some cases to such a degree that its underlying domain becomes eventual
ly the whole of a manifold. 

*) This paper is an extract of the author 's 1938 doctor thesis. The author 
perished on February 12th, 1945 on one of the terrible death marches, organised 
b y the Germans, when they were compelled to evacuate some concentraeion camps. 
I t was on the march from Falkenberg to Mauthausen. The thesis had been 
written under direction of prof. BEXWALD, also murdered by the Nazis. 
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THe present paper owes its origin to a stimulus similar to that giving 
rise to PICK'S important papers (since 1906). If we consider, with KLEIN, 
the differential geometry as a "theory of invariants" for a certain trans
formation group, then we may regard accordingly the "integral geo
metry", inspired by CROFTON and H. POINCARE and developed in the last 
years by W. BLASCHKE and others, as a "theory of integral invariants" of 
a transformation group. The nature of the impulses that gave rise to 
integral geometry restricted the development, rather naturally, to the 
simplest geometrical groups, at least for the beginning, avoiding thereby 
the necessity of using the procedures of LIE'S theory. (Cf r. to BLASCHKE 111, 
|2|,*) for the full group of motions in a plane or in a three-dimensional 
space and to BERWALD | l | and BLASCHKE |3| for translation groups.) The 
present paper, however, intends a preliminar treatment of the develop
ment of an integral geometry, taking as a basis a general LIE transfor
mation group. Even so simple an example as the affine group of a straight 
line shows to what extent one may be able to achieve results, which are 

* geometrically not without interest. 
There are above all two questions to be dealt with: 1. The derivation 

of integral invariants of the highest dimension for any LIE transformation 
group; we shall give only the results and refrain from proofs, which are 
founded on well known principles. 2. At what a set of geometrical forms 
is it possible to speak, with regard to a given transformation group, of 
a density that is an integral invariant of the highest dimension? 

/ The first question has been treated in the literature about-integral 
invariants proper, for instance in CARTAN'S book |1|. This question was 
put in the same way,, and answered, in a paper of N. TCHEBOTAREY |1| . 
The present paper stresses rather the precise treatment of some details. 

, Special groups are treated by A. MILLER 11 
.-' nation of parameter groups see E. CARTAS 

T It does not seem that the second question has been asked before in 
the present'form. It is bound to lead to a confrontation of two kinds of 
geometrical objects (one kind of them can always be considered as points), 

; •; which can be conceived as a generalization of the duality principle of the 
* projective geometry. 

I. The density function of a transformation.group: — Let 

: V W " • * » « i & . w J r (e = l>2,...,r), '<!)'• 
A\ fee t&e symbols of the infinitesimal transformations of an r-parametef; 
:;'Vvlki transformation group, which operates in an open domain On oi an 
;.V j^Miimensional EUCLIDEAN space Rn and is determined by the finite, -
^V-jeq^ioW y. ; ••; / - :. • / ' ' " - " ' ~ ' ; :" ' ' 

*'*'9<&% tJ&i*) =* A(*u X%K< • •***; %> u%> •«•> -*r) ( * = 1,2 , . . . ,n) . (2)^ 
*£}.>*'" *j *-$-« bracketed ftuiiafttlrs refer td tMftibUography at the end of the paper. 

t^'Cg- :- ' . •-'*. -r V*" " - .'• , ' ; * _ ? 
78? k~% ' -J • > ; * • - * 7 -• • . * ' • ' • • ' • > 

. As to the density determi-
21. 
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The points of this space are given by their coordinates in a coordinate, 
system Sn. Besides, let B denote an n-dimensional closed domain, lying 
totally in the operational domain Gn of the group and therefore also in 
the domain of definition of the functions 

£•« = frC(ж) = lrвfci, •••,*») (r = 1,..., м; g = 1,..., r), (3) 

the boundary of B being a closed (n — 1)-dimensional hypersurface. In 
this closed domain let the function 

F = F(x) = F(x1,...,xn) (4) 

be continuous and continuously differentiable. Let us now consider the 
integral 

// • • • fB

F^x^ • • •> xn)[dx± dx2... dxn]. (5) 

If we apply a transformation of the group (2) to the coordinate system Sn, 
the*integral (5) is transformed into the following function of the para
meters ult u2,..., uf\ 

JB(U) = / / . . . fB

F(yi> • • •> yn)[dyx dy2... dyn] 

= / / - - - / Л - - . 5 Ž / n ) 
Ъyџ 

дx. 
[dx± dxt ... dxn]. (6) 

We call the integral (5) an integral invariant of the group (2), if the 
function JB(U) is independent of ux, u2,..., ur, whatever the choice of B 
within G. Under this condition, the integrated function F, the den
sity function of the integral invariant, must satisfy the functional equa
tions 

F(Уi Уn) дxү 

F(x1,...,xn). (7) 

In order tp determine the density function F of a transformation 
group (2) it is how sufficient to consider the functional equation (7) as 
applied to an infinitesimal transformation 

In such a case the Jacbbian 

| 3 ( ^ + ggg) 

yv = x9 + ' f,e, f„ = ^eQ$VQ, (8) 

дxt 

has the value 

дx. *+.(S)f i+l.t" f* 
(where E is the unit matrix), whence, together with 

Ѓ.'Л-'? ' : 

І Й > U ••:/••• 
ЧJГ- ъìк-\*r -'- ' • „ -
й ř Ч i й ^ ' ' - V ̂  -

*ř = Ä Ì = І Й г (Є = L2r...,r) 
. ' - . ' • ' . »-= 1 V,C* 

(10) 
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follows the system of partial differential equations for the determination 
of the density function F: 

XQF + XQF = 0 ( e = l , 2 , . . . , r ) . (11) 

The function XQ, which appears in these equations, will be called the 
divergence of the o-th infinitesimal transformation of the group (2). 

I t can easily be proved by direct computation that the divergences 
XQ satisfy the partial differential equations 

r 

XeXa — XaXe + 2 4 # T = 0 (e, ff = 1, 2, ..., r), (12) 
T = l 

if cQ<s denote the r3 structure constants of the group (2). Consequently 
the system of differential equations (11) is complete. 

I t does not involve any restriction, if we admit for the time being 
only such domains B, where the required function F(x) > 0. Introducing 
now, instead of F, the new unknown function 

G = lgF, (13) 

we receive, equivalently to (11), the inhomogeneous system of differential 
equations 

XQ<* + XQ = ^. (14) 

There follows immediately: If for a group (2) there are two different density 
functions F\,F2, the difference of the corresponding two functions Gx = 
= lgFi, G2 = lgF2 i

s an invariant of the group. We conclude: 

Theorem I. For a simply transitive transformation group (2) there is 
always, but for a multiplicative constant, one~uniquely defined density 
function F. 

In order to decide about the existence of a density function for 
multiply transitive groups (2) we proceed as follows. Owing to the inde
pendence of the r parameters ult ...,ur the infinitesimal transformations 
of the group are certainly linearly independent, considering constant 
coefficients only. Nevertheless, there can be functions 

% = 9>*(3l>--->*n) (£ = 1,2, ...,/*), (15) 

not all of which Hre identically zero and for which 

<pxXx + (p2X2 -f- . . . + (prXr =-= 0 (16) 

holds true. Let us assume, however, the symbols Xt, X2,..., Xq to be 
linearly independent, considering variable coefficients as well. Let us 
assume, further, 

/ r^> ^ and g == ?i. (17) 

We shall now consider the matrix 



M(x) = 

Xl> f l l> S21> •••» ř n i 

X2> ^12>Ь22> •••» fл2 

Xn> Ьlnt S2я> •••» SîlП 
(18) 

[ Xf> ilf> %2*> •••» fnr 

Its rank 5 is evidently equal to n or n + 1, and we obtain 

Theorem 2. For a transitive transformation group (2) there is, but 
for a multiplicative constant, a uniquely defined density function, if, and 
only if, the rank of the matrix M(x) is n. 

2. Example: We consider the "doubled'' affine group of a straight 
line: 

yt = (1 + u±) xx +*u2, y2=(\+ u2) x2 + u2. , (19) 

We see at once that the group is simply transitive in every domain 02 of 
the xl9 z2-plane that does not cover the straight line xx = x2. The different 
tial equations (11) take the form 

The solution is, but for a constant factor, 

F = TT^r*- ( 2 1 ) 

[x1 — x2y 
A two-dimensional domain B is here defined by two intervals 

<fll> hl>> <a2> &2>> (al < &1 < a2 < h2)> (22) 

and the integral invariant of the group can be explicitly represented as 
a function of the endpoints of both intervals. We get 

cix 
= ^lgAi(a1,b1)a2,b2), (23) 

where Ar is the anharmonic ratio of the four points within the bracket. 
This result may be said to reduce the entire content of the "integral 
geometry of the group (19)" to known facts, i. e., the properties of the 
anharmonic ratio of four points on a straight line. This can be interpreted 
geometrically, considering the group (19) as the affine group of pairs of 
points on a straight line. 

3.A group theoretical principle of duality: Oneof the fundamental 
ideas of integral geometry consists in allotting a measure not only to 
sets of points but also to sets of other geometrical entities, i. e., straight 
lines, circles, conic sections, etc. "this idea originates in the theory of 
geometrical probabilities (see H. POINCABJS'S book | l | ) . The systematical 
determination of the content of straight line sets brought about, besides 
the transformation group of EUCLIDEAN motions, also other transforma
tion groups, which, in abstracto, are identical with a motion group in 
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point coordinates, differ, however, from it as transformation group. In 
v order to use for these relations a special term we shall speak about the 

different * 'realization forms9' of the motion group. We confront its original 
realization, in point coordinates, With its realization in straight line 
coordinates, provided the group is built in R^, i. e., in the EUCLIDEAN 
plane. This confrontation is based on the duality: point <—• straight line. 
We shall now try to transmit this idea to the treatment of any transfor
mation group. The most important question, which arises at once, is 
this: Assuming two realizations of a transformation group, which are, in the 

- underlying space of its first realization, the geometrical forms g that agree 
with a duality . .. 

point «—• g (24) 
on account of a confrontation of both realizations'* 

With regard to the simple example, mentioned above (motion group-
in point and straight line coordinates), see the paper of G. POLYA | If. We 
shall return to this matter a little later, changing somewhat the symbo-
iism. 

In order to discuss this whole process in general we start from two 
different realizations of the transformation group (2): 

Vv = f9(x\ u), \yv = fv(x; u) (v = 1, 2 , . . . , n). (25) 
For the sake of generality let us assume that these two isomorph trans
formation groups are not similar, though they have the same parameter 
groups and, therefore, the same structure constants cQa, their infinite
simal transformations, i. e,, the symbols 

*.--2&t--rv -f« = 2£-;-r. (e = i,2,...,n), (26) 
• „ ' v—1 CXV v = - l VXV 

s respectively, satisfy therefore LIE'S bracket-relations with the con-, 
stents c\a\ • " • . 

\ ' v ' ' . - ~ r r 

(XcXa) = 2cloXr, (XQXa) = ^cr
QaX1. (27). 

,. - • ' , T - l T = l 

We shall call & simultaneous invariant of two realizations (25) of 
the group (2) a function of 2n variables 

; g F* g(x> S) = g(xlf x2,..., xn, x19xt;..., xn), (28) 
, which is defined (continuous and differentiable), with regard to the first n 

variables xly*:..,xn in the underlying domain of the first realization (2), 
v / and, with regard to the Variables xx,..., xn, in the underlying domain of 
;^ tlie second realization; it shall, moreover, have the property that, under 

•* ^these conditions'and on account of the equations (25), the expression 
: > v . - ; ','.'.-•• : • 9{y\V). '•' _ \ . &$}[ 
^>, ^ | s ; independent of ul9 u2,..., ur. We agree to regard the 2n variable^ 
:;ks\$ii'*;>f&n>$i9 ...>#* $s mutually independent; we can therefore consadeV 
;! * . t h e equations (25), within a 2»-dimensional underlying space of th^ ; 

&£i" «- •> v . ' ..,"•" . • : : ••'•:•:.*;* 



variables xly x2 , . . . , xn; xlyxiy..., #nVas a representation of a transform
ation group, isomorphic to (2). The infinitesimal transformations of this 
group are given by the symbols 

YQ = XQ + Xe (e = l , 2 , . . . , r ) , (30) 
and a simultaneous invariant of both realizations (25) may be character
ized as an invariant of a 2?i-dimensional group, composed of both in the 
way just described, i. e., as the solution of the following system of linear, 
homogeneous partial differential equations 

XQg + Xeg = 0 (g = l , 2 , . . . , r ) . ' (31) 
I t follows: Since g is a simultaneous invariant of two realizations, the 

same holds true for (g + const) and for any arbitrary (differentiable) 
function of g. We shall, however, regard such simultaneous invariants, 
created from gy as not essentially differing from g. In order to get a survey 
of all possible simultaneous invariants of two group realizations, we have 
to integrate the differential equations (31). The totality of the solutions 
depends on the rank of the coefficient matrix of the system (31). Suppo
sing the linear independence of exactly q among the XQ and of exactly q . 
among the XQy the rank is equal to 

m<\q + q; (32) 
if 

m = q + q, then q + q<\r. (33) 
Two group realizations that can be composed into a transitive 

group in Rn are therefore of no importance for our consideration, for there 
is no not-constant simultaneous invariant. Of great interest are, however, 
cases that offer essentially one, and only one, simultaneous invariant: 
This condition is fulfilled, as we shall see in section 4, with the motion group 
in point and straight line coordinates, and this creates the unique position 
of the straight line, among the geometricalobjects, for measures of the 
integral geometry. - • 

Let g(x; x) denote a simultaneous invariant of both realizations 
(25). We assume this function not to be constant, but to become 0 for 
certain real values of the variables x9yxv. (In a given case, this can 
always be achieved by addition to g of a suitable constant.) Let us con
sider the equation 

g(x;x) = 0. , . . • " (34) 

In the space Rn of the points xy transformed by the group in the first 
realization (2), it represents an (n— 1)-dimensional hypersurface, the 
position of which depends on the parameters^, x2,..., xn; more precis
ely: To every x withhva certain range of Rny equation (34) coordinates 
a certain (n — l)-dimensional hypersurface, irom a certain w-parameter 
family of such forms. The second realization (25) of our group "describes" 
how the hypersuriaces of this n-parameter family change into one ano t 

tber, if we transform, according to the law of the first realization, the 

. • " • - • " • • 23 
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points of Bn, which contains the surfaces of the family. We call mutually 
dual, with regard to the transformation group (2), the points and those 
hypersurfaces (34) of Rn, in the same sense as we call dual, with regard to 
the group of all EUCLIDEAN motions, the points and straight lines of 
a plane. There are as many duality principles to every transformation 
group as there are different non-similar realizations. 

In the following section we are going to outline briefly the working 
of these statements in the case of motion groups in two and three dimen
sions. 

4. Application to motion groups: The plane motion group in 
point coordinates is given by 

yx = ux + xx cos<x — x2 sin<x, y2 = u2 + x1 sina: + x2 eos<x, (35) 
where the third group parameter (the angle of rotation) is denoted by oc. 
Let the equation of the straight line in the a^g-plane J)e 

g(xxx2; pxp2) = ^ + ^ _ l = o, (36) 
Pi P2 

where px, p2 are the straight line coordinates. (We write now plt p2 

instead of xx, x2 and, correspondingly, qx,q2 instead of yl9 y2.) If we 
transform, according to (35), the straight line equation (36), and reform 
it, in the new coordinates yl9 y2, again into the normal shape (36), we 
arrive easily at the following transformation law of the straight line 
coordinates 

, P1P2 + u*(Pi eos<x + 2>2sin<x) 
qx == ux H : • 

— p+ sm<x + p2 000c 
• , v (37)-

, PlP2 + Ul(— Pi S l l i * + -°2 C0S<*) 
q* = u« A ; 

px cos<x + p2 sum 
this is the motion group in the second form of realization, in straight line 
coordinates p\,p%> 

If We compute the infinitesimal transformations for either realiz
ation, (35) and (37), we can derive the most general simultaneous invari
ant, according to the scheme in the preceding section, from the following 
system of partial differential equations in four independent variables 
*v x*> Pi> Pr 

jfo , jfo , JP2 %l = Q 

dxx dpx px dp2 

^ + ^ + $ . = 0, (38) 
dx2 p% dpx dp2 

x ^ L _ x $L - E l %L + illg = 0 
2 9% * % 2 P% dPi Pi 3^2 

The :rank of the matrix of this system is 3, and there is, therefore, exactly 
4 _ 3 =3 1 simultaneous invariant. By explicit integration we can easily 

U 7' ' • * 



ascertain that g is nothing else but an arbitrary function of the left hand 
term of the straight line equation (36). It-follows 

Theorem 3. The straight lines are essentially the only plane curves 
that are dual to the points of the plane, with reference to the motion group in 
point and straight line coordinates. 

Incidentally, it is not difficult to compute the density function in 
straight line coordinates, as a solution of a system of differential equa
tions, formed according to (11); we obtain, uniquely but for a constant 
factor, , - • 

F{Pl9pt)=w^=r (39) 

We can proceed in the same way with the spatial motion group 
y = Ax + uf 

where A is an orthogonal matrix. If we write the general equation of a 
plane in the form 

n 

p'x—l= %pvxv —1 = 0, (41) 
r = l 

we derive the simple law of transformation 

S = — V "(4*)' 
* 1 + u'Ap K ' 

for the plane, respectively hyperplane, coordinates. This represents also 
the realization of the motion group in plane coordinates ply p2y..., pn. 
For n = 3, the result is again an easily integrable system of partial 
differential equations for the determination of the most general simul
taneous invariant of both realizations (40) and (42). The most general 
solution is an arbitrary function of the expression p'x— 1, and there 
follows again 

Theorem 4. The planes are essentially the only surfaces of a three-, 
dimensional space that are dual to the points of the space, with reference to 
the motion group in point and plane coordinates. 

I t is not difficult to derive a corresponding theorem for an arbitrary 
number n of dimensions, and to prove it. • - -

The density function of the motion group in plane coordinates 
Vl,V2,-:.,Vn is 

- F = WW = (Pi2 + P22 + .. . + Vn2f ( 4 3 > 

5. Final remarks: We shall not proceed in deriving the straight 
line density function in a three-dimensional space, because this would * 
involve some considerations of different kind, which would not easily fit 
into the development, stated hitherto. But the case is of great interest, 
because there evolves a "self-duality", which has not appeared up to 



now* A generalization for a widely arbitrary transformation group would 
involve a fundamental question, which would form the main part of the 
investigation: Which are the ^-dimensional forms in an n-dimensional 
space Rni (k < n), for which, with reference to a given transformation 
group (2), we can find a family of (n — k — 1 )-dimensional forms that are 
dual to them ? Evidently, this duality 

W-+9n-k-i (44) 
must, for a motion group, include the duality (straight line *—• straight 
line). Generally it will be found, however, that not every dimensional 
number h is admissible. I t depends on the choice of the transformation 
group (2), whether or not k admits an unambigous duality (44). 

A further problem may be challenged by the computation of the 
densities of g* and gn-*-i- according to the method of LIE'S theory 
(as we did in the case of & = 0), and by the study of the geometrical pro
perties of the integral invariants derived at. 
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Základní pojmy integrální geometrie z hlediska theorie 
7 / v " Lie-ových grup. ~ 

> *. ( (Obsah předešlého článku.) -

Autor vychází z Kleinova pojetí geometrie, takže problémy inte^ 
s grální geometrie převádí na studium integrálních invariantů vůči nějaké ; 
í grupě transformací. Až dosud byly základem těchto úvah jen nejjed-
^ : noduáší grupy (na příklad grupa translací)"; v této práci snaží se autor , 
<> připraviti základ k vybudování integrální geometrie na podkladě obec- v 
i* -JItitýeÉ Lie-ových grup transformací ^prostorech vícerozměrných. Zvláště k 

*pŠ porojnává různé druhy geometrických útvarů z hlediska integrálních T/ 
yi-^i^yariantů, což vede k jakési analogii principu duality v projektivní \ 
^:;;)g€Kmietrii* . ^ >-' \ " • - . . - ' • . ' / ' * - -\J. 
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