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K Y B E R N E T I K A - VOLUME 25 (1989), NUMBER 2 

SYSTEM SYNTHESIS 
FROM IMPULSE ENERGY MEASURES 

R. M. UMESH 

A method is proposed to determine whether there exist single input single output linear time-
invariant dynamical systems without zeros which have a prespecified set of impulse energy me
asures. The mode of determining the parameters specifying the transfer function of the lowest 
order system satisfying the requirement, if such systems exist, is developed. 

1. INTRODUCTION. 

Given the transfer function T(s) of a linear time-invariant dynamical system 
it is possible to determine the system's impulse energy measures, where the tth 
impulse energy measure 

Y'^l{ÍL~l(mld' ï -= 0 ,1 ,2 , . . 

The problem posed and solved in this paper is: 
Given 

Y = [Y0 Yx Y> ... Y„_JT , Y; finite and real, i = 0, 1, 2, ..., n - 1 

does there exist a system whose transfer function is 

T(s)=- — i - _ , p , rea l , i = 0, 1, 2, ..., r - 1 
S + Pr-lS" + Pr-lS + ••• + Po 

where r may be less than, equal to or greater than nl If several such systems exist, 
what are the parameters of the lowest order system satisfying the requirement? 

Several results relating to the computation and application of the impulse response, 
impulse energy measures and quadratic moments of a system have been reported 
in the literature [1], [2], [3], [4], [5]. This paper leans heavily on some earlier 
results of the author relating to impulse energy measures [6], [7]; however, following 
the statement of the pertinent earlier results, this paper is self-contained. The relevant 
results are: 
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Lemma 1. If 

T(S) 
s» + p,,-^"'1 + pn-2s"-2 + ... + p0 

, pi real for i = 0, 1,2, ..., n — I 

is asymptotically stable and Y, is its ith impulse energy measure, then FY = Q, 
where 

(i) 

> 0 ~P2 Ғч • • . 0 " "^o " " 0" 
0 PÍ Pз •• , 0 Yг 0 
0 ~P0 P2 •• . 0 

, Y = Yг and Q = 
0 

0 . - 1 Y„-2 0 
0 Pn-Í. Jn-1 — 1 

L 2Л 

Lemma 2. Given FY = Q, formed as in (l), and Y finite 

T(s) 1 

s" + pn-xs
n x + pn-2s"-- + ... + p0 

has impulse energy measures Y0, Yl5 Y2,..., Yn_1 if and only if 

detF 
Ì 2 3 
1 2 3 

> 0 , i = 1, 2, 3 , . . . , n 

where 
:!] 
Гl 2 3 . . . i ] 
[ 1 2 3 . . . i j 

is the matrix formed by rows 1, 2, 3,..., i and columns 1, 2, 3,..., i of F taken 
in that order. 

Theorem 1. Given Y = [Y0 Y, Y2 ... Y^]7, Yt is finite and real for i = 0,1, 2,... 
..., n — 1, there exists a system with a transfer function 

T(s) = 
1 

s" + pn-lS"-x + pn-2s"-2 + ... + p0 

i = 0, 1,2, ...,n - 1 

, Pi finite and real, 

whose impulse energy measures are Y0, Yl5 Y2,..., Y„_i if and only if Mn is positive 

definite, where 

Y0 0 -Yi 0 Y2 . . . 
0 Yx 0 -Y 2 0 . . . 

M, 
Y. 0 0 -Y, 

0 Yя-J 
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With the above results assumed, this paper is organized as follows: 

The first issue tackled is whether, in case an nth order system does not exist which 
has the prespecified n impulse energy measures, it may be that there exists a system 
of order greater than n which satisfies the requirements. Next, systems of lower 
order are analysed. After this the criteria for the existence of a system without zeros 
having the prespecified n impulse energy measures are stated. Then an algorithm 
is proposed for determining the parameters of the lowest order system satisfying 
the criteria. The procedure is illustrated by means of a numerical example. 

2. SYSTEMS OF ORDER GREATER THAN n 

If no system of order n exists which has the prespecified n impulse energy measures, 
that is M„ of Theorem 1 is not positive definite, the question arises whether there are 
systems of similar form but of higher order which satisfy the requirement. The present 
section tackles this issue. 

Corollary 1. Given Y0, Y_, ..., Y„_l5 Yt finite and real for i = 0, 1, 2, ..., n — 1, 
if no system with transfer function 

T(s) = — — -— , Pi finite and real, 
sr + 7v__sr + pr-2s + ••• + Po 

i = 0 ,1 ,2 , . . . , n — 1 

exists for r = n which has Y0, Y_,..., Y„__ for its impulse energy measures, then 
no T(s) exists with r > n which has Y0, Y_, ..., Y___ as its impulse energy measures. 

Proof. Suppose no T(s) exists for r = n which has Y0, Y_, ..., Y„__ for its impulse 
energy measures. 

Let us suppose that there does exist a system of order q > n which has Y0, Y_, ... 
..., Y„__ for its impulse energy measures. Let its further q — n impulse energy 
measures be Y„, Y„+1, Y„+2,..., Yr For this system, by Theorem 1, Mq must be 
positive definite. This implies 

*[. 
, __ , _ 2 3 . . . i 

d e t M J - 2 3 . . . i 
> 0 , i = 1, 2, 3, ..., q 

Since q > n, the above condition includes 

(2) detM,R 2 3 '" l] > ° ' ' = U 2' 3' "" " ' 
But 

(3) detM,[ |2 ;;; )] = -etMB[| 2 . . . i 
2 . . . i 

i = 1, 2, 3, ..., n . 
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From (2) and (3) it follows that 

-.Ci:::3 det > 0 1.2. 

This means that M„ is positive definite. Then, by Theorem 1, there exists T(s) for 
r = n which has impulse energy measures Y0, Yl5..., Yn-1. This contradicts the 
assumption we started with. 

Thus there cannot exist a T(s) with r > n which has impulse energy measures 

• Yo, -_, This completes the proof. 

3. SYSTEMS OF ORDER LESS THAN n 

Having considered systems of order greater than n we can now adress ourselves 
to the question whether there exist systems of order less than n which meet the 
requirement. The following lemma helps to considerably reduce the search for 
lower order systems. 

Lemma 3. Given Y0, Y1?..., Y„_x with Y; finite and real, i = 0,1, 2,..., n — 1, 
there exists a system of order r < n, with transfer function 

щ i 

sr + pr-xs
r + pr-2s

r + ... + p0 

i = 0, 1, 2,...., n — 1 

only if Mr is positive definite and 

, Pi finite and real, 

det M. 

-Yr-г 
0 

Yr-г 
0 

-X-i 
_ i 

2 

- Y r _ 3 0 Yr_2 0 - Y r _ i - i ( г + l x r + 1 ) 

Proof. Suppose T(s) has impulse energy measures Y0,Y1,Y2,...,Yr-l. Then, 

by Theorem 1, Mr is positive definite. Obviously this condition holds even if the 

higher impulse energy measures are required to be Yr, Yr+1, ..., Y„-i- It follows 

that if Mr is not positive definite then T(s) cannot have the prespecified n impulse 

energy measures. Thus the first part of the lemma stands proved. 

To prove the second part we will start with the assumption that T(s) has impulse 

energy measures Y0, Yl5 ..., Y„_i. Since Yi? i = 0, 1, 2,..., r — 1 are finite, n being 
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greater than r, it follows that T(s) is asymptotically stable. So, by L e m m a 1 

Po -Pг PA 

0 PÍ -Pз 
0 -p0 Pг 

0 

_0 

Rearranging, we get 

Yn 0 

0 

0 

0 

- 1 

Pr 

\Yo ' 
Yi 

ү2 
_= 

~0~ 
0 
0 

Yr-2 

_ Л - 1 _ 

0 

_ł_ 

W 

0 

-Yi 
0 

Yi 

0 
Yг 

- У i 
0 

Yг 
0 

0 

Yг 
0 

Y, 
-Y, 

Y, 

~_*o 
Pl ï_~3 
Pг 0 

Pг — -Yr-2 
0 

Pr-2 Yr-1 

_ / Л - l _ 
i 
2 

(4) readily yields 

(5) 

Now 

Y0 0 - Y_ 
0 Yx 0 
Y_ 0 Y2 

0 

• " . 

0 

^r-2 

0 

Y 

0 
-r.__ 

r - i - 0 - 5 . 

"_"o ~0~ 

7Л 0 

í>2 0 

IЛ--2 0 

IЛ-1 0 

( rx r+l) 1 _0_ 

T(s) = 
1 

pr_гs
r 2 + ... + p0 " + Pr-l S 

Hence in the time domain we have 

y(r)(t) + Pr-i /r-l)(t) + Pr-2 y(r~2\t) + ... + Pi y{i)(t) + P0y = « M 

where y(i)(t) stands for the ith derivative of the output and u(t) is the input. F o r the 

case when u(t) is a unit impulse, y(t) is the impulse response. Replacing the impulse 

response by an appropr iate initial condition we get (this aspect is further clarified 

in the proof of Theorem 2) 

,(') + p r _ 1 / r " 1 ) + pr-гУ(r~2) + ••• + PiУ{l) + PoУ = 0 (6) 

(7) y(0) = 0, yw(0) = 0,...,y(r-2)(0) = 0, /r~l)(0) = 1 . 

The argument t has been dropped for convenience. Multiplying (6) by yir) and 

integrating between 0 and oo yields 

j W ) 2 ) d t + _>___ Jo° yir~x)y{r) dt + ... + Po fo° Xr ( r ) d t = ° • 
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The first term yields Yr. The second term simplifies to Jp r_1(y ( r _ 1 )(0))2/(2) |Q° = 
= — 0-5pr__; the upper limit yields zero for stable T(s). Simplifying the other terms 
using {„ dv = uv — jy dw and (7), we have 

(8) Yr - 0-5/>r__ - P--2Yr-_ + Pr-Jr-2 ~ Pr-6Yr-3--- = 0 

Incorporating (8) in (5) yields 

(9) M. 

0 

: Po -0-
0 т?i 0 

-Yr-i = 
_ i 

2 /Л-l 0 

_ Z . _1 _0_ 
r _ _ — f - l ( r + l x r + l ) 1_ 

Since the vector on the right hand side is a null vector, the (r + 1 x r + l) matrix 

on the left hand side is singular. This completes the proof. • 

We can use this lemma to advantage as follows. First Mr, r = 1, 2,..., n are 
successively checked for positive definiteness. Suppose r_ is that value of r such 
that M r i is not positive definite but Mr, r = 1, 2, ..., r_ — 1 are. The lemma assures 
us that no system of order r_ and above can meet our requirement and so limits 
our search to systems of order less than r_. On the other hand M„ itself may be posi
tive definite rather than just M r i__, where r_ — 1 < n. In such a case Theorem 1 
guarantees the existence of a system of order n which has the necessary impulse 
energy measures. But we have to examine whether a lower order system is available. 
In this case also Lemma 3 is helpful for it requires us to search for only those orders 
of systems for which the determinant specified therein is zero. Further, an examination 
of the determinant specified in the lemma, (4) and (9) makes it clear that if T(s) 
has impulse energy measures Y0, Y_,..., Yr__ then the next impulse energy measure 
Yr is that which satisfies the condition laid down in the lemma. 

While Lemma 3 helps in reducing our search, it is not a sufficiency condition. 
The following theorem embodies the necessary and sufficient conditions for T(s) 
of order r < n to have a set of n given impulse energy measures. 

Theorem 2. Given Y0, Y_, ..., Y„__ with Yf finite and real for i = 0, 1, 

there exists a system of order r < n with a transfer function 

1 

1 

T(s) 
sr + pr + Pr-2SГ + + Po 

Pi real for i = 0, 1, 2, r - 1 

which has Y0, Y_,..., Y„_ _ as its impulse energy measures if and only if 
r/2 (r-2)/2 

(10) S(- l) I ' J Pr-2i^r- i + fc-0-5 X {-iyPr_,_2ih
2

r_x_i + k -
i = 0 i = 0 

r/2 i - 1 (r-4)/2 i 

- S Y,(-l)J Pr-2iK-X-j + kK-2i + j + k ~ ___ Z ( - i y _Pr-3-2ilVl-; + , 
i = l j = l i = 0 j = 0 

" r - 3 - 2 i + j+ít = 0 , к= 1,2, 3, . . . ,n - r - 1 r even 
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0—1)/2 ( г - l ) / 2 

( u ) I (-iУpr-2iYr-i+k-0-5 £ (-ìУл-i-.Л*-..-!**-
i = 0 i = 0 

( r - l ) / 2 i - 1 (r-3)/2 i 

- .__ I(-iУ>r-2Л-l-y + Л-2i + J + fc- S I(- l ) J >r-3-2Л-l- i + i 
i = l j ' = 0 i = 0 j ' = 0 

.Ä r _ 3 - 2 H . y + f c -=0 , fc = 1,2,3, ...,n - r - 1 ; rodd 

with 

(12) 

(13) 

(14) 

and 
(15) 

- Y o 0 -Уi 0 . . . 
0 ľ, 0 -Y 2 . . . 

- 7 , 0 Y2 0 . . . 

0 

YPo 
Pl 
Pl 

0 

— Yr-2 
0 

Pr-2 
L P Г - 1 _ 

Yr-1 
0-5 o Yr_J 

M r , the (r x r) matrix of (12), is positive definite 

Pr = 1 

ht = 0, 

= 1, 

i = 0, 1, 2, ...,r - 2 

/ = r - 1 
r - l 

= - HPjhi-r+j, i = r, r+1, r + 2, ... 
j-o 

Proof. Suppose T(s) has finite impulse energy measures Y0, Yl5 ..., Y„-i- It is 
then asymptotically stable. Hence, by Lemma 1, 

FY = Q , 

where F, Y and Q are as defined in (1). (12) is just a rearranged form of this equation 
and hence becomes true. By Theorem 1, M„ is positive definite. Since r < n, Mr is 
positive definite and so (13) is true. Now 

T(s) = - ' 
sr + 7Л-1s

r l + jp r_ 2s r 2 + ... + p0 

(16) 

T(s) can be expanded as 

(17) T(s) = /i0/s + /t1/s2 + /i2/s3 + . . . . 

When the input is a unit impulse, the output y(t) is the impulse response and is given, 

in the light of (17), by 

(18) y(t) = L-^Tis)) = h0 + hxt + h2t
2\2\ + /z3t

3/3! + ... . 

From (18) we have 

y(o) = K, y^(o) = hx, /2\o) = h2,... 

Thus ht represents the value of the ith derivative of the impulse response at t = 0 + . 
We will now show that the ht of (15) is the same as this ht. Combining (16) and (17) 



we have 

(19) (f + Pr-iS'-1 + Pr-2S-2 + ... + p0)(ho!s + hxjS
2 + h2/s

3 + ...) = 1 . 

Here we can treat the coefficient of sr as pr, where pr = 1. With this consideration 
we can now compare the coefficients of s', i = r — 1, r — 2,... on both sides of (19). 
Such comparison yields 

prh0 = 0 and so h0 = 0 

pr-xh0 + prhx = 0 and so ht = 0 

Pih0 + P3hi + ••• + Prhr-2 = 0 and so hr-2 = 0 

Pih0 + p2hx + ... + PrK-i = 1 and so hr-x = 1 . 

Further 

Pohi + Pihi+i + p2hi+2 + ... + pr-xhi+r_x + prhi+r = 0 , i = 0, 1, 2, ... 

Thus, p r being 1, 
r - l 

/Vr = - Z P A + J ' i = 0, 1,2, . . . . 
j=o 

In the light of the above equations it can be seen that ht of (15) stands for the ith 
derivative of the impulse response of T(s) at time 0+ . Further the conditions specified 
by (15) are been to hold. 

To complete the first part of the proof we have to show that (10) and (11) also 
hold. We will do this by showing that (10) and (11) are expressions which express 
the (r + i)th impulse energy measure of T(s) in terms of the (r + i — l)th, (r + i — 
— 2)th.. . , impulse energy measures and the impulse response and its derivatives 
at time 0+ . 

From (16), we have, in the time domain, 

(20) yW(t) + Pr-X y^'Xt) + p^2 y''~2\t) + ... + px y^(t) + Po y(t) = «(*)• 

Here u(t) is a unit impulse, y(t) the output. The initial conditions are zero. When 
u(t) is a unit impulse, y(t) becomes the impulse response. In this case we can replace 
the input by a set of initial conditions which, as seen earlier, are h0, hu h2,.... Thus 
we have, from (20), 

(21) yP> + Pr~iy(r-1} + pr-2y
rr-2) + ... + Pxytr~2) + ... + Piyw + 

+ p0y = o 

K0) = /to , ^ ( O ) - * , , / = 1 ,2 ,3 , . . . . 

In (21) the argument t has been dropped for convenience. To get Yr+,- we first differen
tiate both sides of (21) i times with respect to time. We then have 

(22) y + / ) + P r - i / r + i ~ 1 ) + pr-2y
(r+i'2) + ••• + P i ^ 1 + i ) + p0y

w = o • 

Multiply (22) by y(r+l) and integrate between 0 and oo. This gives 

(23) f « / ' + V r + ° d ' + Pr-i f ? y ( r + , - 1 V r + ° d / + ... + p0tfyyfr+i)dt = 0. 
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The first term yields Yr+i. The second reduces to 

ft-l(^
+,-1J72)|?--Pr-l(*?+,-,/2). 

The upper limit yields zero because of the assumption we started with that T(s) has 
finite impulse energy measures. The other terms can be reduced using the well-
known identity jw dv = uv — jy du. Simplification, taking the coefficients of the 
first term of (21) to be pr (this is done for convenience of expression), readily yields 
(10) or (11) depending on whether r is even or odd. This completes the necessity 
part of the proof. 

To prove sufficiency we shall begin with the assumption that (10), (11), (12), (13), 
(14) and (15) hold, with Y0, Yl3..., Y„_ x finite and real. Since (13) is true, by Theorem 
1 there exists a T(s) of order r which has Y0, Yl5 Y2, ...,Yr-x as its impulse energy 
measures. Since Mr the (r x r) matrix of (12) is nonsingular by virtue of (13), it 
follows that the parameters of T(s) are unique; p0, px,..., pr-x are determined 
from (12). (10) and (11), as noted earlier, enable the impulse energy measures 
Yr, Yr+1, ..., to be recursively computed from the earlier impulse energy measures. 
Thus if the given Yr, Yr+1, ..., Yn-X satisfy (10) and (11) it follows that they are 
the (r + l)th, (r + 2)th,.. . , nth impulse energy measures of T(s); a system's impulse 
energy measures are unique. Thus the T(s) of order r has the required n impulse 
energy measures. This completes the proof. • 

4. CRITERIA FOR EXISTENCE 

In the light of the results obtained so far, the criteria for the existence of a T(s) 
which has a prespecified set of n impulse energy measures may be stated as follows: 

Given Y0,Yx,...,Yn-x,Yi finite and real for i = 0, 1, 2 , . . . , n — 1, there exists 
a system with transfer function 

T(s) = — — — , Pi finite and real, 
sr + pr-xs

r + pr-2s
r + ... + p0 

i = 0,l,2,...,r- 1 

having Y0, Yx,..., Yn_x as its impulse energy measures if and only if M„ is positive 
definite or the conditions of Theorem 2 hold. 

Algorithm. We now propose an algorithm for determining whether a T(s) exists 
which has a prespecified set on n impulse energy measures and if so for determining 
the parameters of the lowest order T(s) satisfying the requirement. 

1. Successively form and evaluate det M,, i = 1, 2 , . . . , n. If for any value, say ix, 
the determinant becomes negative or zero for the first time, go to Step 2. Else, 
that is if det M^ > 0, i = 1, 2 , . . . , n and so M„ is positive definite, go to Step 3. 

2. Apply Lemma 3 for r = 1, 2, 3, ..., ix — 1. Only the second condition of the 
lemma need be checked as the first condition is ensured in Step 1. If for no value of 
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r is the second condition of Lemma 3 satisfied, no T(s) satisfying the requirement 
exists and the process stops. If Lemma 3 is satisfied for some values of r, say 
r_, r2, ...,rq then for these values of r apply (10) and (11) of Theorem 2 starting 
with the smallest value of r under consideration. If for rx,r2, ...,rq the conditions 
of Theorem 2 are not satisfied, no T(s) exists and the process stops. Else use (12) 
to determine the parameters of T(s) for the lowest tested value of r for which 
(10) or (11) holds. T(s) thus stands determined and the process stops. 
Apply Lemma 3 for r = 1, 2 , . . . , n — 1. Only the second condition of the lemma 
has to be checked. If for no such r is Lemma 3 satisfied then the lowest order 
of T(s) is n. Its parameters are determined from (12), with r = n, and the process 
stops. On the other hand if Lemma 3 is satisfied for some values of r say rx,r2,... 
..., rq, apply (10) and (.11) of Theorem 2 starting with the smallest value of r 
being tested. If for none of rx,r2,..., rq Theorem 2 is satisfied then again the lowest 
order of T(s) is n and its parameters are determined from (12). The process then 
ends. Else use (12) to determine the parameters of the system with the smallest 
among r_, r2,..., r_ which satisfies (10) or (11). T(s) is thus determined and the 
process stops. 

Example. Given Y0 = 1/120, Y_ = 1/120, Y2 = 11/120, Y3 = 481/120, Y4 = 
= 9971/120 

det M_ = det (1/120) > 0 ; det M2 = P / J 2 0 ° 1 > 0 

detM, det 
1/120 0 -1/120' 

0 1/120 0 
1/120 0 11/120 

> 0 

det M_ == det 

1/120 0 -1/120 0 
0 1/120 0 -11/120 

1/120 0 11/120 0 
0 -11/120 0 481/120 

> 0 

detM, det 

1/120 0 -1/120 0 11/120" 
0 1/120 0 -11/120 0 

-1/120 0 11/120 0 -481/120 
0 -11/120 0 481/120 0 

_ 11/120 0 481/120 0 9971/120 

> 0 

Hence M„, n = 5, is positive definite. Thus the existence of T(s) of order 5 having 
the prespecified 5 impulse energy measures is assured. We shall now use Lemma 3 
to check for the possibility of a lower order system meeting the requirement. 

r = 1 
_ f 1/120 - 1 / 2 1 n T „ 
det ', N= 0 . Lemma 3 not satisfied. 
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r = 2 det 

r = 3 det 

1/120 0 -1/120" 
0 1/120 - 1 / 2 

-1/120 - 1 / 2 11/120 
4= 0 . Lemma 3 is not satisfied. 

4 det 

1/120 
0 

-1/120 
0 

1/120 
0 

-1/120 
0 

_ 11/120 

0 -1/120 0 
1/120 0 -11/120 

0 11/120 - 1/2 
11/120 - 1 / 2 481/120 

0 
1/120 

0 
-11/120 

0 

-1/120 0 
0 -11/120 

11/120 0 
0 481/120 

•481/120 - 1 / 2 

0. 

11/120" 
0 

•481/120 
- 1 / 2 

+ 0 . 
Lemma 3 

9971/120J not satisfied. 

-1/120" Po 0 
0 Px = 11/120 

11/120 _Pi_ L V2 

Hence we need search only for a system of order 3. (12), for r = 3, yields 

1/120 0 
0 1/120 

u -1/120 0 

Sop0 = 6,p_ = 11, p2 = 6. 
Using (15) we have 

h_ = 0 , i = 0, 1 
= 1, i = 2 
= - 6 , i= 3 
= 25 , i = A 

Since r = 3 is odd we test using (11). It is satisfied. So the third order system is the 
lowest order system satisfying the requirement. The required 

T(s) = 
1 

+ 6s2 + l l s + 6 

5. CONCLUSION 

Criteria were developed for determining whether there exists a system with a trans
fer function without zeros which has a prespecified set of impulse energy measures. 
An algorithm was proposed for determining the parameters of the lowest order 
system satisfying the requirement, if such systems exist. 

(Received April 29, 1987.) 
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