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K Y B E R N E T I K A — V O L U M E 15 (1979), N U M B E R 1 

Two-Level Feedback Control 
for Interconnected Distributed Parameter 
Systems of First Order 

LESZEK TRYBUS 

A decentralized optimal regulator problem is studied for a set of interconnected distributed 
subsystems described by linear symmetric hyperbolic equations of first order. Coupling is provided 
through boundary conditions. Long tubular reactors divided into sections with zonal or point-
wise controls can be examples of such plants. Then subsystems are meant as sections of the re
actor. The overall quadratic optimization problem is decomposed into two levels using the in-
feasible method. Matrix gain coefficients of first level regulators are characterized by Riccati 
integro-differential equations. Coordination variables can be adjusted at the second level using 
the gradient technique. 

I. INTRODUCTION 

A few hierarchical feedback control design methods have been developed for large 
scale (lumped parameter) systems, both deterministic and stochastic. Short surveys 
of existing results can be found in the papers by Schwarz and Wend [1], and Singh 
and Titli [2]. Multilevel optimization techniques are also of increasing interest for 
interconnected distributed systems [3], [4], [5], where reduction of computational 
complexity seems particularly attractive. Good introduction to this subject provides 
the paper by Pradin and Titli [4]. However, they have made some slightly restrictive 
mathematical assumptions as a consequence of infinite dimensional couplings 
considered. 

Here more realistic situation is studied, i.e. the case when the couplings are finite 
dimensional and introduced through boundary conditions. Subsystems are described 
by linear symmetric hyperbolic equations of first order. Such systems represent 
counter-current tubular reactors of sectional structure, so for instance absorption 
and distillation columns, pushed furnaces, tunnel kilns, etc. The subsystems can be 
meant as sections of the reactor (Fig. 1), Quadratic cost functional is considered 
to derive a decentralized feedback control for the overall system. 



52 The optimization problem is formulated in Section II and decomposed into two 

levels in the next section using the infeasible method. Open-loop control for i-th 

subsystem is developed in Section IV. Then, first level feedback regulators are derived 

and characterized by Riccati integro-difterential equations. Typical gradient algo

rithm is proposed to coordinate the regulators (Section VI). Some remarks on more 

general forms of boundary couplings are given in the concluding section. 
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Fig. 1. Scheme of a tubular reactor composed of three cascade sections; x~, xf — state variables 
of counter-current flows in z'-th section, ut— control, i— 1,2,3; z — normalized spatial 

variable; / — time. 

The two-level regulator developed here is actually being implemented to feedback 

control of a multisectional tunnel kiln, where the state is reconstructed using a Pear

son-type decentralized filter [6]. 

II. PROBLEM FORMULATION 

Suppose the overall distributed system consists of r subsystems that are described 

by the following first-order linear symmetric hyperbolic equations 

(1) 
dxÁz, i) , , x dxÁz, t) , , . , , „ , . , , _ i L i _ J = Ai(z) _ A j _ ! + Afá x . ( z > ť) + B . ( z H .( t ) t 

8t dz 

Xj(z, t0) = xi0(z) i = l,...,r, 

in the region {(z, r) : z e [0, 1], t e [r0, t{\, f, < oo}, where xt is an n r state and 
Mj — mi-control. It is assumed that n( x n{ function matrices At, Ah and Bt (of 
dimension ni x m() have the properties 

(i) A((z) is continuously differentiable and At(z), Bt(z) are continuous in [0, 1]; 



(ii) A;(z) is diagonal (normal form of first order partial differential equations [7]) 53 
and its entries satisfy the inequalities 
k,(z) < X2(z) = . . . < X„.{z) < 0 < A„,+ 1(z) <. l „ , + 2(z) s ... < A„,(z) 
in [0, 1], n'i — a nonnegative integer; 

(iii) if kk(z*) = l f t+,(z*) for some z* e [0, 1] then Xk(z) = 4 + 1 ( z ) for all z 6 [0, 1]. 

The state x ; and the matrix A; can be partitioned according to (ii) as follows (com-
pare [7]) 

<2) * - E £ r ~-[o r-f]-5 c r 6 f i""' *'6R"" 
in order to represent better the counter-current character of the system. For instance, 
in a distillation column x,~, x + describe the state (composition and temperature) of 
vapor moving up and of liquid flowing down, respectively. Boundary conditions 
providing interconnection between subsystems are given by 

(3) x~(0, 0 = 0 , 

x,r(0, 0 = MJx^l, 0 , i = 2, . . . , r , 

xr
+(l, o = o , 

x+( l , 0 = M+x+
+1(0, 0 , i = 1 r - 1 , 

where Mf, M + are nj x n\, (n ; — n';) x (n; — n';) matrices, respectively. 

From the conditions (3) we see that the state x~(0, 0 of "minus flow" at the be
ginning of i-th subsystem depends on the final value X~_i(l, t) °f (i — l ) - s t o n e ( s e e 

Fig. 1). Similarly, the state x + ( l , Oof "plus flow" at the end is deduced from x,+
+1(0, 0 

of (/ + l)-st subsystem. In this way a cascade structure of the overall counter-current 
system is provided. This structure is in fact "pure" cascade and does not include 
parallel branches passing by certain subsystems. 

Observe that if n\^1 = n\ and Mf is the unit matrix then the state x~ is continuous 
between (i — l)-st and i-th subsystems. 

One can show using the method of energy inequalities (see [7], [8] for details) 
that under the assumptions (i) — (iii) there exists a unique L2-solution x;, i = 1, . . . 
. . . , r, to the equations (1), (3) if x ; 0 and u ; are square integrable. Such x ; is defined 
as a limit of ^-functions. 

Quadratic cost functional is taken as 

(4) J = \^ 1 1 [ [ £*,(-, 0T e.(-, -0*,(-', 0dz dz' + U;(o
TRt«;(0] + 

+ £ xf(0, t)T S,rxf(0, 0 + I x+(l, if St x+(l, ol dt, 
i = l | _ 2 J 



54 where Q,, R„ S; , S+ are n ; x nh m{ x mh n- x n\, and (n ; — n';) x (n( — n';) 
matrices, respectively. Moreover: 

- Qlz, z) is continuous and such that 

(5) Qi(z,z')=Qi(z',zY, 

<Pi(z)T Qi(z,z')(Pi(z)dzdz' ^ 0 for all q>t e L2[0, 1] of dimension n ; ; 

— Rh Sr, S,+ are positive definite and symmetric. 
The problem considered is as follows: Find the optimal decentralized feedback 

control uit i = 1, ..., r, for the series of subsystems (l), (3) which minimizes the 
functional (4). 

III. DECOMPOSITION OF THE PROBLEM 

We shall apply the infeasible method of decomposition [4] that is particularly 
convenient for systems with state variable couplings as in (3). Introduce a set of 
interconnection variables s,~, s,+ , called sometimes pseudocontrols, defined as follows 

(6) sr(t) = M r x r _ 1 ( i , f ) , . - 2 , . . . , r , 

s?(t) = Mj x+
+1(0, f), i = 1, . . . , r - 1 . 

So the f'-fh subsystem's equations become 

(7) dft=Ai(z)dji + Ai(z)xi + Bi(z)ui, 

xt(z, t0) = xi0(z), i = 1, ..., r, 

xT(0, t) = $T(t), i = 2, ...,r , 

xt(l,t) = st(t), i = 1, . . . , r - 1, 

x7(0, f) = 0 , xr
+(l, f) = 0 . 

These represent a simple counter-current exchanger, as shown in Fig. 2, with the 
controls uh s,~, s+. 

Introduce further a set of coordination variables e,r(t)> i = 2, .. .,r, e+(f), 
i = 1, . . . , r — 1 (Lagrange multipliers) and consider the augmented functional 

(s) J = j + i P e;(t)T [M- *r-i(-, o - -r(0]dt + 
i = 2 J r 0 



+ 1 -+(0r[M+*+
+_(O,0-s.+(0_d* 

i = 1 J.o 

that should be minimized with respect to ur sh and maximized with respect to Qi 
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Fig. 2. Representation of i-th subsys.em using interconnection variables s~, s + . 

This can be written in the additive form 

(9) J = i j t 
i = l 

using 

(10) J,. = f" | i j " ' p jc^r, 0 r Qlzt _') *,(_', 0 dz dz' + i M ( ( 0 r R, u,(t) + 

+ i s r (O r s r s r (0 + is(
+(OrSt

+s(
+(0 + 

+ _r+i(OrM(-+1 x(-(i, o - er(0Tsr(t) + 

+ _ + _ 1 (0 r M,+-i *<+(0> 0 - Qt(i)T s + ( t)j d., i = 2 r - 1, 

where the identities 

(ii) sr(o = *r(o,o, st(t} = x!(i,t) 

have been applied. J1 and J r are like (10) but without (_,~)r si~ a n ( ^ (-i+) r 5<+> respec
tively. 

Using the fact that („,, s() appear in J ( only, one can decompose the overall problem 
into two levels: first - minimization of J ( with respect to (w(, s() for some specific 
Q, and second — maximization of J over Q (see [2], [9], the strong Lagrange duality) 
to provide coordination of first level subproblems. 



56 IV. FIRST LEVEL ACTION 

So in i-th minimization subproblem we deal with the quadratic cost (10) for the 
first order symmetric hyperbolic system (7), subjected the boundary pseudocontrols 
^r, s,+ (Fig. 2) and the control u{ acting through distributed gain coefficient Biz). 
Similar problem has been extensively treated by Russell [8]. Assume that uh s, are 
of class 1} and g; is bounded. Define a few matrices 

(12) T;, ={S:)-\ T72 = T„ AT(0) , 

N;+l = (A;(i))-i(M7+1y, 

T + = ( s + ) - 1 , T + = T + A + ( 1 ) , 

Nt^iAmrHMuy. 

We have the following result: 

Proposition 1. The optimal control u^t), interconnection variables -7(t), s+(t)> 
and the resulting solution £f(z, t) of (7), minimize the cost (10) if and only if 

(13) „.(.) = - д г 1 Г в&zf PІ{Z, t)dz, i - 1, . . . , r , 

S't (0 = Tn Q\ (0 + Ti2 Vi (0, t), i = 2, . . . , r , 

sT(<) = n Qt(t) - T+ p+(l, 0 , i - 1, . . . , r - 1 , 

where p ; = p,(z, f) is the solution of the adjoint system 

(14) -£ = A (Aj(z) P|) - x,.(z)r p . - f1 Q,(z, O *,(*', r) dz', 

dt dz J 0 

P^z,i j) = 0 , i = l, . . . , r , 

p+(0,.) = Nt-tet-iit), i = 2, . . . , r , 

P,~(I.O---^r+icr+tW. i = i , . . . , r - i , 
?1

+(o,o = o, pr-(i,t) = o. 

Proof. Consider an arbitrary i with the exception of 1 and r. While proving we 
shall omit the subscript i for simplification. The minimum condition is 

_(_-_,_-_) Ҷ £ , u - Û) + s - S ) = 0 



for all square integrable u, s (<., •> denotes the inner product in L\t0, r j ) . This 57 
can be replaced by 

(15) 

where 

](w, v) = 0 for all w, v e L2[t0, /,] , 

W = W — M , f = s — 5 = col [v , V+ ] . 

Denoting x(z, 0 = x(z, t; w, v) we have for our problem 

(16) J(w, v) = f " J p f' x(z, 0 r Q(z, z') x(z', t) dz dz' + u(t)T R w(t) + 
J 'o U 0 J 0 

+ [r(t)T s- - Q-m v-(t) + [s+(t)T s+ - e+(t)T-\ V+(t) + 

+ e+1(t)T M+1 x~(\, t) + e
+ . ( 0 T M +

X x+(o, o | dt, 

where for instance Q+1 denotes Q~+1, M+1 denotes Mr*+1, etc. Observe that 

(17) x(z, t0; w, v) = x(z, t0; u, s) - x(z, t0; u, s) = 0 . 

We shall show that if (13), (14), (17) are satisfied then (15) holds. Employing the 
adjoint equation, the first term of (16) can be transformed as follows 

x(z, if Q(z, z') x(z', t) dt dz dz' = 

x d řdz = '-Õi + -t(ЛP)-Aтp 
дt õz 

= [p(z,t0)
Tx(z,t0)-p(z,t1)

Tx(z,t1)-]dz+\ 1 X 1 , 0 ^ 1 ) 4 0 -

- p(0, t)T A(0) x(0, t)j dt + f" F pT (~ - A — - Ax\ dt dz , 

where integration by parts over / and z has been applied. The component p(z, t0)
T 

x(z, t0) vanishes by (17) and the last term in brackets is equal to B(z) w(t) by (7). 
Partitioning as in (2), one can write the product p(l, 0 r A(l) x(l, 0 as 

p-(l,t)TA-(l)x-(l,t) + p+(l,t)TA+(l)v+(t), 

where the second boundary condition of (7) has been used. Similarly 

p(0, t)T A(0) x(0, t) = p-(0, tf A~(0) v~(t) + p + (0, t)T A + (0) x + (0, t). 



58 Now 

I(w, v) - - f \(z, h)
T x(z, ..) dz + f" {[ f V - . t)T B(r) dz + fl(.)r R ] W(0 + 

Jo J to (LJ 0 

+ ir(ty S- - e-(0T - p-(o, 0 r ^-(0)3 «r(t) + 

+ \_s+(ty S+ - e+(ty + p+(i, o r /i+(i)] »+(0 + 

+ [Q+WM-+1 + P-(i, o rA-(i)]x-(i, o + 

+ leU(tYMU -P

+(o,o r^+(o)]x+(o,o}dr. 

Hence the condition (15) holds by (13), and the terminal and boundary conditions 
of (14). Modification of the derivation for i — 1, i = r is obvious. This completes 
the proof. 

V. FEEDBACK REGULATORS FOR SUBSYSTEMS 

To find feedback forms of uh ij", S? we shall seek a representation (see [8], [10]) 

(18) Pi(z, t) = f P{z, z', 0 x{z', 0 dz' + £;(z, 0 , 

where n; x nt function matrix P, has the property 

(19) P{z, z', t) = Pt(z', z, t)T . 

According to (2), P, can be partitioned as follows 

(20) * - [ £ Q - [ * . - . - V I -

with Pf of dimension n\ x nh P;_ of dimension n, x n\, etc. We claim that 

Proposition 2. The matrix P ; = Pt(z, z , t) and vector £, = _,(z, f) satisfy the 
following equations 

(21) Ş - A (A;(z) P;) - J - (P, A;(z')) + Л ;(zf P ; + P, A;(z') -
tíř дz . õz 

- f P;(z,z', 0B;(z')dz'RГ1 f ß;(z)гP;(z,z',0dz -
Jo Jo 

- p;.(z, o, o лг(o) (Sг)-1 лг(o) PГ(O, -', 0 -
- P;+(z, i, o Aŕ(i) (sîГ1 Лt(í) P+(l, z', o = - ßř(r, z') , 



and 

(22) 

P{z, z', tj) = 0 , i = 1, ...,r, 

p.+(z, o, /) = 0 , Pt
+(0, z', 0 = o, 

P;.(z, 1,0 = O, P,-(l,z',0 = 0 

f-' - f (A,(z) {,) + A;(zf {, - P,.(2, o, o /if(o) (s;)-1 [er(0 + 
of <3z 

+ Ar(o) «r(o, 0] + P,+(Z, i, o /i,+(i) (S.T1 let (0 - ^i+(l) £,+(i, 0] -

- f P;(z, z', 0 P,(z') dz' Rf» f B,.(2')
T {,<z\ 0 dz' = 0 , 

Jo Jo 

{,(2,*-,) = 0 , « = 1, ...,r, 

€i+(0, 0 -Nt-idt-i®, i = 2, . . . , r , 

{,-(i,o = -lvr+ler+1(0. ' = -. ••• ' ' ' - - . 
tf(o,o = o , {,-( i ,o-o. 

Remark. The last terms in the equations (21) (on the left) and (22) disappear at 
i = r and the last but ones — at i = 1. 

Proof. The subscript i will be omitted as before. Using the symbolic functions 
6(z), S(z — 1) one can transform the equation (14) to the form 

(23) Џ - f (Л(z) p) = -A(zf p - [ Q(z, z') *(-', 0 dz' -
дt дz J 0 

ö(z) Г ° 1 
U+(o)J 

i V Í ^ Í . - < 5 ( z - l ) •л-(i) 
W+iЄ+i , 

P (z, r.) = 0 , 

P

+(o,o = o, p-(i,0 = o. 

To derive (21) and (22) we shall transform the difference 

at dz 

in two ways and then make one equation using those two equivalent representations. 
First 

(24) i(p) = I" (_-A(zf P(z, z, I) - Q(z, / ) ] *(*'• t) iz' - A(zf J(z, l) -



60 by (18) and (23). On the other hand, applying (18) directly in A(p), one obtains 

(25) Ąp) £f-v-w**,--ŕ--
- |. (A(z) P(z, z>, 0) *(z', 0J dz' + * k _ } - 1 U(z) £(z, o). 

dz J <3f <3z 

Employing (7) in the second term above and using integration by parts over z' yields 

(26) f P(z, z>, t) ^ ^ dz' = P(z, 1, t) Ail) St(l, t) - P(z, 0, t) 40) x(0, t) + 
Jo 3f 

+ f j - — (P(z, z', t) A(z')) + P(z, z>, t) A(z')\ Sc(z>, t) dz' -

- f P(z, z', t) B(z') R-1 f B(z")r I" f P(z", z'", l) S(z">, t) dz'" + ^(z", t) dz' dz', 
Jo J 0 LJ 0 

where 

(27a) P(z, 1, t) A(l) St(l, t) = P-(z, 1, t) A~(l) Sc~(l, t) + P+(z, 1, t) . 

. A+(i) TT+
 e

+(o - T+ f' P + ( I , z', o (̂z', o dz' - T+ r a , o ] , 

(27b) P(z, 0, 0 A(0) x(0, t) = P_(z, 0, r) A~(0) . 

. |"Tr e-(t) + T2- r(o, t) + Tr f p-(o, z', o x(z', o dz'] + 

+ P+(z, 0, t) A+(0) x+(0, 0 . 

The first part of the last term in (26) can be written as 

I I I P(z, z, t) B(z>) dz' R'1 j B(z)rP(z, z , t) dz St(z>, t) dz' 
J o LJ o Jo 

after changing variables. Notice that P-(z, 1, t) in (27a) and P+(z, 0, t) in (27b) are 
equal to zero by the boundary conditions of (21). Now we can construct one equation 
basing on (24) and transformed (25). Collecting in that equation the terms involving 
integrals over z' (and S(z', t)) yields the Riccati equation (21) that is clearly symmetric 
in the sense (19). This what remains is 

(28) dl - f (A(z) ft + A(zf £ + P+(z, 1, t) A+(l) [T+
 e

 + (t) - T2
+ «•(-. t)J -

ot dz 



- P_(z, 0, t) Л-(0) [TГ в - ( l ) + TГ Г ( 0 , f)] - | P(z, z', t) B(z') dz' R-1 . 

.£в(-'fč(z',f)dz' + 

+ 5(z) 

Assume that 

' 0 

л+(o). 
I N Í , e

+
t(.) + s(z - i ) P " 0

( 1 ) !v;, ff;.(t) = o 

í + (0, ř) = 0 and Г ( l , t ) = 0 . 

Moving the last two terms from (28) into the above conditions and replacing Tx 

by S"1 as in (12) one obtains (22). The other boundary conditions of (21) follow 
P^(z, 1, f), P+(z, 0, f) by symmetry. From p(z, fj) = 0 one obtains P(z, z', ft) = 0 
and c(z, fj) = 0. The proof is complete. 

Using (18), the optimal control ut(t) (see (13)) can be written in the feedback 
form 

(29) 

where 

(30) 

ult)= - f K{z,t)X,(z,t)dz + Ut)> 

Kt(z, t) = Rf1 C Bt(z')T P,(z', z, f) d z ' , 

(31) d(t)= - R r 1 f Bt(z)T Uz, f) dz . 

Observe that the Riccati equations (21) can be solved off-line independently for each 
subsystem. So we have obtained a series of optimal regulators for subsystems, 
however uncoordinated yet. 

VI. COORDINATION OF THE CONTROLLERS 

As shown by Pearson [9], the task of the coordinator is to perform maximization 
of the overall Lagrange functional J, given by (8), with respect to the coordination 
variables Q,, i = 1, . . . , r. Gradient of J results from the difference between the 
optimal interconnection variables $t and the actually occurring couplings, i.e. 

grad J = MJ £,--i(L f) - sT(0 > / = 2, . . . , r , 
Qi-

grad J = M + £+
+1(0, f) - l+( t) , i = 1, . . . , r - 1 , 



62 where 

(32) ST(t) = T- Q7(t) + Tr2 I" (* p-(0, -', 0 *,{"', /) dz' + {,-(0, ()1 , 

s+(()=r+
 C(

+(() - T+ r r p + ( i , Z', ()^(Z'( t)dz'+zt(u t)i 

by (13) and (18). Therefore, the steepest descent algorithm may be used as a strategy 
for the coordinator 

(33) er(0 (k+1) = Qt(t)(k) + K[M7 j . - . . ( l , 0 - *,-(.)]« , . = 2, . . . , r , 

g+(/f+1> = c+(,)(-) + fec[M
+ x+

+1(0, t) - i+(0] ( k ) , i = 1, . •., r - 1 , 

where fc denotes the iteration index at the coordination level and kc is the iteration 
constant. 

So we have obtained 

Conclusion. A decentralized optimal feedback control of the overall linear first 
order distributed system (l), (3), composed of r subsystems coupled together in a 
cascade, can be performed applying the local feedback controls ut given by (29), 
i = 1, . . . , r, that should be coordinated using the variables Qi adjusted according 
to the gradient algorithm (33) at the second level. 

To solve the Riccati equations (21) one recommends transformation to a Chan-
drasekhar-type representation as in [11] and the method of characteristics to solve 
resulting equations, or polynomial approximation applying the orthogonal collo
cation technique [12]. 

VII. FINAL REMARKS 

The overall distributed system has been of the assumed "pure" cascade structure. 
However, more complicated tubular reactors quite often include parallel branches 
passing by certain sections. An example of such structure is shown in Fig. 3 (controls 
have been omitted). In such cases one of boundary conditions in (3), suppose the last 
one, should be replaced by 

**(-, 0 - I M + J + i *++l(0, t), / = 1, . . ., r - 1 . 
j = i ' 

Taking the interconnection variable s+ 

st(t) - i W j + i */++i(0, 0 
j = i 



and a coordination one g+ , we can construct a Lagrange functional J. Its last term 
is (compare (8)) 

' I P et(t)T [ iV j+ i <+i(0, 0 - s+(t)] dt 

4^7T3 
•x-(z,t] 

Sections: © © © 

Fig. 3 . Tubular reactor with a parallel branch. 

Hence i-th component J ; of J has the term 

{[ i Qt- w M;-1>(] 4(o, t) - et(ty st(t)} d. 

that depends on x + and s+ only. So again Jt can be minimized independently for 
each subsystem and the theory presented can be applied. 

(Received February 11,1978.) 
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