Kybernetika

Karel Culik II
Contribution to deterministic top-down analysis of context-free languages

Kybernetika, Vol. 4 (1968), No. 5, (422)--431

Persistent URL: http://dml.cz/dmlcz/124343

Terms of use:

© Institute of Information Theory and Automation AS CR, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz


http://dml.cz/dmlcz/124343
http://project.dml.cz

KYBERNETIKA CISLO 5, ROCNIK 4/1968

Contribution to Deterministic Top-Dlown
Analysis of Context-free Languages

KareL CuLix 11

In the present paper a generalization of LL(k)-grammars is given, the notion of the switching
function for such grammars is introduced and the model of the Parsing Machine using the switch-
ing function is given.

We introduce the necessary notions and notation, mainly according to D. E.
Knuth: An alphabet X is a finite nonempty set of symbols, and X* denotes the sct
of all strings on the alphabet X. The length of a string u is denoted by |u]

A context free grammar is a 4-tuple (7, N, P, S) where T, N are disjoint alphabets
called terminal and nonterminal alphabets respectively; P is a finite nonempty set
of productions. A production is a pair denoted by A-— u, where Ae N, u e (N U T)*;
S e N is an initial symbol.

Let G =(T,N,P,S) be a context-free grammar. For u,ve(Tu N)* let us
write u = v if there exist strings x, y, we (T U N)*, such that u = xAy, v = xwy
and A - weP. If xe T* we write u ;u, if yeT* we write u Lo

The reflexive transitive completion of relation = is denoted by =* and the transi-
tive completion of = is denoted by =*. Similarly Ls L+ Zs E+ The set
L(G)={ueT*:S="u} is called a context-frec language generated by G. If
we (Tu N)* we write L(w) = {ue T* : w =*u}.

Let ug, uy, ..., 4, be a sequence of strings;

' (1) i ug gy (i =0,1,....,r — 1) then the sequence is called the derivation
of u, (from u);
(ii) if u; Zupe, (i=01,.0nr= 1) then the sequence is called the left-most
derivation of u, (from o);
(iji) if u, 2 Uiy (i =0,1,..." — 1) then the sequence is called the right-most
derivation of u, (from o).



A grammar G is said to be ambiguous if there is some word in L{G) generated
by two different left-most derivations (from S). A grammar which is not ambiguous
is said to be unambiguous. The nonterminal symbol A4 is said to be left recursive
if there exists u € (T w N)* such that 4 =" Au.

For A, Be N it is said A depends on B if there exist u,ve (T U N)* such that
A =" uBv.

A nonterminal symbol A is called useless if either L(A) = @ or if § does not depend
on A.

If k is a nonnegative integer and u is a string, we define:

k @ u is the initial substring of the k characters of u if the length of u is greater or
equal to k;

k :uis u if the length of u is less than k.

The general problem of syntactic analysis is: A given grammar G = (T, N, P, S)
and a string u € T*, determine whether or not u e L(G). If so, find all its syntactic
structures.

The bottom-up method attacks this problem by step by step “reducing” the given
string u by reductions which are the opposite of productions. If the bottom-up
analysis is left to right one then the left-most possible reduction is applied at each
step. This process continues until we reduce everything to S or show that this re-
duction would be impossible.

The top-down Ieft to right method starts with S, and attempts to reach the left-most
derivation of the string u. At each step we must decide which production is to be
applied to the left-most nonterminal symbol.

There are various “back-up” procedures for both bottom-up and top-down
analysis because we must reconsider some alternatives of the derivation sequence
that later prove to be incorrect. For practical purposes such cases are very important
when the syntactic analysis proceeds without backing up. Such procedures are called
deterministic analysis methods.

D. E. Knuth [1] and Lewis and Stearns [3] introduced classes of grammars which
allowed deterministic analysis.

The LR(k) grammars for bottom-up left to right deterministic analysis are defined
in [2] as follows: .

A context-free grammar is LR(Ic) if the following condition holds for all u,
and uj in (N U T)*, all u,, u}, us, and w4 in T* and all 4, 4’ in N:

R R

S = u AU, = u s,
R R

S =*ujA'ul = ujusug

and
(Jusa] + k) 2 uguquy = (juguy] + k) < ujujuy

implies that
u, =uy, A=A, and u, =u;.

423



424

LL(k) grammars for top-down left to right deterministic analysis are defined
in [2] and [3].

Definition. A context-free grammar is LL(k) if the following condition holds for
all uy, uy, uy in T* and all u,, us, uj, vy in (N U T)*:

L L L
S =¥ u Auy = uuyuy =% uu,,

L L L
S =*uAuy = uuiuly =% uu)
and
g
kiu, =k:uj
implies that

Uy = uj.

D. E. Knuth [2] gives some comparison of top-down and bottom-up deterministic
analysis:

Bottom-up analysis can deterministically parse more general languages than
top-down analysis for the class of LL(k)-grammars is proper subset of the class of
LR(k)-grammars. On the other hand providing top-down analysis in LL(k)-grammar
we have a great advantage, since we know what production is being used before
we actually process its components. The foreknowledge can be extremely important
in practice. :

The aim of this paper is a generalisation of LL(k)-grammars which seems to be
unnecessary restrictive for deterministic analysis. We also give no-backup working
Parsing Machine corresponding to them.

Definition. A context free grammar G = (T, N, P, ) is said LL(f) if for fu\1cti6nf
(from T* to arbitrary range D) the following condition holds for all

1) Uy, gty in T* and all wy, uy, uj,uy in (NUT)*:
2 - S 2% u, Au, Z TR S uu,,

(3) S % u Auly S ugubul 5% ugul

and

fua) = f(u3)
implies that
Uy = uj.
Function f is called distinctive function for grammar G.

Note 1. Setting f(u) = k : u we get the LL(k) grammars.



Theorem 1. There exists a distinctive function f for grammar G if and only if
the grammar G is unambiguous and has no nonuseless left—recursive nonter-
minal symbols.

Proof. 1. Let us assume that f is a distinctive function for grammar G.
a) Let G be ambiguous. Then threre exists (1) such that (2) and (3) hold, u, =

= uj, and u, # uy. For every f follows that f(u,) = f(u}) holds and we have
a contradiction with the definition of distinctive function.

b) Let grammar G have the nonuseless left —recursive nonterminal symbol 4. Then
there exists uy, uy € T*, u,, U}, Uy 43 € (N U T)*, u, * uj for which

L L L L L
S =% ujdug = uyuyuy =* uduy = ujujuy =% uu,

holds. This is a contradiction with the assumption that there exists a distinctive
function for G.

2. Let G be an unambiguous grammar which has no nonuseless left-recursive
nonterminal symbols.

Let us set f{u) = u for all w e T*. Let us assume that there are such (1) that (2)
and (3) are valid, u, = uj and u, + uj.
Because of the unambiguity of grammar G either

L L L L L
S SFuAuy = ugtiguy =% u duy = uuiul = *uguy
or

L L ’ L L L
S S*u duly = uuiuy ¥ u Auy = Uy =% uu,

is valid and consequently A is nonuseless left-recursive and it is a contradiction.

Definition 2. Let the rules of grammar G be rewritten in the form 4 — w, | Wy | ...
... | w,. (All the productions with the same left side are substituted for one generalized
production). The integer-value function F(u, 4, v) is said to be a switching function
for grammar G if it is defined for all u, v in T* and A in N such, that

L , L L
)] S =% udu’ =S uwu' S* uv

where u’ & (T U N)* and F(u, 4, v) = i is valid.

Note 2. The significance of switching function for top-down left-to-right analysis
is obvious.

Theorem 2. If f is a distinctive function for grammar G then there exists a func-
tion g (fram T* x N x D tol, where D is the range of values of the function f

425



426

and I denotes the set of natural numbers) such that the composed function F
defined as
F(u, A, v) = g(u, 4, f(v))

is the switching function for grammar G.
Proof. The function g is defined as follows. Let (4) be valid and f(v) = y then
we set g(u, A, y) = i. Let besides (4)

L L L
4) S =% udu” = uwu” S* uv’

be valid and f(v') = f(v) = y. Then from the fact that f is a distinctive function it
follows w; = w;. Therefore f is chosen uniquely and it is obvious that f is a switching
function for grammar G.

Definition 3. A context-frec grammar G = (T, N, P, S) is said LLS(f) if for the
function f (from T* to arbitrary D) the following condition holds for all

1 up, up, uguye T* and all uy, uh, ul,uje(N U T)*,
(2) S 5 uyAug L gUsUy L Uy,

(3" S ui Au’y L TRTATIA L« whuy

and

flua) = flul)
implies that
Uy = uy.

Function f is called a strongly distinctive function for grammar G.

Example 1. Let G = ({a, b, ¢, d}, {8, A}, {S = cAb| dA4, A > a| ab}, S).
Owing to the fact, that

L L
S=> cAb=> cab

L L
S= dA=> dab,

no strongly distinctive function exists for grammar G. On the other hand it is obvious that G
is LL(3).

Definition 4. Let the productions of the grammar G be rewritten in the form
A= wy|w,]|...|w, The integer-value function F(4,v) is said to be a strongly
switching function for the grammar G if it is defined for all ve T* and 4 € N such



that
L L L
S =*udu’ = uwu' =* uv

where ' is in (T U NY* and F(4, v) = i is valid.

Theorem 3. If f is a strongly distinctive function for the grammar G then there
exists a function g (from N x D to I, where D is the range of values of the func-
tion f and I denotes the set of natural numbers) such that the composed function F
defined as

F(4,v) = 9(4,1(v))
is a strongly switching function for the grammar G.

Proof. It is analogous to the Theorem 2.

A classification of a context-free languages according to the necessary complexity
of (strongly) distinctive function of their grammars can be introduced. For instance:

1. LL(k)-languages are languages generated by grammars for which f(u) = k : u
is the distinctive function.

2. Languages generated by grammars for which a distinctive function is sequential.
Sequential function is the function which is realized by a finite state sequential
machine.

Let us assume that we have a procedure computing the value of (strongly) switching
function F(u, 4, v) (F(4, v)) (for some grammar G, productions of which are written
in the form A — w,]wzl ... w,. Then we can modify the Knuth’s Parsing Machine
into a simple form which works no back-up.

The Parsing Machine is an abstract machine which is made to analyze strings over
a certain alphabet. Is works character per character, according to a program.
A Parsing Machine program is a sequence of instructions. One type of instructions
are procedures calling each other recursively. Each such procedure attemps to find
an occurence of a particular syntactic type in the input.

The Parsing Machine has to decide if a given input is in the language or not and
to give the phrase marker of the string. The phrase marker will be described so that
every syntactic unit in the string will be closed in brackets and under the opening
bracket will be written the corresponding letter of the nonterminal alphabet N.

Let the input string be s;s,...s,, and let s, be the “current” character being
scanned by the machine.

A program is written using four types of instructions:
Type 1: A letter of the terminal alphabet;
Type 2: A letter of the nonterminal alphabet;
Type 3: RETURN; '
Type 4: STOP.

427



428 Writing a program we put symbolic locations to the left of some instruction.
They are written as nonterminal letters with an integer index. A program is created
of the segment

START S
STOP

and one another segment of the form

A, di,1
d1,2

ql,rm
RETURN

42142,
92,2

q2,m,
RETURN

4| g

i dr,2

qr.m,
RETURN

for each production 4 — wy|w,]| ... |w,
where w; = ¢; (G- Qi (i = 1,2,..,7),g;;E NUT.

The program starts his work on the location START and the effects of instructions
are following. (In description some notations of ALGOL 60 are used.)

Type 1. (ae T): ifs, = athenbegin h:=h + 1;
outsymbol (a);
go to next location
end
else ERROR



Type 2. (AeN):  output([)and call on the procedure which starts in location
A

Apu,4,0) TECUISIVELY.

Type 3. (RETURN) The end of the call of procedure, outsymbol (J).

Type 4. (STOP) The end of work of the program. Analyzed string is in
L(G).

Note 3. Using a “‘stack” we can describe the meaning of instructions of types 2, 3

in more details.
Type 2. (AeN) h is not changed: outsymbol (C); put current location in-
A

creased by one into a stack; g0 to Ar, 4 .4)-

Type 3. (RETURN) h is not changed; outsymbol (J); popped off top location
from stack and go to the location that was popped off.

Note 4. For strongly distinctive function it is the only difference that F (u, 4, v)
doesn’t depend on u.

Example 2. Let us write the program for the Parsing Machine performing analysis of simple
Boolean expressions described by the grammar:
G=(T,{V,E,R B, X,Y,P,0}, P, B)
where
T={abec,+,—*%<,> 71,V, A}
nad P consists of productions
V —alblec,
X —>+[—]x,
E — V| VXE|(E),
Y = <|>,
R —~ EYE,
P —V|R[(B),
g~-rlTP,
Z>Alv,
B Q| QZB.

Using conditional expressions of ALGOL-60 with non-ALGOL conditions we describe the strongly
switching function F for the grammar G. In these conditions the symbol == is used for comparing
the two strings of terminal symbols; mind the symbol ( among them.
F(V,v)=ifv=av’,v" € T* then 1
else if v = bv’, v’ € T* then 2
elseif v = cv’, v’ € T* then 3
else ERROR,;
F(X,v)= ifv= +v’,v" € T* then |
elseif v = ¢, v’ € T*then 2
elseif v = > v’, v" & T* then 3
else ERROR;

F(E,v) = ifv = (v, v’ € T'then 3

elseifv = ¢ &0, & e {+, —, x}, & €{a b, c}, v’ € Tthen 2

else 1;

429



F(Y,v) = if v = <v’,v" € T* then |
elseif v = >v’, v’ € T* then 2
else ERROR;
F(R,v)=1; '
FP,v)=ifv=(v/,v € T*then 3
elseif v=y&, ye(T— {71, Vv, A, >, <})*,fe{<, >} then 2
else 1;

F(Q,v)=ifv= T1v’,v" € T* then 2 else 1;
F(Z,v)=ifv= Av, v’ € T*then 1;
elseif v = v ', 0" € T* then 2
else ERROR;
F(B,oy=ito=1y5ye(T— {A, vP*, E€{A, V] then2elsel

Program for the Parsing Machine is shown in Table 1.

Table 1.
]
Location | Instruction [ Location | Instruction ‘Localion i]nslruclion Location l Instruction
| ! I |
! i |
START B RETURN |, ! E zy A
STOP E, | 4 i ! RETURN RETURN
v, a | X A 4 Z, v |
| RETURN E . RETURN RETURN |
v, | b RETURN | P, R B, o |
RETURN Ey ( ‘ RETURN RETURN
Vs c E P ( B, Q 1
RETURN i ) B z
X, 1+ | RETURN ) B
RETURN Y, | < RETURN RETURN |
X - RETURN l 0, P {
| | RETURN Y, | > ] g RETURN
X % | RETURN 0, |
RETURN| R, | E P ‘
Ey v [ | RETURN

It is natural that in the practical cases we try to choose such grammars for which
the calculation of the distinctive function is simple, i.e. not taking much of both time
and storage.

In the following paper we try to give a modification of the Parsing Machine deter-
mined for self-correcting of some syntactical errors and good diagnostic of others.
We will apply it in analysis of preprocessed ALGOL-60 programs.

(Received March 12th, 1968)



REFERENCES 431

[1] D. E. Knuth: On the translation of languages from left to right. Information and Control 8
(1965), 607—639.

[2]1 D. E. Knuth: Top-down syntax analysis. Texibook of International Summer School on
Computer Programming Copenhagen, Denmark, 1967.

[3] P. M. Lewis and R. E. Stearns: Syntax-Directed Transduction. Journal of the ACM J5
(1968), to appear.

VYTAH

Prispévek k deterministické analyze bezkontextovych jazyki shora

Karer CuLix TI

Price se zabyvd analyzou bezkontextovych jazykid a to analyzou shora, zleva
doprava. Jsou zobecndny Knuthovy LL(k)-gramatiky a zavedeny pojmy (silng)
rozliSovaci funkee a (silng) rozvétvovaci funkee. Jsou ukdzdny nutné a postadujici
podminky k tomu, aby existovala rozli§ovaci a rozvétvovaci funkce pro danou
gramatiku. Ddle je pro gramatiky, pro které existuje rozvétvovaci funkce, ddna modi-
fikace Knuthova analyzdtoru, ktery pracuje bez vraceni. Je uveden piiklad programu
takového analyzdtoru pro gramatiku popisujici jednoduché Booleovské vyrazy.

Dr Karel Culik, CSc., Centrum numerické matematiky KU, Malostranské ndm. 25, Praha 1.



		webmaster@dml.cz
	2012-06-04T17:11:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




