
Časopis pro pěstování matematiky a fysiky

Vojtěch Jarník
On the successive minima of arbitrary sets

Časopis pro pěstování matematiky a fysiky, Vol. 73 (1948), No. 1, 9--15

Persistent URL: http://dml.cz/dmlcz/123154

Terms of use:
© Union of Czech Mathematicians and Physicists, 1948

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/123154
http://project.dml.cz


Časopis pro pistovánl matematiky * fysiky, r*& 73 (1948) 

On the successive minima of arbitrary sets. 
Vojtech Jarnik, Praha. 
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References. 

[1] V. J a r n i k , Dv& poznamky ke geometrii Sisel; Vestnik Krai. C. Spol. 
Nauk 1941 (Czech, with a German summary). 

[2] V. J a r n i k and V. K n i c h a l , K hlavni vSt$ geometrie Sisel, Rozpravy 
I I . tf. Ces. Akademie 53 (1943), No. 43 (Czech; a French summary 
will appear in the Bulletin International). 

[8] C. A. R o g e r s , A note oh a theorem of Blichfeldt,Nederl. Akad. Wetensclu 
49, 930—935 = Indagationes Mathem. 8, 589—594 (1946). 

[4] C A. R o g e r s , The Successive Minima of Measurable Sets, submitted 
to the London Math. Soc. — I am very obliged to Mr. Rogers for 
having sent me a copy of his manuscript before its publication. 
All numbers in this note are real. Let n > 1 be an integer; let 

Rn be the w-dimensional space of all points x = [xx, ..., xn]. We use 
the standard notation: ocx + fly = [ocxx + fiyl9 ..., <xxn + fiyn]9 o == 

' = [0, ..., 0]; k points x1, ..., x* are called independent if the equa­
tion ai*1 -f- ... + a*** = o is satisfied only for ocx -=...== <%* =- 0*. 
If M C -Rn, then *M denotes the set of all points ax, where x € M. 
By V0(M) we denote the set of all points £ (x —- y) where x € M, 
y e M\ obviously V0(<xM) = jxV0(M). By L(M) and J(M) we denote 
the inner Lebesgue or Jordan measure of M.1) 

With every set M C Rn we shall associate, in four different 
ways, a sequence of n „successive minima": 

(i) Let Xi (1 <̂  i <L n) be the lower ̂ ound of all numbers & > 0 
such that the union U pM contains at least i independent lattice 

points (i. e. points with integer co-ordinates).2) 

*) By definition, L(M) is the upper bound of the Lebesgue measures of 
all measurable subsets of M (or, what amounts to the same, of all closed 
bounded subsets of M). 

*)• If there is no such a, we put Xi — -f- oo; an analogous convention hold* 
in the following cases. 



(ii) Let in (1 <i i <£ n) be the lower bound of all numbers 
xx > 0 such that <%Jf contains at least i independent lattice points. 

(iii) Let vi (1 <i i <[ w) be the least number a 2> 0 such that 
every set fiM with /8 > fx contains at least i independent lattice 
points. 

(iv) Let Tti (1 <I i <̂  n) be the lower bound of all numbers 
(x > 0 such that the common part fl 0.M contains at least i indepen-

, dent lattice points. 
We have obviously U <I Af+1, /^ <£ ^ j + 1 , ^ <1 vi+1, ^ <£ ^ i+1, 

0 <I Ai <I ^{ <i v< <̂  ^; ^ + oo. If necessary, we write 1{(M) instead 
of h etc.3) 

I proved the following theorem [1]: If n > 1, 0 < J(M) < -f oo, 
then 

AxAa... ln J(M) <L 22"-1, where h = ?a(W(M)). (1) 
Krrichal [2] improved this result by replacing J(M) by L(M)4) and 
2m-i by 22n~i Finally, Rogers [4] succeeded in proving the follo­
wing sharper theorem: If n > 1, 0 < L(M) < + o o , then 

•fh...'l*n L(M) 5i 2*(*»-i>, where ^ = fXi(VO(M)). (2) 
He also proved that (if 0 < L(M) < + oo) 

(^1...finL(M))^(v1...vnL(M))\^ 2>—i- (3) 
These results suggest the question whether there exists a finite 

upper bound for the product 
v1...vn L(M), where v{ = Vi(W(M)).. - (4) 

The answer is negative; in fact, we shall prove the following 
Theorem 1. To every integer n > 1 and to every T > 0 there is 

asetMc Rn (which is the union of a finite number of parallelepipeds) 
such that the product (4) is greater than T.5) • 

More generally we shals prove 
Theorem 2. If T > 0 and if i, j , n are integers, 1 <I i < j <1 n, 

then there is a set M C Rn (which is the union of a finite number of 
paralkkpipeds) such that 

:
::"~~ *) If M is a cube, then evidently 0 < l^M) < -f- oo. If Mx C Mt, then 

^(Mt) <I ^(MJ. Hence: if M is bounded, then K{(M) > 0; if M has an inner 
point* then ^(M) < . + oo. Analogous remarks apply to the ^ 's, v{ 's, ^ 's. 

4) It foUows from *)8) that, if a theorem of this kind is true for closed 
bounded sets, it is true also for arbitrary sets. 

*). From (3) we see that, if (4) is very large, the product (2) is very small. 
FoUpwing *), the numbers Â , vk, nk in Theorems 1, 2, 3, 4 are finite and pa-

.-»,6itiye. •' ^ . ' • ' . ' > ' 

& - : " " ^ - " ' " • " • . 



A ^ . . . Xi~! Vik-hi • • • A, -ity-V+i... A„ i( i lf) > T, (5) 

wAere h = Xk(W(M)), vk = v*(tt(Jf)). 

This generalization is perhaps not without interest, if we com­
pare it with the following theorem of Rogers [4]: If 0 < L(M) < + oo 
then 

flx ... ^ _ l W + 1 . . . Jiln L(M) £ 2*n-i. (6) 

Further results have been obtained by iterating the operation 
W. Put W°(M) •= M, W*>(M) = W(W^-1(M)) for p = 1, 2, . . . The 
following facts are almost obvious: 

(a) W(M) is symmetrical about o, i. e. if xc IP(J f ) , then 
-XeW(M). 

(b) If M is symmetrical about o, then M C W(M) and so 
k(M) :> Ai(H?(Jf)), MM) ^ w(H?(Jf)) etc. 

(c) I t foUows from (a) and (b) that ^(W^M)) I> h(W*(M)) 
etc. for p = 2, 3, . . . / 

In [2], I proved the following theorem: If 0 < L(M)<-\-oo, 
then there is an integer p0 > 0 such that 

L(M)f[7ii(W*(M)) ^ 2* (7) 
i = i 

for every integer p > pQ.*) 

This inequality suggests the question whether the number pQ 

may be chosen as function of n only, i. e. independently of M. The 
answer is negative, and even more can be proved: If n > 1 and 
p ^ 0 are arbitrary but fixed integers, there exists no finite upper 
bound, neither for the left side"of (7), nor for the product 

L(M)f[vi(m*(M)). .(8) 
i = i 

Still more generally we shall prove the following 
Theorem 3. Let T > 0; let n, i, j , p be integers, 1 <[ i < 7 <i n, 

p^lO. Then there is a set M CJRn {which is the union of a finite 
number of parallelepipeds) such that . , " 

^ . . . A^nAi+i'. . . lH.1vfb+1..:inL(M) >T, (9) 
where 

h=h(W»(M)), vk = vk(W*(M)), 7ik = 7tk(W*(M)). (10) 
So much the more, the products in (7), (8) are greater thanT. 

S) If M is a convex body, symmetrical about o, then ^S)P(M) = M and 
(7) reduces to a well known theorem of Minkowski. On the contrary, it has 
been proved by Knichal [2] (and for n -= 2 also by Bogers [8]) that the con­
stant 22ft—l in (1) cannot be replaced by 2», if n > 1. 



It is obvious that Theorems 1, 2 follow from Theorem 3. 
Theorem 2 is a countrepart to (6); but there is another theorem 

of a similar character, concerning the ni 's: 
Theorem 4.7) Let i, n, p be integers, 1 <1 i <£ n, p 2> 0, T > 0. 

Then there is a set M C -Rn (which is the-union of a finite number of 
parallelepipeds) so that we have, using the notation (10), 

Xx... Xi^mh^ ... Xn L(M) > T. (low) 

Proof of Theorem 3 for n = 2. Here i = 1, j = 2. Let 
y 2> 0 (p integer), T > 0 be given. We choose four numbers a, £, y, 
.N as follows: 

a integer, a > 10 . 2? . .T7; 2^(a!) = £; 

° < * < 10. 2*1 a. (a\Y N i n t e g e r ' 2 * ^ > L ( U > 

Then we define M' C -fyj as" the set of all points [x, y] with 
the following property: There is an integer m such that 

\y\ ^ i> \x — ty-m\^L (p, \m\ <: N. 

Obviously the set yV0p(M') (where y > 0) is defined in an analogous 
way by the conditions 

\y\ £ \y> I* - ty - 2r*my\ ^ W , |m| _ 2 ^ (12) 
(m integer). We have £(if') = 2<p(2N + 1). Put 

v\ = vk(W*(M')), A', = fc(tD»(Jf')) <* = 1, 2). (13) 
We shall prove 

1 ^ ^ J L , » ' i^ 2a; (14) 80.2*Ny ==ri==% 2*N<p, 
this will give the required result 

• ••> , \ r v'lV;L{M')>-J^-¥->T. (15) 

* In order'to prove (14), we observe first: Corresponding to every 
.<% >\{2PN<py-\ there is a pair of integers m, a; other than 0, 0 and 
such that 

\x — .2r*nux\ <̂  2-^N-1 < tpbc, \m\ <; 2*N. 
x =- 0 would imply |ttt| ̂  2*ty < 1 (see (11)) and so x =.= ra ==- 0, 
which is impossible. Hence a; =}= 0 and, by (12), [a?, 0] € <x Wp(3i,)> 
whence v\ <£ (^.Zf^)-1. 

Next let us observe that there is an oc such that 
,— »- - # 

*j This theorem is almost obvious, as will be seen from its proof (here, -
n can be equal to 1). 
- " " . • • • . " V ' - - ' 

1 * •• \ . ' 



< л < (16) 
8 0 . 2? . N<p " 40 . 2^ . N<p 

and such that there exists no pair- of integers m, x satisfying the 
following conditions: 

0 < \m\ £ 2W, 2*>x 

m 
< 1 

ŁONÌm ; 1*1 ̂  
2 |m| 

І0.2^. N<p' 
(17) 

For the measure of the set of all numbers <x > 0 to which there is 
a pair of integers m, x satisfying (17) is at most8) 

1 
40N 

1 

2PN 

y 
'4 \m\ 

^ _ 4 0 N |mf 40.22*\N<p 

1 
áON T 5 40 . 2^ . N<p 

< 
1 

80 . 2*> . N<p 

(since -
1 

> 1 ) . 10 2><p 

Let us suppose (per absurdum) that T>'_ < (80 . 2? . N<p)~*. Let 
a be an arbitrary number satisfying (16). Following the definition of 
v\ there must be a lattice point [x, y] € <x Wp(Mf) other than [0, 0]. 
Since (see (12)) \y\ <_ ±<x < (80 . 2*>. Ntp)-1 < 1 (see (11)), we have 
y =- 0 and so x + 0, and there is (see (12)) an integer m such that 

|m| <_ 2*N, \x — 2~-vm<x\ _g <p<x. 

Since <p<x < 1, we have m + 0 and so 

2*x 

m 

. 2*><p(x 

<-тт< 
—' m 

1 
40N \m\ 

\x\ <_ 2~P|m| oc + <poc<2 . 2-v\m\ oc < • 
2 \m\ 

±0.2**.N<p\ 

In other words, to every a of the interval (16) there are two integers 
m, x satisfying (17). But this is a contradiction, and so 

v\ _> (80 . 2* . Ny)-1. 

. Finally, let us suppose that /_ < 2a, so that there must be 
a lattice point [x, y] c 2a V0v(M') with y + 0 and so (see (12)) 

\y\£a, \2-*.q~ty\^2<up, ' (18) 

where q is an integer. Thus (a\) . y-1 is an integer; multiplying (18) 
by (a\). y1 • %* a n d comparing with (11) we get (X being an in­
teger) 

8) For, if <x > 0, then (17) implies: it is either <x <I (40N)-i or x + 0. 
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: \X- 2*.a\.t\= |JC — i | <S 2acp.a\.2P <$, 
which is a contradiction, and (14) is proved. 

Proof of Theorem 3 in the general case. Let T > 0 and 
the integers p, i, j , n (p >̂ 0, 1 <.. i < j <£ n) be given. Let M' C -#a 
be the same set as in the preceding proof. Using the notation (13), 
we have v\v\L(M') > T. Further: If 0 < a < 2 and [x, y] is 
a lattice point of ocWp(M'), we have \y\ ;_ \<x < 1 and so y = 0. 

Hence X\ 2> 2 > —-^- ;> i/-. (see (11), (14)). Following3), we have 

A'x> 0, * ' 2 < + oo. 
Now choose three numbers £, rj, £ such that 

0 <£ < X\<*v\<ij < 2<L X2<Lv'2< C <+ao (19) 
and let Jf c -̂ n be the set of all points [a ,̂ ..., xn] which satisfy the 
conditions 

\xb\ < — for 1 < 6 < i, \xc\ < —for i <c < j , 

|̂ tf| ^.-r-for j <d<Ln, [Xi, xj] e M'. 

If a > 0, then al-0p(i(.f) consists obviously of all points [xx, ..., xn] 
such that 

|*»| £ y , \XC\ £ j , \xd\ = y , [*, •*,] c * ID*(if'). 

Let [a?lf ..., #n] be a lattice point contained in ocWv(M). Then we 
have (see (19)): 

If 0 < x < £, then xx = x2 = ... = xn = 0. 
If 0 < a < ?7, then ,xi+1 = #*+2 = ... = xn = 0. 
If 0 < x < t, then xj+1 = xj+2 = ... = xn = 0. 

I t follows that (using the notation (10)) 
_ * ! = = . . . = Ai-j = £, Vi = v'i, Aj+ 1 = . . . = A;_! = rj, Vi = v'2, 

Xj+ x = ... = An = C 
and so (compare the definition of M) 
Ax . .: At-xnAi+i • • • W ; V i • • • *» L(M) = 2*-V,y2 i(Jfcf') > T. 

r Proof of Theorem 4. We may suppose that T is an integer,. 
T >̂ 2**1. Let Jtf c Rn be the set of all points x = [x1}..., xn] such 
that there is an integer m so that 

|*, | .^ 2T for j < i, \xk\ =2Fioxk>i, 

' ' \^-rn\=-^r,\m\ = T. 

14 



Put Mp = VOv(M), Xj - kj(Mv), n> = n^Mv) (j = 1, . . . , n). Then 
ocMp is defined by the inequalities (if a > 0) 

1̂ 1 _ 2T" (? < i)> 1**1 _ "(W)-1 (k > i)> ,<>m 

| x . _ a m . 2-»| ^ a^T)-*, |m| _ 2*>T, ^ u / 
w integer. 

If 0 < * < (2T)-1 and x € ocMv, then |a?,-| < 1 for j + i and 
h i _ a (T + (2T)-1) < 1, and so Xx _ (2T)-1 . Further, if 0 < 
<oc <2T and x e aJtfp, then | ^ | < 1 for k > i and so A<+i > 2T7. 
Finally, let us suppose that m < T. Then there must be a lattice 
point 

y = [yi , . . - , y /Jef l jSifp 

with |t/i| + |y i + 1 | + . . . + |yn| > 0. Since y e TMP, we have 
yk = 0 for k > i and so yi + 0. Put oc = T \yi\ _ T. We must have 
y e ailfp. But |y, — 0| > i |2/i|— oc(2T)~1, and for |m| _ 1 we have 

\yi - ocm . 2-*| = |yi| . | ± 1 - Tm . 2-*| _ |y{| . T . 2 - * - 1 -
_ oc . 2 - P - - > a(277)-1. 

Thus we obtain (see (20)) ynon e ocMp — contradiction, and so 
ni _ T, A, _ (2T)-i for j <i, A* _ 2T for k > t. Calculating 
L(M)> we obtain (10bis). 

0 postupných minimech libovolných množin. 

(Obsah p ř e d e š l é h o článku.) 
Budiž M bodová množina v n-rozměrném prostoru; W(M) 

budiž množina všech bodů \ (x —- y), kde x, y leží v M. Je-li M 
konvexní těleso o středu v počátku, mající objem L(M), a jsou-li 
Al5 ..., A„ postupná minima (ve smyslu Minkowského) množiny 
W(M) (jež jest ovšem v tomto speciálním případě prostě rovna M), 
je podle Minkowského 

A ^ . . . ?.nL(M)<L2n. (21) 

Pro obecné množiny M byla čísla A* definována dosud čtyřmi 
různými způsoby (jež v Minkowského případě splývají; viz [1], [2], 
[3], [4]). Pro dvě z těchto definicí platí nerovnost obdobná k (21), 
ale s větší konstantou vpravo. Autor ukazuje naopak, že pro zbýva­
jící dvě definice není levá strana v (21) omezená (Theorem. 1). 
Theorem 2 a 3 obsahují další zobecnění tohoto výsledku. Další do­
plněk jest obsažen v Theoremu 4. 
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