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KYBERNETIKA —VOLUME 13 (1977), NUMBER 2 

Problem of Averaging in Digital 
Measurements 

JAROMÍR SMEJKAL 

The averaging is one of the basic methods in measured data processing. However, in digital 
measurements the mean value of the quantized signal differs from the analog input mean due to the 
finite ADC resolution and random error distribution. In this paper the practical limitations of the in
creasing the number of samples and conditions of ACD resolution improvement by means of 
averaging are being examined in terms of information theory. Two fundamental types of averaging 
are discussed by making use of the characteristic function and E-uncertainty which, in addition 
to definitions given in [3], is likely to be good means to evaluate different measuring processes. 

List of symbols 

x analog random variable 
X„ discrete equidistant values of random variable 
w(x) continuous probability distribution, i.e. the probability of x having a value 

between x — dx/2 and x + dx/2: 

(1) f w(x)dx = l 

p(n) probability in discrete points X„ 

(2) Y, P(n) = 1 '> P{n) — 0 f° r n < VL a n c l n > vP ; 

— 00 < VL < VP < 00 

the discrete function p(n) is said to be uninterrupted if there are no zero-
probability points between any two non-zero-probability points. 

A interval width in quantization (resolution of ADC) 
v continuous real variable 
0(v) characteristic function corresponding to w(x) 



T(/) discrete characteristic function 139 
M number of samples (readings, observations) to be used to calculate the mean 

value 
in,„M statistical n-th order moment of distribution of the mean stated from M 

samples: 

(3) mnM = x" wM(x) dx 

a standard deviation 
h differential entropy [ l ] 
HM(A) residual E-(entropy)-uncertainty of error distribution of the mean stated 

from M samples 
KA,M asymmetry coefficient of distribution 
KEM excess coefficient of distribution 

(4) S„(M) = Y, k) ; S0(M) = M 
J = I 

i = v ' - l 

lb y binary logarithm of y (taken to the base 2) 

Some abbreviations 

ADC analog-to-digital converter 
BC "box car" distribution 
CD constant distribution 
G Gaussian (normal) distribution 
RPHS random phase harmonic signal (distribution) 
LSB least significant bit 

1. FUNDAMENTAL RELATIONS 

The differential entropy [ l ] of the random variable probability distribution is 
defined as 

(5) h = - p w(x) . lb (w(x)) dx ^ 0 . 

If A equals the resolution (LSB weight) of ADC (quantization), the discrete distribu
tion 

[X„ + A/2 

(6) P(n)=\ vv(x)dx 
JX„-dl2 



140 is characterized, if uninterrupted, by E(entropical) uncertainty 

(7) H(A)m - 2 X « ) . l b ( p ( n ) ) £ 0 . 

It will be seen from the result of this paper that if H(A) ^ 3 bits (i.e. A is very small) 
the E-uncertainty may be simply expressed by 

(8) H(Л) mh- Л. 

Note. H0(A) denotes the "a priori" E-uncertainty of the signal to be measured and 
HM(A) is the residual (a posteriori) E-uncertainty of the mean value calculated from 
M ^ I values quantized by an ADC. The information gained by measuring and 
averaging M samples equals H0 - HM. Throughout this paper the value to be mea
sured (i.e. the input mean) is supposed to stay perfectly constant during the process 
of measurement and the random interference to be superimposed on it. The error 
statistical parameters are presumed to be stationary. 

. A : A 

к w t x 

ppl-1) p!0! Pd) pßNvJ 

X-2 
*• 

x„ 
Љ м X, x2 K 

Fig. 1. Continuous probability distribution and division of X axis. 

The probability distribution w2(x) of the mean of two readings (i.e. samples) 
having the same wt(x) may be proved to be 

(9) x) = 2 Í wt(x + ą) wx(x - í ) dč 

However, the utility of this formula is limited to some special cases even if it can be 
extended for averaging more samples. The characteristic function seems to be more 
convenient to form the theoretical basis of averaging. 

The well known relation between w(x) and the characteristic function [ l ] is de
scribed by integral transforms as follows 

(10) 

and 

(П) 

e(v) = w(x). evx dx 

v(x) = — 0(v)e~'vxdv 
~~ J - 0 0 



which may be simplified for symmetrical distributions to 

(12) 0R(v) = 2 wR(x). cos (vx) dx 

and 

1 f00 

(13) WR(X) = - I @R(v) • cos (vx) dv 
i j o 

where Wj,(x) = wR( — x). 

If the shape of w(x) is changed by a constant coefficient k to (i/A;) w(xjk), then /i 
changes to h + lb /c and 0(t;) to 0(/o>). 

It is very useful to express ©M(v) by an array the coefficients of which are composed 
of statistical moments of wM(x) as follows 

(14) 0M(v)=l+im^f(iv)" 
n = l n\ 

2. THE SUM AND MEAN VALUE CALCULATIONS 

The characteristic function of a sum of M = 1 independent random variables 
equals the product of their characteristic functions 

(is) es(v) = fl en(v). 
n = l 

The "weighted sum" results in 

(16) 0s(v) = n et(k„o), 
n = l 

where 0„(i;) = 0t(k„v) for n = 1, 2, . . . , M since w„ (x) = (i//c„) w1(x/fr„). 

The mean value is stated by dividing the sum by S!(M) which yields 

(17) wM(x) = S ^ M ) . ws(S,(M). x) 

and the weighted mean characteristic function is 

(,8> 0*^0*{^4MM 
Statistical moments of wM(x) are listed in Tab. 1. 
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3. SPECIAL TYPES OF AVERAGING 

In measurements the following two fundamental types of averaging procedures 
are being used: 

SD: averaging the set of M data the weight of all of them being 

k„ = fc. = ! and S„(M) = M 

and the characteristic function 

(») e»w-«?(^). 

CF: averaging by continuous filtering; in a digital low-pass filter of the "band" j 
the weights are k„ — kJn = k"0 and M -> GO as the filter operation is in steady 
state (exponential averaging). In this case 

(20) S/oo) = 
1 - k0 1 - k' 

and it follows that 

(21) ejv) = fl ®t{K . (1 - k0) v) . 

4. CALCULATION BY MEANS OF MOMENTS 

The procedure of successive multiplication of arrays (14) is described in Appen
dix, where 

(22) » „ = ^ , 

n\ 

and AMfi = @M(v). 

Resulting moments of the probability distribution of the mean value are 

(23) " V M = -^—r—. «M,„ 

The 1st order moment 

(24) m 
> "" i . S t ( M ) 

remains without change as it is well known from experience. Therefore no generality 
loss occurs by setting 

(25) mltM = 0, a M j l = 0 , M = 1, 2, 3, . . . . 



Tab. 2. Properties of most important distribution types (H^Aj) _: 3 bits). 

lb crt + І l b 2 т i e = 

( i Ib 2тгe = 2-047) 

a + \ = 

= lbff! + 1-793 = 

= hr. -0-254 

lb (a + b) -

-_-_-iь£ 
a + b b 

a + 0-776 = 

= 10 0-, + 1-276 = 

= A„ - 0-771 

in consequence of which all the probability distributions are presumed to be centered 
throughout the rest of this paper. Then the formula (A.6) is simplified to 

(26) «_,„ = o1,л
ІM-1) + «м-t,„ + E-_-i.,«м-.fcГ,н*-1) 

which is by making use of (22) further formed to 

_ mB;1/c"0

(M___ + _____ - 1) « „ , „ - , 

" V M = "s;(Af) " " " 
(27) 



Tab. 2. (continuation) 
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4 

0 

Ъa\ 

a4 

5 
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5 

Зa 4 

8 

0 

0 

(a - b) V'27 

4 > b 

0 

5 

-1-500 

S\(M)Či\l 
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(Гl) 

The formulas for three most important moments and coefficients corresponding 
to the resulting distribution due to the extent and type of averaging are given in Tab. 
1. It may be seen that KEM and KAM are decreasing to zero as the number of samples 
increases and the shape of wM(x) is approaching the Gaussian function in accordance 
with the central limit theorem [ l ] . 



The formulas in Tab. 1 are valid for # M ( ^ t ) i? 3 bits only. If HM(At) < 3 bits 

the bin width is not more negligible in comparison to the distribution extent. The 

mean value calculations must be performed by numerical methods, either by a dis

crete form of (9) or by means of discrete characteristic function. Especially beneath 

the 2-bit level the E-uncertainty is strongly dependent on the input mean position 

within Au Fig. 2, and on rounding or truncating method used in handling the results. 

-Л '• 

Fig. 2. E-uncertainty of Gaussian distribution for different relative positions of the value to be 

measured. 

The total development of the residual E-uncertainty vs. the number of samples 

is given in Fig. 3 for several typical forms of w ^ . T h e probability distribution of the 

0 H8=H r1.50 

C D Hs- H, - 1.2 3 

BC[e/b.1.50) H«H,-1.15 

C(a/b=2.33] H8-H,-0.88 

RPHS H J . 1^-0.75 

JH„-3 

Fig. 3. E-uncertainty decreasing vs. number of samples used to calculate the mean value. The 
original discrete distribution at M = 1 is presumed to be uninterrupted. 

random error stated at one sample (i.e. reading or observation) tends to approach 

a Gaussian form and its E-uncertainty decreases as the number M of samples is 

getting greater. There are three ranges of E-uncretainty course to be seen. The original 



generally shaped distribution wJx) or better Pi(n) which is presumed to be uninter
rupted, changes to nearly Gaussian distribution at the end of F-range (forming) 
which represents the mean value calculation from up to 8 samples. The E-uncertainty 
decrement H1—Hs is summarized in Fig. 3 for several distribution types. 

In practice most of additive errors have symmetrical distribution (KAit — 0) 
unless these are unfavourably affected by finite extent of the data set or by spectral 
properties of signals to be averaged. Further it was experienced that \KEA\ ^ 1-6 
and|KAjlJ S 0-9 are limits to calculate with which yield \KE_S\ ^ 0-2 and \KAj8\ ^ 0-32. 
The latter values have no significant influence on Hs at the entry of the G-range 
(Gaussian) where the one-bit decrement of E-uncertainty starts to correspond to 
multiplying M by 4 until the level of 3 bits is reached so that 

(28) M c = 4 * - 3 . 

The 2-bit uncertainty level is then reached approximately by 32MG samples. By 
comparing the formulas for m2;M in Tab. 1 the filter feed-back constant on CF-
averaging (eq. (20)) is stated to be 

(-, * - - -^ f 
The rest of the E-uncertainty course for M > 8MG is denoted as D-range (deform

ing). As a result of numerical calculations the dependence of HM(At) on the position 
of the input mean within At was stated and plotted in Figs. 2 and 3. 

5. IMPROVING THE RESOLUTION OF QUANTIZATION 

In averaging the mean value may be rounded and located into fractional sub-
intervals 

(30) Aq+i = Av2-\ - = 0 , 1 , 2 , . . . , 

in order to improve the resolution of A/D conversion by software interpolation [4]; 
if q = 0 then there is no change in resolution. The errors resulting from this procedure 
may be well understood on the basis of Fig. 1 where the constant value to be mea
sured stands at the distance (5, from the interval centre C. For M -*• <x> the result 
of SD-averaging is 

v p /•(.«+ l / 2 ) J i 

(31) 5m = £ n\ wfa-Sjdx 
"""• J(n-l/2)... 

see eq. (2), too. The expression (31) was evaluated for several types of discrete distri
butions Pi{n). It was stated that for symmetrical distribution (i.e. KAA = 0) the 
maximum of \dt - <5j occurs for input mean being situated in A — position whereas 



if KAil 4= 0 the maximum is found for C-position. The survey of the maxima in 

graphical form is given in Fig. 4 vs ratio of standard deviation ai to /^.The error 

given here results in the relative shifts of subinterval boundaries inside every original 

interval J t as stated in [4]. Nevertheless it should be born in mind that even if by 

theory 

(32) = Љ M 

the <j~bit resolution improvement is accompanied by an E-uncertainty increase 

of i lb M, see eq. (8), in averaging M samples the random error of which is of Gau

ssian type. It follows therefore, that q should be less than \ lb M in order to maintain 

the E-uncertainty decreasing at the same time. Further limitations are due to the 

distribution form. 

Fig. 4. Maxima of relative deviation of calculated mean for important distribution types and q 

bit improvement of resolution. Comparison with E-uncertainty for H^A^) Sg 3 bits. 

The problem should be well understood by the help of an example illustrated in 

Fig. 5 : let the analog input signal probability distribution wt(x) be of CD type having 

2a = 2-5^! (i.e. at = 0-72^!) and the mean 0-25Ax (A-position); the point x = 0 

is located in the center of the bin denoted by n = 0. The diagram shows p'(n) after 

quantization, M = 1, the discrete output mean is X0. In order to improve the resolu

tion by q = 3 bits further 14 discrete zero-probability points must be artificially 

added inside the original bins the result of which being a new interrupted discrete 

probability distribution pt(n) and the discrete mean X2/8 by rounding to A4. After 

having averaged 8 samples (M = 2q = 8) one gains an uninterrupted distribution 

ps(n) characterized by HS(A4) = 3-08 bits and the mean 0-20A, which yields a rela-



tive deviation |0-25-0-20| AX\AA = 0-40, see Fig. 4, too. It follows that if the input 149 
mean was within (O-188^dj; 0-237/Jj) the resulting mean would be rounded errone
ously to X1/8 due to deviation 0-05/11. This shift diminishes toward the points Land 
C of At. 
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Fig. 5. Illustrative example of ADC resolution improvement. 

6. DISCRETE CHARACTERISTIC FUNCTION 

If Hi(Ai) < 3 bits the simple relations (10) . . . (13) are not more valid and it is 
more advantageous to make use of the discrete transforms 

(33) 

and 

(34) 

m~ z Pl(n)e+ľj 

ІV, í^лx.,, 

where the number of discrete points iVj = 1 + vP>1 — vL1 = 1 + APA — XLl. 
Out of the extent of these points the probability equals zero. In a symmetrical case 
PR(-n) - pR(n), vPA = ~vL>i (JVj is odd): 

(35) TRЛ(l) = pлM + 2 £ PкM cos [2я 

andforЯ P J = — ЯL>1 

(36) ..(») = т j ; [ ü д r ø + 2 l V я , , ( / ) c o s ( 2 * - ^ ] 

The sums and mean values are to be calculated by formulas similar to those denoted 



150 by (.15) . . . (18) where T(/) is to be used instead of 0(v). However, the non-zero 
probability range of the sum of M values will be enlarged to NM points, where 

(37) NM = 1 + vPM - vLM = 1 + M(vPA - vLA) = 1 + M(JVj - l ) . 

When calculating the mean value we must return back to the original set of discrete 
points Xn, (vL|1 ^ n | vPl) completed with additional interpolation points for 
q ~ 0 (improvement of resolution) if possible. The distribution of the mean 
rounded to discrete points denoted by non-integer subscript 

(38) n = vLA + ; + t. 2~q for j = 0, 1, 2, . . . , JV, - 1 , 

where t = 0, 1, 2, . . . , 2" - 1 , is 

(39) P M » = - L Z ( Y TM(l).e-'^'» 

HP = Min{MvP>1; (n + 2 " 9 " l ) M - 1} , 

HL = Max{Mv t > 1;(n - 2 ~ 9 - ' ) M } 

In practice the discrete transform procedure will be useful in the range Hy(A^) < 3 
bits only where the ratio aijAy is relatively small, Figs 2 and 3. 

7. PRACTICAL RESULTS AND CONCLUSION 

The diagram given in Fig. 3 is a good mean to estimate the maximum number 
of samples to reach the 2-bit level of E-uncertainty by averaging, i.e. MT2 = 32MC. 
If there is no intention to improve the ADC resolution the H8 may be stated by means 
of Ht and of the type of the input random error distribution; MG is given by (28). 
The 2-bit level of final E-uncertainty seems to be a practical limit of averaging 
beyond which the further increasing of M stops to be effective. 

In order to illustrate the outlined considerations let us describe an example: 
a centered constant distribution (CD, Tab. 2) having a = 32zll5 KEA = -1-20, 
<-,_ = IS-5A1 and Hx = 6 bits changes by SD averaging 8 samples to KE>8 = -0\15 
and H8 = 6-0 - 1-23 = 4-77 bits so that by (28) M c = 41-77 = 11-6 = 12 groups 
of 8 samples are necessary to reach a 3-bit level, i.e. in total MT2 = 32MC =384 
samples to reach a 2-bit level. A digital LP filter having ka = 383/385 should be 
optimal by theory to match this averaging problem in CF mode. 

The resolution improvement results always in an E-uncertainty augment and it 
does not bring any profit in information gain unless accompanied by suitable in
creasing the total number MT2 of samples to reach the 2-bit level. As a result of 
considerations given in this paper the diagram in Fig. 6 was plotted in which MT 2 is 
given vs. the original one-sample E-uncertainty provided the maximum relative 



output mean deviation (Fig. 4) should not exceed 0-5. In practice MT2 is limited 
by a record length in data store or by a time interval of measurement. On the right 
axis in Fig. 6 there are the LP filter coefficients corresponding to MT2 by eq. (29). 

Fig. 6. The total number of samples MT2 to reach a 2-bit level and corresponding LP filter coeffi
cients vs the original E-uncertainty (at M = 1) and parameters of symmetrical distribution types. 
The influence of resolution improvement by q bits. 

These are limited by digital filter construction, i.e. word length etc. If, for example, 
MT2 = 104 samples or k0 = 1 — 2 ~ ' 2 the ratio oljAl = 100 of Gaussian random 
error distribution represents the maximum one-sample E-uncertainty Ht(At) = 
== 8-65 bits which can be reduced to 2-bit level without the possibility of ADC resolu
tion improvement (i.e. q = 0). Under the same conditions the E-uncertainty HX(AX) = 
= 4-7 bits offers the improvement possibility of q — 4 bits. From the practical point 
of view it seems that there is no reason for taking q > 4 bits into account due to 
further errors introduced by non-linearity and thermal dependability of AD converter. 

In case of Gaussian noise the resulting mean deviation due to resolution improve
ment is very small even for G±\AV ^ 0-3, Fig. 4. For practical purposes (q ^ 4 bits), 
therefore, good results can be obtained even without adding artificial noise to the 
input analog signal [4]. On the other hand other distribution types are by far not so 
advantageous. 

The idea of this paper was to show the problems and limitations of quality in
creasing in measurements by averaging. The approach based on the E-uncertainty 
is likely to give very simple means for solving many similar problems in preprocessing 
of data. 



152 7. APPENDIX 

The array 

(AT) A . » = l + f aa,„fc"V 
n= i 

is for M > 1 and fi = 0: 

(A.2) AM-i,o(») = 1 + oM_ 1 ( 1» + aM_U2v
2 + a M _ l j 3 _ 3 + . . . 

and for M = 1, /? = M - 1 

(A.3) ALfM^(v) = 1 + aulk
M~lv + a ^ f c ^ - ' V 2 + a ^ f c ^ " 1 * . 3 + . . . . 

The components of the product 

(A.4) AM>0(v) = AM_U0(v)AUM-1(v) 

are 

(A.5) aM, = ÍaM_ujai^jJÓ"-^-1K 
j=o 

For a„0 = 1 , B = 1 2,3, . . . the expression (A.5) is simplified to 

(A.6) aM(„ = a , ^ — 1 ' + a M _ l i n +"ZaM-i, J -ai , n - J fe ( "- J ) ( M - 1 ) 

J = I 

i.e. for example 

(A.7) aMX = aitik
M-1 + a M _ 1 ( 1 = aiAk

M-1 + a u i k M ' 2 + a M _ 2 > 1 

1 — fcM 

. . . = a 1 ( 1 ( fc M _ 1 + fcM"2 + . . . + fc + 1) = — a 1 ( 1 = SL(M) a l 5 l . 

(Received April 14, 1976.) 

REFERENCES  

[1] B. R. Levin: Teoria sluchaynykh processov i yeo primenenie v radiotckhnike, Sov. Radio, 
Moscow 1960. 

[2] W. Grobner, N. Hofreiter: Integraltafel J, II. Springer Verlag, Wien—New York 1965/1966. 
[3] P. J. Campion, J. E. Burns, A. Williams: A code of practice for the detailed statement of 

accuracy. National Physical Laboratory, Her Majesty's Stationery Office, London 1973. 
[4] A. R. Gedance: Estimation of the mean of a quantized signal, Proc. IEEE 8, pp. 1007—1008. 

60 (1972). 

Jng. Jaromír Smejkal, CSc, Výzkum strojírenský ÚVZÚ {Central Research Institute), ŠKODA 
o. p. Plzeň, Tylova «/., 316 00 Plzeň. Czechoslovakia. 


		webmaster@dml.cz
	2012-06-05T03:52:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




