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K Y B E R N E T I K A — V O L U M E 30 ( 1 9 9 4 ) , N U M B E R 4, P A G E S 4 6 1 - 4 7 0 

ON nth ORDER DIFFERENTIAL EQUATIONS 
OVER HARDY FIELDS 

A. RAMAYYAN 

Some properties of nth order Differential Equations over Hardy Fields are studied. 
A characterization of a nonhomogeneous linear differential equation to be nonoscillatory is 
also given. 

1. INTRODUCTION 

First and second order differential equations over Hardy fields have been studied 
by M. Boshernitzan [1-3], V. Marie [9] and M. Rosenlicht [10-14]. In this paper 
we present some theorems concerning nth order differential equations over Hardy 
fields which include the extension of some of the results given in [2] and a necessary 
and sufficient condition for a nonhomogeneous nth order linear ordinary differential 
equation over a Hardy field to be nonoscillatory. Our results are much more general 
than the corresponding results of M. Boshernitzan [2]. 

These problems have applications in control theory, specially for linear dynamical 
systems described by ordinary differential equations of nth order, with time varying 
coefficients. The behaviour of solution for t —• oo (oscillatory or nonoscillatory, 
stable or unstable) can be investigated by the mathematical device of ordered fields, 
valuation and Hardy fields. In this way, the known results of polynomial approach 
for time-invariant system can be generalized. 

Most basic definitions and facts on Hardy fields are collected in the next section. 

2. DEFINITIONS AND PRELIMINARIES 

2 .1 . £-field of Hardy. G. H. Hardy [7, Page 17] considered a class L of logarithmic-
exponential functions (/^-functions in short). These are real single valued functions, 
defined for all values of x greater than some definite value, by a finite combination 
of the ordinary algebraic symbols (viz +, —, X, -r, y/) and the functional symbols 
log(- • •) and exp(- • •), operating on the variable x and on real constants. For exam
ple, f(x) = yfx + logs + y/x2 + 1 + 36* is a L-function. It is to be observed that 
the result of working out the value of the function, by substituting X in the formula 
defining it, is to be real at all stages of the work. It is important to exclude such 
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a function as | {exp (v—x2) + exp (—\J—x2)}, which with a suitable interpretation 
of the roots, is equal to cosx. Any L-function is ultimately continuous, of constant 
sign and monotonic, and tends, as x —• oo, to infinitely, or to zero, or to some 
other definite limit [7, Theorem 13]. This class L is closed under differentiation, 
integration and composition, and forms a field [1]. This field is called L-field of 
Hardy. Extending the notion of L-field, M. Boshernitzan [2] and M. Rosenlicht [10] 
developed the theory of Hardy fields. To understand its properties we need to know 
the concept of germs of functions and ordered fields. 

2.2. G e r m s of functions. Let B denote a class of continuous real valued func
tions f(x) which are defined for sufficiently large x. We can identify functions which 
agree for large x and so B is the class of germs of functions at infinity [1, Page 237]. 
For example, an L field is the field of germs of functions obtained from the field 
of rational functions of one variable by repeated adjunction of real valued algebraic 
functions, logarithm of positive functions and exponential of functions. 

2 .3 . Ordered field. An integral domain (D,+,-) is said to be ordered if D 
contains a subset D+ such that 

i) D+ is closed with respect to addition and multiplication as defined in D. 

ii) For all a £ D, one and only one of a = 0, a £ D+, —a £ D+ holds. (Principle 
of Trichotomy.) 

It should be noted that every field is an integral domain. So a field (F,+, •) is said 
to be ordered if it is ordered as an integral domain. For example, the field of rational 
numbers is ordered and the L-field is ordered, the positive elements being those that 
are ultimately positive (i.e. positive for sufficiently large values of a; £ R). 

2.4. Hardy fields. A Hardy field K [10] is a set of germs of real valued functions 
on deleted neighbourhoods of +oo in R (or, which is the same, on positive half 
lines in R) that is closed under differentiation and that form a field under the usual 
addition and multiplication of germs. Examples of Hardy fields are any subfield of 
R (viz, Q, R) and the field of rational functions of one variable R(x), where each 
real number is identified with a constant germ and x is the germ determined by the 
identity function on R. L-field of Hardy and the fields R(x, ex) generated by R and 
the functions indicated in the brackets, are also Hardy fields. More generally, if K 
is a Hardy field and f(x) a germ such that / is algebraic over K or f'(x) £ K or 
£ g £ K then K(f) is a Hardy field. 

If K is a Hardy field and / a non zero element of K then K contains j which 
implies f(x) ^ 0, if x £ R is sufficiently large. Since f'(x) £ K, f is differentiable for 
sufficiently large x £ R therefore continuous, and therefore f(x) is always positive or 
always negative for x sufficiently large. Thus each / £ K is ultimately either zero, 
or always positive or always negative. The same being true for / ' £ K, each / £ K 
is ultimately monotonic. In particular, for each / £ K, l im^oo f(x) exists as an 
element of R U {+oo, - o o } . A Hardy field is an ordered field, its positive elements 
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being those that are ultimately positive, that is positive for x sufficiently large x. 
Each non zero element of a Hardy field ultimately has a constant sign. The functions 
such as ex, log a: and polynomials in x belong to a Hardy field. 

A Hardy field is called maximal if it is not a proper subfield of any other Hardy 
field. Any maximal Hardy field is unbounded [5, Theorem 1.1]. 

Boshernitzan [3, Page 1] defines E as the intersection of all maximal Hardy fields. 
It contains the L-field of Hardy. It is closed under integration and composition 
[1, Section 6]. 

For any Hardy field K, E(K) denotes the intersection of all maximal Hardy fields 
containing A'. K C E(K), E C E(K) and E = E(R) where R denotes the field of 
real constants [2, Page 132]. 

If E(K) = K, K is said to be perfect. E is thus the minimal perfect Hardy 
field and E(K) is the minimal perfect Hardy field containing K [3, Page 1]. If K 
is perfect it is closed under integration; if / G K then exp(/) G K and E C K 
[2, Lemma 11.6]. 

Germs / , g of continuous real valued functions on positive half-lines in R which 
are nowhere zero on some half-line and are such that l im^oo f(x) and l im^oo g(x) 
are either 0, or ±oo, will be called comparable if on some half-line, each of | / | , \g\ is 
bounded above and below by suitable integral powers of the other. Comparability 
is an equivalence relation among such germs. The rank of a Hardy field is a number 
of its comparability classes. For example, the Hardy field R(x,ex) has rank 2 with 
x and ex representatives of its comparability classes. 

Any Hardy field K has a canonical valuation [10 and 11]. It is a homomorphism v 
from the multiplicative group K* — A' —{0} of A' onto an ordered abelian group (the 
value group) v(K*). The kernel of v consists of all / € K* such that lirrix—oo f(x) is 
finite and nonzero, while v(f) > 0 if and only if lim3;_oo f(x) = 0 and v(f) < 0 if and 
only if limr_oo f(x) = ±°°- Let. a, b G A'*, we write v(a) > v(b) if l im^oo ffct = 0 
and v(a) > v(b) if l im^oo ffej is finite. Also, if a, b G K* and v(a), v(b) ^ 0 then 
v(a) > v(b) if and only if v(a') > v(b'). 

3. MAIN RESULTS 

Throughout we shall assume that a germ means a germ of nontrivial linearly inde
pendent solution at infinity of (1) or (2) (given below) unless otherwise specified. It 
should be noted that n solutions at infinity of (1) namely yi(x), 2/2(2),..., yn(x), 
are said to be linearly independent solutions at infinity iff their Wronskian is not 
equal to zero. Let us consider the nth order linear homogeneous equation 

L(y) = !/(") + ai yt"-1) + • • • + an(x) y = 0 (1) 

and the nonhomogeneous equation 

L(y) = / (*) (2) 

where a,(x), f(x) G A' (i = 1,2,... , n). 
A nontrivial solution y = s(x) of (1) or (2) at infinity is said to be an oscillating germ 
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at infinity if s(xk) = 0 for a sequence {xk} such that l im^oo Xk = oo. Otherwise 
it is called a nonoscillating germ at infinity. The equation (1) or (2) is said to be 
nonoscillatory if all the nontrivial solutions at infinity are nonoscillating germs at 
infinity. Germs such as x2sin (~) are nonoscillating though it has infinite number 
of zeros in [0,1) and no zeros in [l,oo). 

Example 1. If the roots of characteristic polynomial of the nth order linear dif
ferential equation (l.d.e.) with constant coefficients are all real then it can be shown 
that the equation is nonoscillatory and all its solutions belong to some Hardy field 
K. 

Theorem 1. Let K be any Hardy field. Then the nonoscillating germs of the 
equation (1) over K belong to E(K). 

P r o o f . We know that the nonoscillating germ of any second order linear ho
mogeneous equation over K belongs to E(K) [2, Theorem 16.8]. So it follows that 
the nonoscillating germ of any linear differential equation over K belong to E(K) 
irrespective of its order. Hence the theorem follows. 

Example 2 . When n = 4, consider the l.d.e. j / 4 ) — y = 0 over any Hardy field K. 
Then the nonoscillating germs at infinity {ex,e~x} belong to E(K). 

Remark 1. The above theorem fails, if the l.d.e. is not taken over K. For instance 
consider the following example. 

Example 3. e
s,nx is a nonoscillating solution of the differential equation 

y'" — cos x y" + 2 sin xy' + cos x y = 0 

but {es'nx} ± E(K) for any K. 

Corollary 1 .1 . If yit y2,..., yp are linearly independent nonoscillating germs of 
the equation (1) over K then they lie on the Hardy field K(yi, 2/2, • • •, VP) D K, 
whose rank is at most r + p(p<n) where rank (A') = r. 

The first part follows by [10, Cor. 1 of Theorem 2] and the second part follows 
from the definition of rank. 

Theorem 2 . Let K be a perfect Hardy field. Then the solution of (2) lie in K 
provided all the solutions of equation (1) lie in K. 

P r o o f . Let J/1,2/2, • • •, J/n be the nonoscillating solutions of (1) and yp be the 
particular solution of equation (2). To prove the theorem it is enough if we prove 
yP(x) 6 K. It can be shown by the method of variation of constants that yP(x) has 
the form 

, , V- , , f" Wt{t)f(t)At 

*w-E»wy w-. ~wr <3) 
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where W(yi, Jte Vn) (<) is the Wronskian of yi, yi,..., y„ and Wk is the determi
nant obtained from W(yi , . . . , yn) by replacing the fcth column (yk, yjj.,..., t/^."~l)) 
by ( 0 , 0 , . . . , 0,1). The terms on the right hand side belong to K since K is closed 
with respect to integration [2, Lemma 11.6]. It follows that yp(x) £ K. O 

Corollary 2 .1 . The equation j /")(x) = f(x) where f(x) G K cannot have oscil
lating solutions at infinity. The proof is obvious. 

Example 4 . When n = 3, consider the equation 

P(x) = x3 y'" - 3x2 y" + Qxy'-6y = x2 

over the field E =- E(R), the minimal perfect Hardy field. It can be shown that the 
solution basis for the homogeneous equation P(x) = 0 is {x,x2,x3}. It is clear that 
any solution of P(x) = 0 and of the nonhomogeneous equation P(x) = x2 also lie 
on E. Thus Theorem 2 is verified. 

Remark 2. Theorem 1 and 2 are the generalization of Theorems 16.8 and 16.10 
of [2] respectively. 

Remark 3 . Theorem 2 leads us to establish a necessary and sufficient condition 
for a nth order l.d.e. over K to be nonoscillatory. To prove the theorem we require 
the following four propositions whose proofs are obvious so we omit them. 

P ropos i t ion 1. Linear combination of finite number of nonoscillating germs in K 
is a nonoscillating germ in K. 

Proposi t ion 2 . Product of two nonoscillating germs in K is a nonoscillating germ 
in K. 

Proposi t ion 3 . Quotient A~| (g(x) ^ 0) of two nonoscillating germs in a nonoscil
lating germ in K. 

Proposi t ion 4 . Let K be a perfect Hardy field. If f(x) € K is a nonoscillating 
germ then J f(t) dt € K is a nonoscillating germ. 

Remark 4. As it can be seen easily as given in the example below we note that 
any nth order nonhomogeneous l.d.e. with nonoscillatory homogeneous part need 
not be nonoscillatory. 

Consider the l.d.e. of third order 

x3 y'" - 3x2 y" + 6x y' - 6y = sin(log x) 

in C'"(a,oo) (a > 0). It can have a particular solution which is oscillating though 
the homogeneous part is nonoscillatory. 
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In contrast to this situation in the classical theory of l.d.es, we are able to get the 
following necessary and sufficient condition for a nonhomogeneous nth order l.d.e. 
over K. 

T h e o r e m 3. The nonhomogeneous equation (2) over a perfect Hardy field K is 
nonoscillatory if and only if the homogeneous equation (1) over K is nonoscillatory. 

P r o o f . Let equation (2) be nonoscillatory, then by definition all its solutions at 
infinity are nonoscillating germs and so in particular the homogeneous equation (1) 
is nonoscillatory. This proves the "if" part of the theorem. 

To prove the other half, assume that the homogeneous equation (1) to be nonoscil
latory. Now yp is given by (3) which is clearly nonoscillating in K by Proposi
tion 1,2,3,4 and so the equation (2) is nonoscillatory. • 

Definition . Consider the nth order Euler's equation 

M(y) = xn j / n ) + a! a;"-1 y ( n - 1 ) + h an y = 0 (4) 

where 01 ,02 , . . . , a„ are real constants. Then the polynomial q given by 

q(r) = r(r - 1) • • • (r - n + 1) + ax r(r - 1) • • • (r - n + 2) + • • • + a„ (5) 

is called the indicial polynomial for (4). 

Corollary 3.1. The nonhomogeneous Euler's equation M(y) = f(x) over the 
Hardy field A' is nonoscillatory if and only if the indicial equation (5) has real 
roots. 

Example 5. When n = 3, consider the equation 

y"> _ Sy" + 3y'-y = e2x over E 

which is nonoscillatory over E with {e*, xex, x2 e1} as a solution basis for the ho
mogeneous part. It can be shown that yp £ E. This verifies the theorem. 

Definition . If V is a finite dimensional vector space, an ordered basis for V is 
a finite sequence of vectors which is linearly independent and spans V. It can be 
proved that any n linearly independent vectors in an n-dimensional space V are a 
basis for V. 

Theorem 4. If the equation (1) is nonoscillatory over K, there exists an ordered 
basis {y\,..., yn} (yi > 0 in K for V the vector space of all solutions at infinity of 
the equation (1) such that 

v(y\) > v(y2) > v(yz) > > u(yn). 
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Also the Wronskian W(y\,..., yn) = cexp (— Jx a\(t) dt) where c ^ 0 is a constant, 
belongs to K when K is perfect. 

P r o o f . By hypothesis, there exists n linearly independent nonoscillating germs 
2/ii • • -,2/n for the equation (1). Clearly they form an ordered basis. If 2/1 < 2/2 < 
2/3 < • • • < 2M, 

2/i 
lim is finite. 

x-oo \yi+ij 
Therefore v(y{) > v(yi+1) (i = 1, 2 , . . . , n - 1). 

An easy calculation gives the Wronskian and it belongs to K since K is perfect. • 

R e m a r k 5. In the example (4) the ordered basis is {x, x2, x3} with v(x) > 
v(x2) > v(x3). An ordered basis do not exist in the case of oscillatory l.d.es in 
ck(a, oo). 

T h e o r e m 5. Let A' be a perfect Hardy field. If the equation (1) is nonoscillatory 
over K with an ordered basis {y\,..., yn} (j/j > 0, i = 1, 2,. . . , n) for its solution 
space such that 

v{y\) > v(y2) > • > v(yn) 

then for all (k,j) (j > k, j , k = 1, 2 , . . . , n), 

0 £ % ^ < o -) wWi)>o 
j>k yi 

iii) / W(yk,yj)<j)(yk, yj) dt is convergent 

when <t>(yk,yj) is any of the following functions or their finite linear combinations 

i _i_ exp te) sm fe) !°ffel 
9 ' " ? i 9 ' 9 ) 9 ' 9 " 

2// 2/jfc + yj yj y- yj 

iv) / —'—1— dt is convergent if ^ belongs to the kernel of v 
Jc 2/fc yj yk 

v) r ^ ^ l d t is divergent. 
jc 2/fc 

It should be noted that s i n / and cos / € K when i/(/) > 0. [2, Lemma 11.6] and 
exp(/) 6 K for all / G K. 

P r o o f . Since v(yk) > v(yj), the positive function ^ approaches zero and hence 

decreases. So. ( ^ ) < 0. Therefore 

W(Vj,yk) < 0 . 
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This gives (i) and (ii). 

To prove (iii) consider ( * ; ) ' = W ^ V k ) . 

Integrating with respect to t from c to 0 and taking ft —• oo we have 

f 
is finite since v(yk) > v(yj). Thus the first part of (iii) is proved when 

W(yk,Уj)dt 

У) 

<f>(ykiVj) = - j . 

Similarly the other results can be proved. D 

T h e o r e m 6. Under the conditions of Theorem 5, for any (yk, yj) if v(yk) > v(yj) < 0) 
(j, k = 1,2,...,n, j > k) and W(yk,yj) is a positive decreasing function or a 
constant then if y'k(x) is non-decreasing, yk(x) is nonincreasing. 

P r o o f . By hypothesis, (**-)' = W^f"\ 

Integrate with respect to "t" from x to j3 and making /? —» oo, and using ^(y*) > 

"(yj) 

yk(x) = yj(x) / " • 

Therefore 

toW - y^W^ y | w ( x ) 

/°° y;-(QW(yt,yi)dt _ iy(y t,y,-)(x) 

- A w| »(-) 

since y'j(x) is nondecreasing. If W(yibiyj) = constant, y'k(x) < 0. If W(yk,yj) is a 
positive decreasing function, using Bonnet's form of second mean value theorem, 

»i(») < o. 

This prove the theorem. • D 

R e m a r k 6. Theorem 5 (iii) (1) and (v) are generalization of Lemma 16.6 of [2]. 
The other parts and Theorem 6 are new to the literature. 

R e m a r k 7. Theorem 5 and 6 are valid in c'(a, oo) with appropriate changes. 
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T h e o r e m 7. Let K be a perfect Hardy field and y\ in K, be any nontrivial solution 
of equation (1) over K. If the solutions at infinity of the first reduced equation (Ri) 
of order (n — 1), 

yiV(n-l) + ...+ [nj/("-1) + („_1)j/("-2) + ... + a n_ l 2 / i] V=:Q ( R l ) 

lie in K, then all the solutions of (1) lie in K and K contains R(y\, u2y\,..., uny\) 
which is of finite rank where 

uk= í Vk(t)dt (k = 2,S,...,n) 

and V., V_,.. . , Vn are linearly independent solutions of (Ri). 
If v(uk) > 0 then v(uk y\) > v(y\) where v is the canonical valuation on K. 

P r o o f . If y = uy\ is a solution of equation (1) then L(y\u) = 0. The coefficient 
of u in this equation is just L(y\) = 0. Therefore if V = _', this is a linear equation 
of order (n - 1) in V. Call this (Ri). That is 

yiV(n-i)+...+ [nj/(»-1) + ( n_i)2 /("-2) + ... + an_1?/1] v- = 0. (Ri) 

The coefficient of y ( n - 1 ) is __. Since j/i(_?) 9- 0 on the half interval / for sufficiently 
large £, (Ri) has (n— 1) linearly independent solutions V_, V_,.. . , Vn on Z. If _„(_) = 
J* Vfc(_) di (_ = 2 , 3 , . . . , n), the functions __, _2 S/i, • • •, un y\ are solutions of (1). 
Since V_,V_,...,V„ belong to the Hardy field A' which is perfect, 1 .2,-3,. . . , _n 

belong to K. So it follows that all the solutions of (1) belong to K. 
Further K contains R(y\, u2y\,..., uny\) which has at most n comparability 

classes and so has a finite rank. 
Since 

lim ^ - 4 - = lim uk = 0, 
__«, yi _ _ o o 

it follows v(uk y\) > v(y\). 

Corol lary 7 .1 . Under the conditions of the Theorem 7 if V\ is a solution of the 
first derived equation (Ri) and __, z3, • • •, Zn-\ are the solutions of the subsequent 
derived equations R2,Rz,..., Rn-\ then 

W(y\,y2, ...,yn) = ( - l ) " ( n - 1 ) / 2 „ . V?~l z2
n~2 • ^ n - i , 

where __, 2/2, • • •, 2/n are linearly independent solutions of the equation (1) and 
W(y\, j/2, • ..,2/n) denotes the Wronskian of y\,..., yn. If ylf V\,Z\,... ,Zn £ K, 
then all the solutions of (1) belong to K. 

The first part of the Corollary follows by [8, page 127] and the second part follows 
trivially. 
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