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All numbers in this note are real. Let » > 1 be an integer; let
R, be the n-dimensional space of all points X = [,, ..., z,]. We use
the standard notation: xx + By = [axx, + Byrs -y 6%n + PYa], 0 =
"= {0, ..., 0]; k points x1, ..., x* are called independent if the equa-
tion a,xl + ...+ axk=o0 1s satisfied only for o; = ... = oz = 0..
If MCR,, then aM denotes the set of all points xx, where xeM.
By I0(M) we denote the set of all points 4 (x — y) where x ¢ M,
y € M; obviously ID(a M) = «I0(M). By L(M ) and J(M) we deniote _
the inner Lebesgue or Jordan measure of M.1)
ith every set M C R, we shall associate, in four different
ways, a-sequence of n ,,successive minima‘‘:

(i) Let 4 (1 < i < ) be the lower bound of all numbers x>0
, such that the union UBM contains at least ¢ independent lattlce

0<B<a

pomts (i. e. points with integer co-ordinates).?)

1) By definition, L(M) is the upper bound of the Lebesgue measures of
all measurable subsets of M (or, what amounts to the same, of all cloeod
bounded subsets of M). ’

*). If there is no such &, we put A=+ w;an analogous conventlon holds"
in the following cases.




- (ii) Let u; (1 < i< n) be the lower bound of all numbers
. & > 0 such that aM contains at least ¢+ independent lattice points.
(iii) Let »; (1 < v < n) be the least number « = 0 such that
every set SM with § > « contains at least ¢ mdependent lattice
points.
(iv) Let @; (1 < ¢ < n) be the lower bound of all numbers
o« > 0 stich that the common part [} M contains at least i indepen-
=«
. dent lattice points. ’=
: We have obviously 4; < Aiyy, pi < figys ¥ < Vit @ < it 1,
0 < Ai < i £ vi < g £+ 0. If necessary, we write 4;(M) instead
of A ete.d)
" I proved the following theorem [1]:n>1,0 < J(HM) <+ o0,
then
, Mg ... dn J(M) g 2%—1 where A = A(O(M)). (1)
Knichal [2] improved this result by replacing J(M) by L(M)*) and
211 by 224, Finally, Rogers [4] succeeded in proving the follo-
' ng sharper theorem: If n > 1, 0 < L(M) <+ o, then- :

, iy oo i L) < 23671 where p; = y,(tD(M)) (2)
"He-also proved that (if 0 < L(M) <-4 ) .
Ve L(M))“7 (. (M))" < 2wt (3)

. These results suggest the questlon whether there exists a finite
upper bound for the product

- Vn L(M), where vy = v (DM )) - (4)
The answer is negatwe in fact, we shall prove the following

‘Theorem 1. T'o every mteger n > 1 and to every T > O there 13
- a set M C Ry, (which s the union of a finite number of parallelepipeds)
such that the product (4) is greater than T.5) .

More generally we shals prove -

. ‘Theorem 2. If T > 0 and if 1, y,'naremtegers 1<z<7<n

. then there i3 a set M C R, (which is the union of a fzmte number of

T parallelepopeda) such that ‘

i ) *) If M is a cube, then ev1dently 0< A (M) < + . If M, c M,, then
l‘(M,) < A(M,). Hence: if M is bounded, then A(M) > 0; if M has an inner

point, then A,(M) <+ . Analogous remarks apply to the u; ’s, v; ’s, m; 's.

'y Y It follows from 1) 3) that, if & theorem of this kind is true for closed

-~ bounded sets; it is' true also for arbltrary sets. :
- 8). From (8) we see that, if (4) is very large, the product (2)is very small

. Following ‘), the numbers lk, ¥4 7, in Theorems 1,.2,3, 4 are finite and po-

vsmve L ) ’ . . :



Mhy oo Deg¥idiny oo hyViking oo A L) > T, (5)
where A = M(WO(M)), v = n(IO(M)).

This generalization is perhaps not without interest, if we com-
pare it with the following theorem of Rogers [4]: If 0 < L(M) <+ o
then

. oo i Vilki+y - Hn L(ﬂ[) 2m—1 (6)

Further results have been obtained by iterating the operation
. Put WYM) = M, W?(M) = WW?-YM)) for p =1, 2, ... The
following facts are almost obvious:

(a) (M) is symmetrical about o, i. e. if x e (M), then
— Xe€ m(M A ’

(b) If M is symmetrical about o, then M C ID(M ) and so

K(M) 2 MIOM)), M) > () ete.

(c) It follows from (a) and (b) that A,(0?—1(M)) = h(wl”M )

ete. for p = 2, 3,

In [?], I proved the followmg theorem: If 0 < L(M ) <+ o0,
then there is an integer p, > 0 such that

L) | Ju@or(31)) < 2° m
i=1

for every integer p > ,.%)

This inequality suggests the question whether the number p,
may be chosen as function of » only, i. e. independently of M. The
answer is negative, and even more can be proved: If = > 1-and
p = 0 are arbitrary but fixed integers, there exists no finite upper
bound neither for the left side of (7), nor for the product

L(H) [ Tr00(). B C)

Still more generally we shall | prove the followmg

Theorem 3. Let T > 0; let n, 9,4, p be integers, 1 < i <7 < n,
p > 0. Then there is.a set M C.R, (wkzch 18 the union of a fzmte )
number of parallelepipeds) .such that ‘ _,

3112 .o ,_I'V,ZH.I ﬂ 11’))&]+1 cee ;bn L(.M) > T, ’ . (9)
o =4 0P(M), v = n(WPH)), 7 = m(OP(M)). . (10)
So much the more, the products in (7), (8) are greater than T'. '

§) If M is a convex body,- symmeﬁrical abouyt o, then W»(M) = M and

(7) reduces to a well known theorem of Minkowski. On the contrary, it has
been proved by Knichal [2] (and for n = 2 also by Rogers [3]) that the con- -
stant 22»—1in (1) cannot be replaced by 27, if n' > 1 )

f.;‘ ‘ ' ; on



It is obvious that Theorems 1, 2 follow from Theorem 3.
Theorem 2 is a countrepart to (6); but there is another theorem
-of a similar character, concerning the =; ’s

Theorem 4.7) Let i, n, p be integers, l<c<n,p>0 T >0.
- Then there is a set M C R, (which is the-union of a finite number of
. parallelepipeds) so that we have, using the notation (10), '

Al cen )»,_17!, it+1 e A” L(M) > T : (10"“)

Proof of Theorem 3 for n= 2. Here 1 =1, j = 2. Let
2 0 (p integer), T > 0 be given. We choose four numbers a, ¢, ¢,
as follows:

a integer, a > 10.27. T; 27f(al) = &;
1
10.27.a.(a)

Then we define M’ C R, as the set of all points [z, y] thh:
~ the following property: There is an integer m such that

WS le—ty—m|< g, Im| S N.

Obviously the set yID?(M’) (where y > 0) is defined i inan analogous
way by the conditions :

?
N

I<op< ; N integer, 2PN > 1. (11)

WISy, |z —ty — 27" my| < gy, Im| < 22N (12)
(m integer). We have L(M’) = 2¢(2N + 1). Put
Vi =n(OPM)), V' = LHWOPM")) (k= 1, 2). (13)
We shall prove _ -
| < v, > 2 14)
8,0'- 2pN(P'=v1 %—_\ 2”N¢, s Vg == 485 ( )
-this will give the required result ,
0 ’ 'a . . \
.. vlv2L(M)>W>T (15)

- In order to prove (14), we observe first: Corresponding to every
.06 > (2P Ng)—? there is a pair of mtegers m,  other than 0,0 and
' ”suuh that -
. - |z — 2*"ma{ < 2-?N-1 < P, [m| < 2¢N.

>a:x==0 would 1mply hl Z 279 < 1 (see (11)) and 80 z = m = 0,
“which is meossxble ence = % 0 and, by (12), [z, 0] € aID’(M'),'~
whence ¥, < (2*Ng)y.

‘Next let us observe that there is an « such that I

") This theorem is almost obv:ous, a8 will be seen from 1ts ptoof (here, -
-vﬂcmheequal to 1). -

N

.::_"12 S



1 1
80.27. Ng 10.2° . No

and such that there exists no pair- of mtegers m, x satlsfymg the
following conditions:

<a< (16)

20 1 2 |m|

S vy P S o wy
For the measure of the set of all numbers x > 0 to which there is
a pair of integers m, x satisfying (17) is at most8)
1 [y 2
I 4[|
40N L 40N |m| 10.2% Ny

lml
1 + -1 < 1
40N 5'40.2”.Nq) "80.27. Ng

0 < m| < 2N, | & —

(17)

1 .
(smce 10" 25 > 1). _

Let us suppose (per absurdum) that v, < (80 .27 . Np)—1. Let

x be an arbitrary number satisfying (16). Following the definition of

v’y there must be a lattice point [, y] € x 0?(M’) other than [0, 0].

Sinee (see (12)) |y| < 4« < (80.27 . Np)—1 < 1 (see (11)), we have

y = 0 and-so z = 0, and there is (see (12)) an integer m such that

[m} < 2PN, |z — 2-Pmx| < @o.

Since px < 1, we have m = 0 and 80

2z 2P@x < 1
T |=Tm] S 0N m|
2 m|
- 2—p
|| < 2 ]m]oc+4p<x<2 ]m]oc<40 . Ny

In other words, to every « of the interval (16) there are two integers
m, x satlsfymg (17). But this is a contradiction, and so -

¥y > (80 .27 qu)—x_

. Finally, let us suppose that »’ 2 < 2a, so that there“ muét be B
a lattxce point [z, y] € 2a W?(M’) with y + 0 and so (see (12)) -

Iyl<a |2—7. 7 — ty| < 209, ' (18) -

‘where q is an integer. Thus (a') ¥~ is an integer; multiplying (18) :
by (a!).y1.2? and comparmg with (11) we get (X being an in-
teger)

%) For, if « > 0, then (17) unphes: it is either « < (40N)—tor x £ 0.

13 .



X —20.al.t|]=|X — }| < 2ap.al. 20 < &,
which is a contradiction, and (14) is proved. '

Proof of Theorem 3 in the general case. Let 7 > 0 and
the integers p, ¢, §, % (p =2 0,1 <. 7 < j < =) be given. Let M’ C R,
be the same set as in the preceding proof. Using the notation (13),
we have 3%’y L(M') > T. Turther: If 0 < & < 2 and [z, y] 18
‘a lattice point of x YOP(M'), we have |y| < 3o <1 and so y = 0.

Hence Ay 2> 2 > 21’11\7 ="y (see (11), (14)). Following®), we have

)'1 > Oa ‘V 2 <+w
Now choose three numbers &, 7, { such that
O<ét<A<Vi<n<2< M, << i<+ (19)

and let M C R, be the set of all points [y, ..., z,] which satisfy the
" conditions

,{|xb|§—;—for 1< b<i, |z g-:]—for i<e<i,

2] g__l_for j<d < m ez M.

If & > 0, then « ID?(M) consists obvmusly of all points [z, ..., 24]
such that

bel é —, Ixcl é ?, de, é T, [xi;'xl] € chp(M’).

"Let [y, ..., 2,] be a lattice point contained in x1?(M). Then we
_ have (see (19)):

Fo<a<é thenzyy, =2, =...=ux,=0.
If 0< o<, then x4, = 2544 = =z, = 0.
If 0 <o <, then zj4, = aj3= ... = Zn = 0.
It follows that (using the notation (10))
'21= oo = Ay = 5, vi=vVy, dipy=...= Ly =1, v, =1,

j+1 == e = Ap =
'a,nd 80 (compare the deflmtxon of M) _
: Ay Vikisy oo Ay Vidiny o Ay LML) = 2"'_2”'1" 2 L(M') >T.
: Proof of Theorem 4. We may syppose that T is an integer,

T > 2041, Let M C R, be the set of all pomts x = [z, ..., ;] such
. that there i is an integer m so that .

lelé 2T for 7 <t, kal S—2Tf01‘ k>,

s — m < 5, | < T

W




Put M, = I0,(M), 4= L(M,), ;= ni{My) (j =1,...,n). Then
oM, is defined by the inequalities (if x > 0)

x| < 2T« (§ < 1), |ak] £ x(2T) (K > 3),
| IL — am 72—v| <|a IZT -1, |m| < 20T, (20)
m integer.

If 0 << (27)! and x e xM,, then |z;| < 1 for j +1¢ and
loi] < o« (7' + (2T7)%) < 1, and so 4, = (27)7*. Further, if 0 <
< o« < 2T and x e oM, then e <1 for k > ¢ and so A;4+, = 27.
Finally, let us suppose that n; < T'. Then there must be a lattice
point

Yy = [yl’ veey yn] € n ﬂMp
p=T
with  |yi| + [yi+a| + ... + [ya| > 0. Since yeTM, we have
yr = Ofork >zandsoy, +0.Puta =T ly;| = T. We must have
y eaM,. But |yi — 0| > % |yi| = «(2T), and for [m| > 1 we have

s — am . 279 = |yl . [£1 — T 28] = [ys] . 7. 221 =
= a. 277t > x(27)1,

Thus we obtain (see (20)) y non € «M, — contradiction, and so
i >T, 22> (2T)1 for j <4, A = 2T for k > 4. Calculating
L(M ), we obtain (10Pis), :

*

0 postupnyeh minimech libovolnyeh mnoZin.
(Obsah pfedeslého &lanku.)

_ Budiz M bodovd mnozZina v n-rozmérném prostoru; (M)
budiz mnoZina vSech bodit  (x — y), kde x, y lezi v M. Je-li M
konvexni téleso o stfedu v podatku, majici objem L(M), a jsou-li
Ay, ..., Ay postupna minima (ve smyslu Minkowského) mnoziny
ID(M ) (jez jest oviem v tomto specmlnim piipadé proste rovna M),
je podle Minkowského

My ... dy L(M) < 20, (21)

Pro obecné mnoziny M byla &isla 4; definovana dosud Styfmi
riznymi zpisoby (jez v.Minkowského piipadé splyvajf; viz [1}, [2],
[3], [4]). Pro dvé z téchto definici plati nerovnost obdobna k (21),
ale s vét&f konstantou vpravo. Autor ukazuje naopak, %e pro zbyva-
jici dvé definice neni leva strana v (21) omezend (Theorem 1).
Theorem 2 a 3 obsahuji dalsf zobecnéni tohoto Vysledku Dalf do-
pInék jest obsazen v Theoremu 4.
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