Jaroslav Weiss Kompenzace poruchy pomocí modelu v diskrétním regulačním obvodu

Kybernetika, Vol. 1 (1965), No. 5, (410)--420

Persistent URL: http://dml.cz/dmlcz/124310

Terms of use:

 $\ensuremath{\mathbb{C}}$ Institute of Information Theory and Automation AS CR, 1965

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

KYBERNETIKA ČÍSLO 5, ROČNÍK 1/1965

Kompenzace poruchy pomocí modelu v diskrétním regulačním obvodu*

JAROSLAV WEISS

Je uvedeno schéma diskrétního regulačního obvodu, u kterého je možno dosáhnout požadovaných dynamických vlastností při působení řídicího i poruchového signálu. Jsou odvozeny přenosy obvodu a provedena jejich analýza z hlediska citlivosti na změny dynamických vlastností regulované soustavy.

1. ÚVOD

Při syntéze regulačních obvodů je kladen požadavek, aby výstupní veličina sledovala co nejpřesnější vstupní řídicí veličinu a aby byla současně co nejméně ovlivněna vstupujícími poruchami. Obvykle je obtížné vyhovět oběma těmto požadavkům současně. Je-li korekční člen obvodu navržen tak, aby výstupní veličina sledovala dobře řízení, má obvod nevhodné dynamické vlastnosti při působení poruchy a naopak. Tato obtíž vyniká zejména u diskrétních regulačních obvodů. V této stati bude uvedeno uspořádání regulačního obvodu, u kterého je možno dosáhnout současně požadovaných dynamických vlastností při působení řídicího signálu a při působení poruchy v případě, že známe místo, ve kterém porucha vstupuje do obvodu.

Schéma obvodu je nakresleno na obr. 1a. Základní obvod je tvořen regulovanou soustavou S_r , tvarovacím členem H_1 a korekčním členem R. Kontakty před a za korekčním členem naznačují, že vstupní signál e_2 členu R se zavádí přes tvarovací člen H_2 ještě na vstup pomocného členu S_m , který můžeme povačovat za model regulované soustavy S_r . Výstupní signál modelu x_m se odčítá od výstupní signál e_k členu R_k se příčítá k výstupní veličině e_2 členu R a součet e_3 se zavádí do tvarovacího členu H_1 regulované soustavy. Pro zjednodušení schématu předpokládáme, že pořtěbné analogočíslicové a číslicoanalogové převodníky jsou zahrnuty v korekčních členech.

* Tato práce byla částečně přednesena na mezinárodní konferenci o mnohoparametrových a diskrétních systémech automatického řízení konané ve dnech 9. – 14. června 1965 v Praze.

Výstupní signál e_2 působí současně na soustavy S_r a S_m . Jestliže na obvod působí jen řídicí veličina w a obě soustavy jsou popsány stejnou diferenciální rovnicí, je rozdíl $x_m - x$ roven nule. Obvod se chová jako kdyby neexistovala vazba přes člen R_k , tj. jako jednoduchý regulační obvod. Jestliže se k signálu x_r přičítá vliv poruchy u, nebude rozdíl signálů $x_m - x$ nulový a z výstupu korekčního členu R_k bude přicházet

na vstup tvarovacího členu H_1 přídavný signál e_k , který bude při vhodně navrženém R_k kompenzovat vliv působící poruchy. Je možno podotknout, že model S_m a soustava S_r nemusí mít obecně stejný přenos, a že i v tomto připadě lze členy R, R_k navrhnout tak, aby obvod měl žádané dynamické vlastnosti při působení řídicího signálu i poruchy. Takto uspořádaný obvod je podobný obvodu, který popsali J. M. Ham a G. Lang [1], liší se však od něho tím, že jejich obvod pracuje při vstupu řídicího signálu jako obvod ovládací, tj. není v něm pro tento signál zavedena zpětná vazba.

2. ODVOZENÍ PŘENOSU OBVODU

Při odvození přenosů obvodu budeme předpokládat, že porucha působí na výstupu regulované soustavy S_r . Tento případ – z hlediska odstranění vlivu poruchy nejpříznivější – lze snadno převést na případ poruchy, působící na vstupu soustavy

tím, že místo obrazu poruchy $U(z, \varepsilon)$ zavedeme do výpočtu obraz $\overline{S_r U(z, \varepsilon)}$, což je diskrétní obraz poruchy prošlé soustavou S_r .

Podle schématu na obr. 1a platí pro diskrétní obrazy signálů tyto vztahy:

(1)
$$X(z, \varepsilon) = X_{r}(z, \varepsilon) + U(z, \varepsilon),$$

(2)
$$X_{r}(z,\varepsilon) = \left[E_{2}(z) + E_{k}(z)\right] \cdot G_{r}(z,\varepsilon),$$

(3)
$$X_{\rm m}(z) = E_2(z) \cdot G_{\rm m}(z)$$
,

(4)
$$E_2(z) = [W(z) - X_r(z) - U(z)] \cdot R(z)$$

(5)
$$E_{\mathbf{k}}(z) = [X_{\mathbf{m}}(z) - X_{\mathbf{r}}(z) - U(z)] \cdot R_{\mathbf{k}}(z)$$
.

Zde $G_{\mathbf{r}}(z, \varepsilon)$, $G_{\mathbf{m}}(z)$ jsou diskrétní přenosy regulované soustavy a modelu včetně tvarovacích členů H_1 , H_2 ; R(z) a $R_k(z)$ jsou diskretní přenosy korekčních členů. Ostatní symboly jsou diskrétní obrazy signálů označených ve schématu malými písmeny. Diskretní obraz $F(z, \varepsilon)$ funkce f(t) je definován vztahem

$$F(z,\varepsilon) = \sum_{n=0}^{\infty} f[(n+\varepsilon) T] z^{-n},$$

kde $z = e^{pT}$. Argument obrazů a přenosů je pro $\varepsilon = 0$ zapsán místo z, 0 zjednodušeně jako z, takže například $X_r(z, 0) = X_r(z)$.

Dosazením vztahů (3), (4) a (5) do rovnice (2) obdržíme

(6)
$$X_{r}(z, \varepsilon) = \begin{bmatrix} 1 + R_{k}(z) G_{m}(z) \end{bmatrix} R(z) G_{r}(z, \varepsilon) W(z) - \\ - \begin{bmatrix} R(z) + R(z) R_{k}(z) G_{m}(z) + R_{k}(z) \end{bmatrix} G_{r}(z, \varepsilon) X_{r}(z) - \\ - \begin{bmatrix} R(z) + R(z) R_{k}(z) G_{m}(z) + R_{k}(z) \end{bmatrix} G_{r}(z, \varepsilon) U(z) .$$

Odtud pro $\varepsilon = 0$

(7)

$$X_{r}(z) = \frac{\left[1 + R_{k}(z) G_{m}(z)\right] R(z) G_{r}(z) W(z) - \left[R(z) + R(z) R_{k}(z) G_{m}(z) + R_{k}(z)\right] G_{r}(z) U(z)}{1 + \left[R(z) + R(z) R_{k}(z) G_{m}(z) + R_{k}(z)\right] G_{r}(z)}$$

Dosadíme za $X_{\epsilon}(z)$ do rovnice (6) a vypočteme obraz výstupního signálu $X(z, \varepsilon)$ podle rovnice (1):

(8)
$$X(z, \varepsilon) = \frac{M(z, \varepsilon)}{N(z)} = X_w(z, \varepsilon) + X_u(z, \varepsilon),$$

$$\begin{split} M(z,\varepsilon) &= \begin{bmatrix} 1 + R_{k}(z) \ G_{m}(z) \end{bmatrix} R(z) \ G_{r}(z,\varepsilon) \ W(z) + \begin{bmatrix} R(z) + R(z) \ R_{k}(z) \ G_{m}(z) + \\ &+ R_{k}(z) \end{bmatrix} \begin{bmatrix} G_{r}(z) \ U(z,\varepsilon) - G_{r}(z,\varepsilon) \ U(z) \end{bmatrix} + U(z,\varepsilon) , \end{split}$$

$$N(z) = 1 + [R(z) + R(z) R_{k}(z) G_{m}(z) + R_{k}(z)] G_{r}(z).$$

Odezva $X(z, \varepsilon)$ je složena z odezvy na řízení $X_w(z, \varepsilon)$ a z odezvy na poruchu $X_u(z, \varepsilon)$:

(9)
$$X_{w}(z,\varepsilon) = \frac{[1 + R_{k}(z) G_{m}(z)] R(z) G_{r}(z,\varepsilon) W(z)}{1 + [R(z) + R(z) R_{k})z) G_{m}(z) + R_{k}(z)] G_{r}(z)} = K_{w}(z,\varepsilon) W(z)$$

kde $K_w(z, \varepsilon)$ je přenos obvodu při vstupu řídicího signálu

(10)
$$X_{u}(z, \varepsilon) =$$

$$= \frac{\left[R(z) + R(z) R_{k}(z) G_{m}(z) + R_{k}(z)\right] \left[G_{r}(z) U(z, \varepsilon) - G_{r}(z, \varepsilon) U(z)\right] + U(z, \varepsilon)}{1 + \left[R(z) + R(z) R_{k}(z) G_{m}(z) + R_{k}(z)\right] G_{r}(z)}.$$

Pro $\varepsilon = 0$ se rovnice (10) zjednoduší na

(11)
$$X_{u}(z) = \frac{U(z)}{1 + [R(z) + R(z) R_{k}(z) G_{m}(z) + R_{k}(z)] G_{r}(z)} = K_{u}(z) \cdot U(z),$$

kde $K_u(z)$ je přenos obvodu při působení poruchy platný v okamžikcích vzorkování. Pro $\varepsilon \neq 0$ tento přenos neexistuje.

Ze vztahů (9) – pro $\varepsilon = 0$ – a (11) je možno sestavit soustavu lineárních algebraických rovnic pro výpočet přenosů korekčních členů R(z), $R_k(z)$, ze které se stanoví

(12)
$$R(z) = \frac{K_w(z)}{G_m(z) [1 - K_w(z)] + [G_r(z) - G_m(z)] K_u(z)}$$

(13)
$$R_{k}(z) = \frac{1 - K_{w}(z) - K_{u}(z)}{K_{u}(z) G_{r}(z)}.$$

Budou-li dynamické vlastnosti modelu stejné jako vlastnosti regulované soustavy, t.j. $G_r(z) = G_m(z)$, zjednoduší se přenos (12) na

(14)
$$R(z) = \frac{K_w(z)}{G_r(z) [1 - K_w(z)]},$$

což je vztah, který bychom obdrželi, kdyby v obvodu nebyl zapojen korekční člen $R_{\bf k}$ a model S_m.

Stanovme ještě obrazy průběhů výstupních signálů mezi okamžiky vzorkování. Dosadíme do rovnic (9), (10) za R(z), $R_k(z)$ podle vztahů (12), (13) a po kratším výpočtu dostaneme

(15)
$$X_w(z,\varepsilon) = K_w(z) \frac{G_r(z,\varepsilon)}{G_r(z)} W(z) = K_w(z) \frac{B_r(z,\varepsilon)}{B_r(z)} W(z),$$

(16)
$$X_{u}(z,\varepsilon) = U(z,\varepsilon) - U(z)\frac{B_{r}(z,\varepsilon)}{B_{r}(z)} \left[1 - K_{u}(z)\right]$$

kde jsme položili $G_r(z, \varepsilon) = B_r(z, \varepsilon)/A_r(z)$. Čitatel přenosu $G_r(z)$ může mít nulové body uvnitř jednotkového kruhu nebo mimo něj. Napišme jej ve tvaru součinu dvou polynomů

(17)
$$B_{r}(z) = B_{rr}(z) \cdot B_{rs}(z)$$
.

à

Nulové body polynomu $B_{rs}(z)$ leží jen uvnitř jednotkového kruhu, nulové body polynomu $B_{r_{L}}(z)$ leží mimo jednotkový kruh nebo na jednotkové kružnici. Ze vztahů (15), (16) vyplývají podmínky, které musí splňovat přenosy $K_w(z)$, $K_u(z)$, aby byla zajištěna stabilita obvodu mezi okamžiky vzorkování. Musí platit

(18)
$$K_{w}(z) = B_{rL}(z) \cdot D_{w}(z),$$

 $1 - K_{u}(z) = B_{rL}(z) \cdot D_{u}(z),$

kde $D_w(z)$, $D_u(z)$ jsou racionální lomené funkce proměnné z, které mají póly jen v jednotkovém kruhu.

Z odvozených vztahů je zřejmé, že přenosy $K_w(z)$, $K_u(z)$ mohou být zvoleny nezávisle na sobě podle požadavků kladených na chování obvodu při působení řídicího signálu a poruchy. Zjistěme ještě, jak se změní vlastnosti obvodu při změně přenosu soustavy $G_r(z)$.

3. PODMÍNKY NECITLIVOSTI

(10)

Předpokládejme, že skutečný přenos regulované soustavy se liší od přenosu $G_r(z)$ a označme jej $G_{r_1}(z)$. Zjistíme, jak se změní obrazy $X_w(z, \varepsilon)$, $X_u(z, \varepsilon)$ při změně vlastností regulované soustavy. Dosadíme do rovnice (9) $G_{r_i}(z)$ místo $G_r(z)$ a za R(z), $R_{k}(z)$ dosadíme podle vztahů (13), (14). (Předpokládáme, že $G_{r}(z) = G_{m}(z)$). Dostaneme:

$$\begin{array}{l} (19) & X_{w_1}(z,\varepsilon) = \\ = \displaystyle \frac{\left[1 + \frac{1 - K_w(z) - K_u(z)}{K_u(z) \ G_r(z)} \ G_m(z)\right] \cdot \frac{K_w(z)}{[1 - K_w(z)]G_r(z)} \ G_{r_1}(z,\varepsilon) \cdot W(z) \\ 1 + \left\{ \frac{4 - K_w(z) - K_u(z)}{K_u(z) \ G_r(z)} + \frac{K_w(z)}{[1 - K_w(z)] \ G_r(z)} + \frac{[1 - K_w(z) - K_u(z)] \ K_w(z) \ G_m(z)}{K_u(z) \ G_r(z) \ [1 - K_w(z)] \ G_r(z)} \right\} \ G_r(z) , \end{array}$$

kde $X_{w_1}(z, \varepsilon)$ je obraz výstupního signálu při změně přenosu $G_r(z, \varepsilon)$. Po odstranění složeného zlomku je

(20)
$$X_{w_{1}}(z, z) = \frac{[1 - K_{w}(z)] G_{m}(z) \cdot K_{w}(z) G_{r_{1}}(z, z) W(z)}{[1 - K_{w}(z)] G_{r}(z) [K_{u}(z) G_{r}(z) - K_{u}(z) G_{r_{1}}(z) + G_{r_{1}}(z)]} = K_{w}(z) \frac{G_{r_{1}}(z, z)}{G_{r_{1}}(z) - K_{u}(z) [G_{r_{1}}(z) - G_{r}(z)]} W(z) .$$

Podobným postupem obdržíme pro obraz odezvy na poruchu

(21)
$$X_{u_1}(z,\varepsilon) = U(z,\varepsilon) - \frac{[1 - K_u(z)]G_{r_1}(z,\varepsilon)}{G_{r_1}(z) - K_u(z)[G_{r_1}(z) - G_r(z)]}U(z).$$

Pravé strany rovnic (20), (21) se liší od obrazů (15), (16) tím, že místo zlomku $B_r(z, \varepsilon)/B_r(z)$ se v nich vyskytuje zlomek

$$\frac{G_{r_i}(z, \varepsilon)}{G_{r_i}(z) - K_u(z) \left[G_{r_i}(z) - G_r(z)\right]}.$$

Vyšetřeme nejprve nulové body jmenovatele tohoto zlomku. Položme

(22)
$$G_{r}(z) = \frac{B_{r}(z)}{A_{r}(z)} = \frac{B_{r}(z)}{\prod_{i=1}^{k} (z - z_{i})},$$

(23)
$$G_{r_1}(z) = \frac{B_{r_1}(z)}{A_{r_1}(z)}$$

Předpokládáme-li, že póly z_i přenosu $G_r(z)$ se změní o Δz_i , můžeme jmenovatel $A_{r_i}(z)$ vyjádřit

(24)
$$A_{r_1}(z) = \prod_{i=1}^{k} (z - z_i - \Delta z_i),$$

kde obecně $\Delta z_1 \neq \Delta z_2 \neq \ldots \neq \Delta z_k$.

Jestliže se změnily póly přenosu $G_t(z)$, změní se obecně i koeficienty jeho čitatele $B_t(z)$. Tuto změnu můžeme vyjádřit jako

$$B_{r_1}(z) = B_r(z) + \Delta B_r(z),$$

kde $\Delta B_r(z)$ je polynom stejného stupně jako $B_r(z)$. Pro Δz_i dostatečně malé můžeme psát

(26)
$$\Delta B_{\mathbf{r}}(z) = \sum_{i=1}^{k} \frac{\partial B_{\mathbf{r}}(z)}{\partial z_{i}} \Delta z_{i}.$$

Dosazením vztahů (22), (23) do obrazů (20) resp. (21) obdržíme

$$\frac{G_{r_1}(z, \varepsilon)}{G_{r_1}(z) - K_u(z) \left[G_{r_1}(z) - G_r(z)\right]} = \frac{A_r(z) B_{r_1}(z, \varepsilon)}{A_r(z) B_{r_1}(z) - K_u(z) \left[A_r(z) B_{r_1}(z) - A_{r_1}(z) B_r(z)\right]}$$

a pro nulové body jmenovatele máme rovnici

(28)
$$[1 - K_u(z)] A_r(z) B_{r_1}(z) + K_u(z) A_{r_1}(z) B_r(z) = 0 .$$

416 Polynomy $\Delta B_r(z)$, $A_{r_1}(z)$ možno vyjádřit takto:

(29)
$$\Delta B_{t}(z) = \Delta z_{1} \sum_{i=1}^{k} \frac{\partial B_{t}(z)}{\partial z_{i}} \lambda_{i} = \Lambda(z) \Delta z_{1}, \quad \lambda_{i} = \frac{\Delta z_{i}}{\Delta z_{1}}$$

(30)
$$A_{r_i}(z) = \prod_{i=1}^k (z - z_i - \Delta z_i) = \prod_{i=1}^k (z - z_i) + (-1)^1 \sum_{m=1}^k \Delta z_m \prod_{\substack{i=1\\i+m}}^k (z - z_i) + (-1)^2 \sum_{i=1}^k \Delta z_m \Delta z_n \prod_{i=1}^k (z - z_i) + \dots + (-1)^k \prod_{i=1}^k \Delta z_i.$$

+
$$(-1)^2 \sum_{\substack{m,n=1\\n>m}}^{n} \Delta z_m \Delta z_n \prod_{\substack{i=1\\i\neq m,n}}^{n} (z-z_i) + \dots + (-1)^k \prod_{i=1}^{n} \Delta z_i$$

Zanedbáme-li přírůstky vyšších řádů a použijeme opět vztahu $\lambda_m = \Delta z_m / \Delta z_1$, je

(31)
$$A_{r_1}(z) \doteq \prod_{i=1}^k (z-z_i) - \Delta z_1 \sum_{\substack{i=1\\i\neq m}}^k \lambda_m \prod_{\substack{i=1\\i\neq m}}^k (z-z_i) = A_r(z) - \Phi(z) \Delta z_1$$

kde $\Phi(z)$ je polynom o stupeň nižší než polynom $A_r(z)$. Dosadíme podle vztahů (29), (31) do rovnice (28) a po malé úpravě dostaneme

(32)
$$A_r(z) B_r(z) + \Lambda(z) [1 - K_u(z)] A_r(z) \Delta z_1 - K_u(z) \Phi(z) B_r(z) \Delta z_1 = 0$$

Zaveďme ještě

$$K_u(z) = \frac{P(z)}{Q(z)}$$

a máme konečně pro nulové body jmenovatele zlomku (27) rovnici

(34)
$$Q(z) A_r(z) B_r(z) + \\ + \{ [Q(z) - P(z)] A_r(z) \Lambda(z) - P(z) B_r(z) \Phi(z) \} \Delta z_1 = 0.$$

Kořeny rovnice (34) jsou spojité funkce přírůstku Δz_1 . Pro $\Delta z_1 = 0$ jsou kořeny totožné s nulovými body polynomu $B_t(z)$, polynomu Q(z) (tj. s póly přenosu $K_u(z)$) a s póly z_i . Pro malé Δz_1 budou kořeny ležet v blízkosti těchto bodů.

Má-li polynom $B_r(z)$ nebo $A_r(z)$ některé nulové body v oblasti nestability, stal by se obvod při malé změně vlastností soustavy S_r nestabilním. Tato možnost existuje, i když některé z nulových bodů těchto polynomů leží v oblasti stability blízko hranice stability. Jsou-li splněny podmínky stability (18), je z rovnice (28) resp. (34) ihned vidět, že rovnice (34) bude mít kořeny v nulových bodech polynomu $B_{r_1}(z)$ které se v obrazech (20), (21) zkrátí proti výrazům $B_{r_1}(z) D_w(z)$ resp. $B_{r_1}(z) D_u(z)$. Je-li nutno, aby byla vyloučena i možnost výskytu kořenů rovnice (34) v blízkosti některých pólů z_i (i = 1, 2, ..., m) přenosu $G_r(z)$, lze toho dosáhnout splněním další podminky

(35a)
$$K_{\mu}(z) = \prod_{i=1}^{m} (z - z_i), \widetilde{K}_{\mu}(z) \qquad m \leq k$$

nebo (35b)

$$P(z) = \prod_{i=1}^{m} (z - z_i) \cdot \widetilde{P}(z) , \qquad m \leq k ,$$

při čemž

(36)
$$A_{r}(z) = \prod_{i=1}^{m} (z - z_{i}) \widetilde{A}_{r}(z), \quad \widetilde{A}_{r}(z) = \prod_{i=m+1}^{k} (z - z_{i}).$$

Zde $\widetilde{K}_n(z)$ je racionální lomená funkce z, $\widetilde{P}(z)$ je polynom. Je-li splněna podmínka (35), má rovnice (34) m kořenů totožných s póly z_i (i = 1, 2, ..., m); součin příslušných kořenových činitelů $\prod_{i=1}^{m} (z - z_i)$ se zkrátí s týmž součinem v čitateli zlomku

(27). Obrazy (20), (21) nebudou mít po zkrácení póly v blízkosti "kritických" pólů z_i .

Uvedené úvahy lze shrnout takto: Máme-li přenos regulované soustavy $G_r(z)$ nulové body nebo póly v oblasti nestability nebo blízko hranice stability v oblasti stabilní a platí-li $G_r(z) = G_m(z)$, musí přenosy $K_{\mu}(z)$, $K_w(z)$ vyhovovat podmínkám (18) a (35), aby se při malých změnách vlastností regulované soustavy nemohl stát celý obvod nestabilním.

Uvažme ještě vliv změny dynamických vlastností soustavy na dynamiku celého obvodu. Označíme-li součin kořenových činitelů rovnice (34) symbolem $\hat{A}_r(z)$. $\hat{B}_r(z)$. $\hat{Q}(z)$, kde symboly označené \wedge značí polynomy, jejichž nulové body jsou blízké nulovým bodům polynomů $A_r(z)$, $B_r(z)$, Q(z), můžeme napsat například obraz (20) ve tvaru

(37)
$$X_{w_1}(z,\varepsilon) = -\frac{A_r(z) Q(z) B_{r_1}(z,\varepsilon)}{\hat{A}_r(z) \hat{Q}(z) \hat{B}_r(z)} K_w(z) \cdot W(z) .$$

Jsou-li splněny podmínky (18) případně (35), nebude mít skutečný obraz $X_{w_i}(z, \varepsilon)$ póly v nestabilní oblasti, bude však mít více pólů než původní obraz $X_w(z, \varepsilon)$, definovaný rovnicí (15). Póly obrazu $X_{w_i}(z, \varepsilon)$ ize rozdělit do tří skupin. V první skupině jsou póly přenosu $K_w(z)$, které má obraz $X_{w_i}(z, \varepsilon)$ společné s obrazem $X_w(z, \varepsilon)$. Do druhé skupiny patří póly ležící v blízkosti nulových bodů čitatele $B_r(z)$. Třetí skupinu tvoří póly ležící v blízkosti nulových bodů jmenovatele $A_r(z)$ a Q(z).

Odezva obvodu $x_{w_1}(t)$ bude složena ze složek, které se stanoví pomocí rozvoje obrazu $X_{w_1}(z, \varepsilon)$ na parciální zlomky [2]. Pro posouzení vlivu jednotlivých složek na tvar odezvy jsou kromě pólů obrazu směrodatné konstanty u příslušných parciálních zlomků. Konstanty složek, odpovídajících pólům první a druhé skupiny, budou při malých změnách přenosu $G_r(z)$ blízké konstantám složek, odpovídajících pólům obrazu $X_w(z, \varepsilon)$, protože nulové body polynomů $A_r(z)$, $\hat{A}_r(z)$ a Q(z), $\hat{Q}(z)$ jsou si blízké a při výpočtu zmíněných konstant se tedy tyto polynomy málo uplatní. Ze stejného důvodu budou konstanty složek, odpovídajících pólům třetí skupiny, malé, protože při jejich výpočtu se objeví jako násobící činitel rozdíl některého páru navzájem blízkých nulových bodů. Z tohoto rozboru vyplývá, že složky, které se objeví

v odezvě navíc, se málo uplatní proti původním složkám, jejichž konstanty se příliš nezmění. Odezva $x_{w_i}(t)$ se proto nebude podstatně lišit od odezvy $x_w(t)$. Jestliže se změní jen některé póly přenosu $G_r(z)$, lze stejným způsobem ukázat, že obraz (37) nebude mít póly v blízkosti těch pólů z_i , které se nezměnily.

Při realizaci tohoto obvodu je možno nahradit přenos modelu přenosem diskrétním, protože výstupní signál modelu vstupuje do korekčního členu R_k jen v okamžicích vzorkování. Celý obvod, skládající se z korekčních členů R, R_k a z modelu G_m (včetně tvarovacího členu) a ohraničený na obr. 1a čárkovaně, se dá realizovat pomocí číslicového počítače. Jiná možnost uspořádání obvodu pro týž účel je na obr. 1b. Při této struktuře obvodu vycházejí přenosy korekčních členů R(z), $R_k(z)$ v jiném tvaru, pro obrazy výstupních veličin však vyjdou tytéž vztahy, které byly odvozeny dříve.

4. EXPERIMENTÁLNÍ OVĚŘENÍ

Funkce obvodu byla ověřena na analogovém počítači. Regulovaná soustava a její model měly přenos

38)
$$S_{r}(p) = S_{m}(p) = \frac{\kappa}{(T_{1}p+1)(T_{2}p+1)(T_{3}p+1)},$$

kde $T_1=20$ s, $T_2=5$ s, $T_3=2$ s, k=1, perioda vzorkování T=5s a tvarovací členy měly přenos

(39)
$$H_1(p) = H_2(p) = \frac{1 - e^{-T_p}}{p}.$$

Přenos $K_w(z)$ byl navržen tak, aby odezva obvodu na jednotkový skok řídicího signálu skončila v konečném počtu kroků. Přenos $K_w(z)$ byl navržen tak, aby odezva na poruchu tvaru skoku, působící na vstupu soustavy S_r , doznívala dostatečně rychle a aby současně nedocházelo k velkým podkývnutím při poruše téhož tvaru na výstupu soustavy.

Na obr. 2 je záznam odezvy obvodu na skokovou změnu řídicí veličiny, na obr. 3 je odezva na poruchu téhož tvaru, působící na vstupu soustavy. Graf a odpovídá obvodu bez zapojeného členu R_k , graf b je průběh při zapojení R_k . Z grafů je zřejmý příznivý vliv kompenzačního obvodu. Při působení poruch harmonického průběhu se kompenzační obvod uplatňuje rovněž příznivě a to i při působení poruchy na výstupu soustavy. V tabulce I jsou uvedeny poměry amplitudy odchylky k amplitudě poruchy při dvou úhlových kmitočtech. Hodnoty ve sloupci a odpovídají obvodu bez korekčního členu R_k , ve sloupci b se zařazeným R_k . Ve sloupci u_1 jsou hodnoty při působení poruchy na vstupu soustavy, ve sloupci u_2 hodnoty při působení poruch

Popsaného obvodu je možno použít tam, kde je známo působiště poruchy a je třeba, aby obvod měl požadované dynamické vlastnosti při působení řídicího signálu

418

(

Obr. 3. Odezva obvodu na poruchu tvaru jednotkového skoku (a - bez kompenzačního obvodu b - s kompenzačním obvodem).

Tabulka I.

ω [r/s]	<i>u</i> ₁		<i>u</i> ₂	
	а	b	a	b
0,02	0,174	0,040	0,16	0,042
0,10	0,320	0,170	0,80	0,44

necitlivosti. Jestliže poruchy mohou vstupovat do obvodu na několika místech, je třeba volit při návrhu přenosu $K_{\mu}(z)$ vhodný kompromis, při kterém je nutno vzít v úvahu místo působení poruch a jejich pravděpodobný tvar.

(Došlo dne 24. února 1965.)

420 LITERATURA

[1] Ham J. M., Lang G.: Diskuse k článku J. B. Reswicka. Transaction ASME 78 (1956) jan., str. 153.

[2] Tou J. T.: Digital and Sampled Data Control Systems. McGraw Hill, New York 1959.

SUMMARY

The Compensation of the Disturbance by means of the Model in the Discrete Control System

JAROSLAV WEISS

A feedback control system, which by means of the plant model compensates the influence of the disturbances, that cannot be measured is described. If some command variable is introduced on the input of the control system, then the output signal of the plant is equal to the output signal of the plant model. If the control system is subject to some disturbance signal, then the plant output and the model output are not equal and their difference is used for the compensation of the influence of the disturbing signal. The system transfer functions in modified z - transform are derived and it has been found, that the control system can have required characteristics when compensating the disturbance as well as when following the command signal.

The transfer functions are analysed in view of the sensitivity of the control system to the variations of plant dynamics and for small variations stability conditions are fixed. The function of the control system was tested by way of analog computation.

Inž. Jaroslav Weiss, CSc., Ústav teorie informace a automatizace ČSAV, Vyšehradská 49, Praha 2.