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S U P P L E M E N T T O K Y B E R N E T I K A VOLUME 28 ( 1 9 9 2 ) , P A G E S 5 4 - 5 7 

ON ENDOMORPHISM SEMIGROUPS 
OF A FUZZILY STRUCTURED SET 

VENIAMIN SHTEINBUK AND ALEXANDER SOSTAK 

Category FS(C) of £-fuzzily structured sets (fs-sets) (X, L,T) is introduced. FS(C) contains, for 
appropriately chosen category C of lattices, various categories of fuzzy topological spaces. The problem 
of definability of fs-sets by means of £-endomorphism semigroups is discussed. However the tool of 
usual endomorphism semigroups used successfully in topology appears to be completely inadequate for 
this purpose: there are essentially different "good" fs-sets with isomorphic endomorphism semigroups. 
This difficulty is overcome by using a richer semigroup SC(X,L,T) defined on the basis of the usual 
endomorphism semigroup Cc(X, L, r) . 

Let £ be a category whose objects are complete lattices with 0 and 1 and whose 

morphisms are mapping of some kind between the lattices. By an (£)-fuzzily s t ructured 

set (or an fs-set for short) we call a triple (X,L,T) where X is a set, L £ Ob (£) 

and T C Lx. Let FS(C) be the category, the objects of which are fs-sets and the 

morphisms are pairs (f,n) : (X\,L\,TX) —> (X2,L2,T2), where / £ Morse t (X\ ,X 2 ) 

( i .e . / : X\ —> X2 is a mapping) , n £ Mor,c(L 2 ,Li) and /JO V o f £ TJ for each V £ T2 . 

Notice tha t (as it will be specified to some extent below) various categories of fuzzy 

topological spaces considered in [1], [2], [7] e.g. are in fact full subcategories of the 

categories FS(C) for appropriately chosen £ . 

Let FT(C) denote the complete subcategory of FS(C) whose objects are fs-sets 

(X, L,T) where T is an L-fuzzy topology on X [2] ( i .e . (1) 0, 1 £ T, (2) if U, V £ T, 

then U A V £ r, and (3) if <77 £ T for all 7 € T, then \J 1U-< £ r). For a lattice 

L € O b ( £ ) let FSL(C) (resp. FTL(C)) denote the complete subcategory of FS(C) 

(resp. of FT(C)) the objects of which are fs-sets (X, L,T) where L is the given lattice. 

Extending s tandard topological terminology to the situation under discussion, the 

morphisms of FS(C) will be called £-continuous mappings. For an fs-set (X,L,T) let 

Cc(X, L,T) denote the semigroup of all its endomorphisms ( = £-continuous 'mappings 

of (X,L,T) into itself) in the category FS(C). Two fs-sets are called £-homeomorphic 

if they are isomorphic as objects of FS(C). We emphasize that the relation of £-

homeomorphism essentially depends on the choice of the category £ . Two fs-sets (X\, L{, TJ 

and (X2,L2,T2) are called quasihomeomorphic if there exists a pair (/,/«) such that 

/ : X\ —> A'j and /( : L2 —> L\ are bijections and / l o l / o / e r , iff V £ T2. 

The main problem considered in the paper is to reveal the possibility of definability 

up to £-homeomorphism of an fs-set by means of its £-endomorphism semigroup. We 

shall restrict ourselves here to two specific categories C = C\ and £ = £ 2 introduced 
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below. However, the tool of usual endomorphism semigroups which is successfully used 

in General Topology (see e.g. [4], [9]) appears to be completely inadequate for our 

purposes: there are many essentially different (in FS(C)) "good" fs-sets with equal 

endomorphism semigroups. We overcome these difficulties by using a richer semigroup 

Sc(X, L, T) introduced below instead of the semigroup Cc(X, L, T). 

By the Plotkin endomorphism semigroup (with respect to the category FS(C)) of 

an fs-set (X, L,T) we call the product Sc(X, L,T) S Cc(X, L,T) X L X equipped with 

operation "•" defined as follows 

( / i , / " i ,U i ) • (h,l*2,U2) = ( / 2 o / , , /x, o(i2, U2 o / i ) . 

(A similar semigroup first appeared in [5] in connection with the theory of algebraic 

au tomata . ) In the sequel we write sometimes Sc(X) instead of Sc(X, L,T). 

Notice tha t apart from the binary operation "•" there are two additional structures on 

the semigroup Sc(X, L, T ) . The first one is the subset T of the lattice Lx and the second 

one is the partial order relation "X" introduced as follows: (f\,fi\,U\) < (f2, H2,U2) iff 

/ i = h, H\ = /̂ 2 and U\ < U2 ( i .e . U\(x) < U2(x) for each x € X). According to these 

s tructures we consider the following three kinds of isomorphism for Plotkin semigroups. 

We say tha t Plotkin semigroups Sc(X\, L\,T\) and Sc(X2, L2, r2) are 

(1) isomorphic, if they are isomorphic in the category of semigroups; 

(2) T-isomorphic, if there exists an isomorphism a : Sc(X\, L\,T\) —> Sc(X2, L2,T2) 

such that a(Cc(X\) x Tl) = CC(X2) x T2; 

(3) ^-isomorphic, if there exists a T-isomorphism a : Sc(X\, L\,T\) — • Sc(X2, L2,T2) 

such tha t ( / , / / , U\) X (f,n,U2) \ffa(f,ii,U\) < a(f,li,U2). 

To formulate the main results we have first to specify the category C. Namely, let C\ 

and £ 2 be categories whose objects are complete lattices with 0 and 1, M o r ( £ ! ) consists 

of all mappings / : L\ —• L2 preserving arbitrary non-empty suprema and finite infima 

and M o r ( £ 2 ) consists of identical mappings EL : L —» L only ( i .e . £ 2 is a discrete 

category). (Here L\, L2, L £ O b ( £ ] ) = O b ( £ 2 ) . ) 

Notice tha t FT(C\) is in fact a slight enlargement of Rodabaugh's category T [8] (cf. 

also the category FUZZ from [7]). It is easy to notice also that FTi(C2) is just the 

category of L-fuzzy topological spaces as they are defined by Goguen [2]; specifically, 

FTi(C2), where / = [0,1], is the category of Chang fuzzy topological spaces [1] and 

FTz(C2), where Z ~ {0, 1}, in an obvious way can be identified with the category Top 

of topological spaces. 

We shall need also the next notion. An fs-set (X, L, r ) is called laminated if r contains 

constant mappings a A- : X —• L for all a £ L (cf. Lowen's definition of a fuzzy topology; 

see e.g. [3]). 
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T h e o r e m 1. For laminated fs-sets (Ai ,L] ,T i ) and (X2,L2,T2) the following condi­

tions are equivalent: 

(1) the semigroups Sc\(X\) and S£,(A'2) are ^-isomorphic; 

(2) the semigroups Sc2(X\) and S£2(A'2) are w-isomorphic; 

(3) fs-sets ( A i , L i , r i ) and (X2,L2,T2) are £i-homeomorphic . 

T h e o r e m 2. Laminated fs-sets (X\, L\,T\) and (X2, L2,T2) are quasihomeomorphic 

iff the semigroups Sc,(X\) and Sc,(X2) are r-isomorphic (i = 1, 2). 

To restore a laminated fs-set up to £2-homeomorphism by means of its Plotkin endo-

morphism semigroup we need the following special kind of ^-isomorphism: 

A r-isomorphism a : Sc(X\, L,T\) —> S£(A2,L,r2) is called tough, if a (ex,, £L, a) = 

(^A'2,£L,Cf) for each a £ L. One can prove that each tough isomorphism of laminated 

fs-sets is an (^-isomorphism. 

T h e o r e m 3 . Laminated fs-sets (X\,L,T\) and (X2,L,T2) are £ 2 -homeomorphic iff 

the semigroups S£,(Ai) and Sc,(X2) are toughly isomorphic (i = 1, 2). 

These theorems immediately imply analogous results for laminated fuzzy topological 

spaces: 

T h e o r e m 1'. Laminated fuzzy topological spaces ( A i , L i , T i ) and (A ' 2 ,L 2 , r 2 ) are 

homeomorphic (in FT(C\)) iff their Plotkin semigroups S£,(Ai) and S£2(A'2) are ui-

isomorphic. 

T h e o r e m 3 ' . Laminated L-fuzzy topological spaces [2] (A],Ti) and ( A 2 , r 2 ) are 

homeomorphic iff their Plotkin semigroups Sc,(X\,L,T\) and Sc,(X2, L, r2) are toughly 

isomorphic (i = 1, 2). 

E x a m p l e 1. T h e c o n d i t i o n of l a m i n a t e d n e s s is of e s s e n c e . Let (A, T) be 

a topological space such that C(X, T) = {ex} U {ex : c e X}. Thus the semigroup of 

endomorphisms of X consists only of constant mappings and the identity. (Such a space 

can be found e.g. in [6].) Fix two constants 0 < a < f3 < 1 and two points a,b £ X. 

Let M denote the set of all mappings /i : /> —> / preserving non-empty suprema and 

finite infima such that fi(a) = a, n((3) = //. Define fuzzy sets U, : X —> / , i = 1, 2 

as follows. Let U\(x) = a if x ^ a and U\(a) = fi and let U2(x) = a if x ^ a, b and 

U2(a) = U2(b) = [1. Let r;, i = 1, 2, be the fuzzy topology having TU{/7,} as its subbase. 

It is easy to notice tha t the semigroups S£,(A, / , r i ) and Sc,(X, I, r2) are w-isomorphic 

(even toughly isomorphic) but nevertheless the spaces ( A , / , r i ) and ( A , / , r 2 ) are not 

£ , -homeomorphic , i = 1, 2. 
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E x a m p l e 2. I n a d e q u a c y of s e m i g r o u p s of c o n t i n u o u s t r a n s f o r m a t i o n s in 

fuzzy s e t t i n g . Let (X, T) be a topological space. For a constant a £ (0, 1] let Ta be 

a fuzzy topology on X generated by the subbase oa = {ail : U € T} U {ax • a £ I}. 

(Obviously, T-> = toT is the set of all lower semicontinuous functions M : (X, T) —* / ; 

see [3].) It is easy to notice that Cc2(X, 1 ,Ta) = Cc2(X, 1,Ta<) for any a, a' G (0,1] and 

if a , a ' ^ 1, then Cc1(X, I,ra) and Ccs(X, I,Ta>) are isomorphic. On the other hand, 

if a ^ a', then the fs-sets (X,I,Ta) and (X, I,Ta') are neither £ 2-homeomorphic, nor 

£i-hoineomorphic. 
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