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Influence of Resolution Power 
of an Instrument on Estimation 
of Basic Material Spatial Structure Parameters 

VRATISLAV HORALEK 

Two basic material spatial structure parameters (the mean number of particles per unit test 
volume and the mean value of the size distribution of particles) are expressed as functions not 
only of planar structure parameters but also of resolution power of used instrument, for example 
optical, electron or X-ray microscope. Various situations arising by using areal and lineal metallo-
graphic analysis are considered. An exact solution is given for Rayleigh's distribution of diameters 
of spherical particles randomly spaced in the studied material specimen. 

1. INTRODUCTION 

A very important property of each instrument for establishing the morphology of 
evaluated object is its resolution power. According to Abbe's theory, it is defined as 
the smallest distance of two points of investigated object which may be clearly 
recognized one from another using the given instrument. For example in optical 
microscope we can observe particles the size of which is equal to at least 0-35 times 
wawelength of light used for lighting studied object. The resolution power of X-ray 
microscopes is approximately the same. Electron microscopes for usual practice 
reach a resolution power about 3 nm and the most perfect types of these microscopes 
approach the theoretical value 0-3 nm [9]. With regard to the resolution power of 
the human eye (about 0-3 mm), it follows an effective magnification for the optic 
microscope 1500, for usual electron microscope 100 000 and for the most perfect 
electron microscope 1 000 000. 

Comprehensibly these facts should be taken into account in processing of mea
surements obtained by metallographic analysis of the polished plane using optic 
and electronic microscopy and in comparing results gained at different conditions. 
Otherwise in the first case the calculated material planar structure parameters are 
biased and a consequence of it is the bias of material spatial structure parameters 



calculated from them and in the second case we compare the populations of mea
surements that are in a different way deprived of the smallest particles. 

The aim of this contribution is to show the deformation of the distribution of an 
investigated characteristic of spherical particles (e.g. the diameter of planar section 
of a particle; the chord length intercepted on circular particle section by a line 
applied randomly to the microstructure in the polished plane) called just by the 
inability of the instrument and the human eye to record the particles of small sizes 
and to derive the expressions for estimating two basic material spatial structure 
parameters (the mean number of particles per unit test volume and the mean value 
of the size distribution of particles). Hitherto published solutions of these problems 
(see e.g. [1] to [5]) are always based on the assumption of absolute resolution power 
of the instrument. 

The contribution is divided into five chapters. After mathematical formulation of 
problems in Chap. 2, the influence of resolution power in areal and lineal metallo-
graphic analysis is studied in Chap. 3 and 4 respectively. The derived results are 
applied on Rayleigh's distribution of spherical particle diameter in Chap. 5. 

2. FORMULATION OF PROBLEMS 

In model constructing we shall consider the three-dimensional euclidean space E3, 
we shall locate randomly and mutually indenpendently the points Su S2,... in it 
and round each point S} (j = 1,2,...) we shall circumscribe a sphere r} with radius 
0-5^-. We shall assume that the positive random variables £,} are mutually independent 
and identically distributed with known continuous distribution function F(x) and 
probability density f(x), depeding on k0 unknown parameters 9U ..., 9ko. The v-th 
moment of random variable $} we shall denote av e.g. 

(2.1) av = xvf(x)dx 

and we shall assume that a3 is finite [2]. These moments together with the para
meters 6U ..., 6ko and the mean number Nr of sphere centres per unit test volume 
we shall call spatial structure parameters. 

Let a, b, c denote the coordinate axes in E3. Now let us consider two planes Va 

and Vb defined by equations a = const, and b = const, respectively. 

Let Rx c £ 3 be the union of all spheres r}, that means 

(2.2) Rx = \Jr} ; 

then 

(2.3) Ry = Rx n Va 



is the set of circular planar sections of spheres in the plane V„. The diameters r\u r\2, ••• 
of these sections are positive random variables which are mutually independent and 
identically distributed with distribution function G(y) and probability density g(y). 
It may be shown that for absolute resolution power (d„ = 0) the functions g(y) 
and G(y) are of the form (see e.g. [1] to [3]) 

(2-4) )̂ = Z ГтiЦ 
a i Jy v ( x - У 

f(x)åx 

and 

(2.5b) = 1 - 1 r\/(x2 -y2)f(x)dx. 
a i J , 

Let c = V„n Vb. Then 

(2.6) Rp = Ry n V„ 

is the set of chords that the line c intercepts on circular sections in the plane Va. The 
chord lengths tyl,ijt2, ... are positive random variables mutually independent and 
identically distributed with distribution function K(p) and probability density k(p), 
depending on g(y) and therefore on f(x) too. It may be shown that for absolute 
resolution power the functions k(p) and K(p) are of the form (see e.g. [2] and [3]) 

{1Jb) -UIva7^(^^/Wd"d' 

(2.7c) = - * [1 - F(p)-] 
oc2 

and 

(2.8) K(p) = 1 | !"x2 f(x) dx - p2[t - F(p)]\ , 

where F(p) is the distribution function of the random variable £,• 

(2.9) F(p) = P(Zj^p)=\Pf(x)dx 
Jo 



450 and Pv is the v-th moment of the random variable r\} 

(2.10) pv = V vv g(y) dy . 

Let yv denote the v-th moment of the random variable i/zj 

(2.11) yv=rp*k(p)dp. 

The moments fiv and yv together with parameters JV^ and NL are called the planar 
structure parameters, NA being the mean number of circular sections per unit test 
area of the investigated plane Va and NL the mean number of considered chords per 
unit length of test line c. 

The definition of moments av, ftv and yv will be extended for v < 0 too. 
Due to the fact that the spatial structure is not directly observable, the para

meters of this structure must be expressed as functions of planar structure para
meters, the size of which we can estimate using processing of measurement results 
obtained on polished plane. We shall give our attention to two basic spatial structure 
parameters: Nv and xv It is known (see e.g. [2] to [4]) that for absolute resolution 
power 

(2.12) AV = — 
«i 

holds. The first moment otj is, of course, spatial structure parameter too; however, 
using the relation (see e.g. [2] and [5]) 

(2.13) a, = — , 
2/L . 

we get Nv also as function of only planar structure parameters in the form 

(2.14) 
71 

Further we know that 

(2.15) 
ßl 

and analogically to (2.13) 

(2.16) A - J L 
2y-i 

holds, so that with regard to (2.12) we have 

(2.17) NV=Љ, 

«»л 



inserting (2.13) and (2.16) in (2.17), we obtain 

(2.18) NV = 2-^L± 
n p1 

and 

(2.19) Ny-Wfp^.y^ 
n 

respectively. 

From relations (2.12) to (2.19) we can see that we are able the basic spatial struc
ture parameters express as functions of NA and /?v, the size of which we can estimate 
from areal analysis, but we are unable to express them as functions only of para
meters NL and yv, the size of which we can estimate from lineal analysis using the 
readings from automatic image analyzer e.g. Quantimet of older type or Scandig. 

All hitherto introduced relations are valid for absolute resolution power. Now 
we shall investigate the changes arising in case of fixed resolution point that we denote 
d^d* > 0). Solving further problems, we can always assume, without detriment 
to generality, that 

(2.20) d* < y. 

and consequently also 

(2.21) d„ < j8. . 

The influence of resolution power of an instrument in application of areal analysis 
is given in Chap. 3 and of lineal analysis in Chap. 4. 

3. INFLUENCE OF RESOLUTION POWER IN AREAL ANALYSIS 

In application of areal analysis only those diameters of particle sections are 
registered, whose diameter tjj > d+. Therefore, the corresponding probability 
density g*(y) has the form 

a(y) 
- G(d*) 

(3-1) ^ - 7 = ^ - 7 - ^ for y>d>, 
f™ 1 

g(v)dv 

= 0 for 0 < y ^ d* , 

where g(y) and G(y) are given in (2.4) and (2.5) respectively; analogically to (2.10), 
the v-th moment /?* of the distribution g*(y) will be 

(3-2) Pt = f V g*(y) dv = l f"/ g(y) dy. 
Jo, l - G ( r f * ) J d . 



•452 Now we shall prove the validity of these two inequalities 

(3.3a) fi, < P* for v > 0 , 

(3.3b) pv = p* for v < 0 

(for v = 0 is, of course, P0 = P* = 1). 

Proving (3.3a), we shall go out from the inequality 

(3.4) \i'fg(y)dy<dl\d'g(y)dy. 
• Jo Jo 

With the aid of (15.4.5) in [6] 

(3.5) ff S K-xPUi , v > 0 , 

we can prove, with regard to (2.1), that 

(3.6) dl < p\ = pv, 

so that we may rewrite (3.4) as follows 

I V g(y) dy-\ f g(y) dy | g(y) dy < 0 
Jo Jo Jo 

and that, after adding the integral §™ yv g(y) dy and arrangement, can be transformed 
to the inequality 

(3.7) [1 - G(d»)] f "V g(y) dv < f°°yv g(y) dy 

which, however, is only another form of inequality (3.3a). 

Proving the inequality (3.3b), we shall use gradual inequalities 

(3.8) r9(y) dy I f 'y-* g(y) dy~\ = f ™g(y) dy ld~v f~'g(y) dy~] = 

= |%(>-) dyTy^g(y)dy 

or 

(3.9) rg(y) dy (" | 'y^g(y) dyj - |"l - Cg(y) dy] f%~' g(y) dy = 0 

and hence 

(3.10) f g(y) dy f y ' v g(y) dy - [*y~* g(y) dy = 0 
id, Jo J«J. 



which, however, is only another form of inequality (3.3b). To be able to take up the 453 
influence of resolution point d* (d* > 0) on the change of spatial structure para
meters Nv and a,, we need, except for the proof of inequality (3.3b), to find the 
limits of moments /._, and /?*, using the variable c/*. Firstly it holds 

(3.11) 

Гy-lg(y)dy j-Гg(y)dy 
в* = •__*. < _____L_ï 

Гg(y)dy Гg(y)dy 
J_» J-» 

Secondly we have 

(3.12) /._! = f V 1 g(y) dy~\ = Ti V 1 g(y) dv + ("V 1 g(y) áy ' $ 

< rf* fd, f > » a(y) áy + ^(y) áy] * < dm , 

•.i'y-1g(y)dy+rí 

being 

(3.13) 

while 

(3.14) J V ' g(y) dy = j - [%(>>) dy - j - f"l - Ta(y) dyl. 

From (3.3b), (3.11) and (3.14) it follows that , 

(3.15) |8-.i__.*-i. 

In areal analysis we are able to register only those particles, whose circular sections 
have the diameter r\} > d* in the polished plane. Therefore, between the observable 
mean number N* of such sections and real mean number NA of these sections per 
unit test area, the inequality 

(3.16) N . -= ŃSЯ(?) ăў < NA 

must always hold. Therefore, in practice the equations (2.13) and (2.14) have in fact 
the form 

(3.17) 
2.3*! 



and 

(3.18) N*^t£L±fc% 

n 

respectively. In view of (3.15) and (3.16), we must state that 

(3.19) a f f c ^ f c ^ L . . - . - . . 
2 2 /L, 

and 

(3.20) Nv ^ - — :_ — = Nv . 
n d* jS_, 

For real shapes of probability densities j(x) we can make this conclusion: the ap
plication of the relations (2.12) and (2.13), derived for absolute resolution power, 
in the case of reduced resolution power leads in areal analysis to: 

a) overevaluating real mean value <xt of the distribution of sphere diameter, 

b) underevaluating real mean number Nv of sphere centres per unit test volume. 

4. INFLUENCE OF RESOLUTION POWER IN LINEAL ANALYSIS 

In application of lineal analysis we shall consider two cases, which may occur 
owing to the existence of resolution point d*: 

a) there are recorded the chords only on particles whose circular section in the 

polished plane has diameter t\j S; d*; 

b) there are recorded only those chords whose length \j/j > d*. 

The first case occurs owing to the inability of used instrument to recognize the 
particles with diameter smaller than d*. The second case is typical for automatic 
image analysers based on scanning; the distance between two neighbouring lines 
gives just the resolution power. 

From the relations (2.12) to (2.19) we can see that the lineal analysis enables us to 
get only the estimate of /?,. Lineal analysis together with area! analysis make possible 
to obtain the estimates of <xt and Nv. All these relations are functions of the moment 
y_s. Let us investigate the influence of resolution point on the size of this moment 
in both cases under consideration. 

In case a) we locate the line c on the polished plane Va, covered by circular sections 
the diameter of which has probability density g*(y), given in (3.1). Let us suggest 
that for the probability density g(y), having the form (2.4), the corresponding v-th 
moment yv of the chord length distribution k(p), given in (2.7a), has the form 



(4.1) yv = LAJlZiil for v = - 1 , 0 , 1 , . . . , 

where r(n) is gamma function and j9v is given by (2.10). In the case a) the probability 
density k(p) passes on the form 

(4.2) k*(p) = -P-T g*W_dy 
1 ' ft J, v V - P2) • 

and the relation (4.1) on the form 

r(1)r(-r)». 
(4.3) yv* = ^-2^L b±l for v = - 1 , 0, 1, . . . , 

where /?* is given in (3.2). For v = — 1, we get 

(4-4) 7-1 = 2T 
and 

(4-5) r*, = - ^ . 

In view of (3.3a), we have 

(4.6) y*t < y_, , 

therefore, the moment y_x is again underevaluated and, due to this fact, the same 
property has the estimate of the spatial parameter Nv, defined by (2.19). From 
(3.3b) it namely follows that 

(4.7) P-t^P*-i 

and besides that, in accordance with (2.15), we have 

(4.8) N*L = p*N* < P*NA rg(y) Ay = NA f v g(y) d v < NApt = NL . 

Therefore, we get 

(4.9) N* = ™± £ . £ . < ^ / L . y . . = !VK . 



Now let N*L denote the mean number of sphere centres per unit test volume gained 
using lineal analysis (the case a)) and N*A that gained using areal analysis and 
expressed by (3.18). We see that 

(4-10) N*VL = N*A 

holds. 
In the case b) we locate the line c on the polished plane Va, covered by circular 

sections whose diameters have probability density g*(y), given in (3.1); but, in 
comparison with the case a), we are able to record from the originated chords only 
those, whose length ij/j > a"*. The corresponding probability density k**(p) of 
detectable chord length has the form 

(4.11) fc**(p)= - k*(p) , 

| k*(p)dp 

where k*(p) is given in (4.2) and the v-th moment y** of this distribution is given by 

(4.12) yT = f V k**(p) dp = — J f °V fc*(p) dp . 
r = Гfk**(P)dp = ~ J — П 

Jd- j k*(p)dP

 Já* 

By similar way as in the case of moments /?„ and /J* for v < 0, we can prove that 

(4.13) y * . ^y**. 

With respect to (4.6), this inequality can be extended in this way 

(4.14) y_, > y ! . = y**t . 

The application of the procedure b) in (2.19) leads to an expression that we shall 
denote N** and for which 

(4.15) N*V*L = ^ PUyt\ < ̂  /r^y*-, - KL 

n2 n2 

holds. From (3.20), (4.10) and (4.15) it follows that 

(4.16) Nv > N*VA = N*VL > N**L . 

Now we can conclude that the procedure b) gives a more expressive underevaluating 
spatial parameter Nv than the procedure a); with regard to (3.15) and (4.13), we gain 

(4,7) " S - < ^ Z -



5. DETERMINING CORRECTION FACTOR SIZE UNDER THE 
ASSUMPTION OF RAYLEIGH'S DISTRIBUTION OF SPHERICAL 
PARTICLE DIAMETERS 

In two foregoing chapters our attention was concentrated only on demonstration 
of the resolution power influence on the size of spatial structure parameters in the 
case when these parameters are calculated accordng to the expressions, derived 
for abolute resolution power. In this chapter, we shall introduce the expressions 
for relevant correction factors under the assumption of Rayleigh's distribution of 
spherical particle diameter 

(5.1) j(x) = - e-*2/2", x>0, (i>0, 

where fi is a parameter of the distribution. It may be proved [1] that the correspond
ing distribution of circular section diameters is also of the same type, that means, 
it holds 

(5.2) 9(y)~~r »{{x) . ^ - - V " ' * , 
«i Jy v(x - r ) /» 

(y > 0; n > 0), where 

(5.3) «. = J""x/(j.)dx- fe. 

A consequence of this property is the equality 

(5.4) /J. = ee. . 

In addition to this, we have 

(5.5) p-t- r i e - ^ d y - l~. 
Jo M V2J" 

In areal analysis with point resolution J* the equation (5.2) becomes 

(5.6) g*tf)„-4£—-ltV*-»I» for y>d>, 

J .7(»)d. " 

= 0 for 0 < y < d* . 

For the v-th moment /J* we get 

(5.7) p* = f"/ ff*(>») dy = - ed-2/2" f ° ° / + V ' 2 ' dy ; 
Jd. V- Jd, 



458 the substitution 

(5.8) 

gives 

(5.9) p 

where 

f5.io) r ( « , x ) = r r V 

= ë'^\2џY2 Г 
Jđ, 

II 
2џ 

z^2e- г dz = cđ'2l2Ҷ2џУ'2 Г (í + - ; - ï ) , 
Њ ^ V 2 2џ) 

dí 

is the incomplete gamma function. For numerical calculations, it is useful to express 
the incomplete gamma function as a function of a complement Q(;c2/fc) of the 
^-distribution function which is tabulated. It holds, namely, 

(5.П) Г(n, x) = Г(n) Q(x2 = 2x\k = 2n), 

R(d.) - - - R(d.) 



where 459 

(5.12) Q(X
2 | fc) - 1 - P(x2 | fe) = \lm r (-XT* j"° tk'2-^"2 At 

(0 <. x2 < co), P(z 2 | ^ being the ^-distribution function and fc the number of 
degrees of freedom. 

Now, inserting (5.11) in (5.9) and expressing the parameter / i a s a function of the 
moment Pt and jS_t, using (5.3) and (5.4) and (5.5) respectively, we obtain the 
moments /?* and jS* t in the forms 

(5.13) 

where 

(5-14) 

and 

(5.15) 

čľ = /Лe* 2 / 2ß(x2 |з), 

, = П 4 

2 Ä ' 

/JÍ.-.S-.e^Gť/ll), 

0 0,005 0,0í 0,02 

20 ß . f 

Fig. 2. 



460 where 

(5.16) Z 2 - = - < £ / £ . . 
7T 

From (5.13) and (5.15) it is clear that the correction factor for converting /?„ in /?* 
(v = +1) has not simple form, in spite of equality of moments at and jSx. 

Fig. 1 represents the relation (515) for various levels of d* (0 = d* = 0-5). From 
the courses of curves d* we can verify the validity of proved inequality (3.3b) for 
d* > 0; in addition to this, we can see the expressive influence of increasing d* on 
the underevaluating /?_j. For d* = 0, we have /?_x = fi*_1. 

In Fig. 2 the ratio 
A*. 

l3! 

is plotted as a function of the resolution point d* (0001 = d* = 0-5). The choice of 
this graphical form was called by the fact that the greatest differences between ft* 
and B! arise in the domain of small values. From the courses of curves d* it can be 
again verified the validity of the inequality (3.3a). For calculated moment P* and 
given d*, we can read off the value of the ratio R(d%) and by means of it to determine 
the unknown moment P±. 

For calculating curves in Fig. 1 and 2, we used the tables of ^distr ibution and 
relevant expansions introduced in [7]. 

(Received June 24, 1977.) 
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