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K Y B E R N E T I K A Č Í S L O 4, R O Č N Í K 4/196 

Adaptive Closed Loop Control of Some 
Special Plants by means of the Gradient 
Model - without Plant Identification 

JAROSLAV MARSIK 

In some special cases, if the cascade control is applicable, it is possible to design an adaptive 
closed loop control circuit using the gradient model, without special test signals and plant iden
tification. Instead of the plant model directly a part of the real plant can be used. 

1. INTRODUCTION 

Recently, the gradient model (or sensitivity model, respectively) found many 
applications in the domain of adaptive circuits. However, some difficulties with the 
realization can arise, if it is used in any closed loop control circuit with an unknown 
plant. In such cases, the plant transfer function must be identified to enable the 
modelling of the gradient. For this purpose, first the plant model must be found 
(what may be done by means of the gradient model method again). Therefore the 
complete system will be very complicated. 

In [1] a simple device is described which solves the problem of identification 
and adaptive control in a closed loop simultaneously, using one model only. In some 
special cases, however, the identification problem can be avoided (generally, it is 
possible in open loop circuits only — cf. [2]). 

The aim of this paper is to show when and how it may be done. 

2. GENERAL PRINCIPLE OF THE ADAPTIVE CIRCUIT 

The controller parameters are adjusted automatically to achieve the conditions 
of an optimal performance. We will take notice of the simplest performance criterion 
the mean square error. The error is minimized by means of the gradient method 



according to equations (in the time domain): 

(1) - * - - - ^ ^ = _ 2 ^ ^ („« = 1 ,2 ,3 , . . . ) , 
dt da; <3a; 

where we denote by a ; the controller parameters, by cp the control error, and by kt 

the proportionality constant. 

In accordance with Fig. 1 we have (in the Laplace transform notation) 

(2) * = ^±Jf, 
w 1 + PC 

where: D is the input disturbance, P is the plant transfer function, C is the controller 
transfer function, and Wis the reference signal. 

The variable controller parameters a ; are regarded as constants, of course, there
fore they must change rather slowly as compared with the system response (other
wise the gradient would be wrong). Then, the components of the gradient model are 
obtained by differentiation of the Eq. (2) with respect to the corresponding parame
ters a;: 

(3) dJL - _ DP +W
 P ?£ 

{ ' dat (1 + PC)2 da ; ' 

Making use of (2) one may write: 

,,. d$ 4>P dC 
(4) — = . 

5a ; 1 + PC da; 

Eq. (4) shows that the gradient model is, in fact, the model of the control loop with 
the control error 4> at its input, completed by 3C/3a; at the output (see Fig. la). 

The terms 3C/3a; need not be simulated separately, for they can be taken from the 
controller itself, as can readily be demonstrated on a P —I —D controller: 

(5) C = = ocj 4 h a3p . 
P 

From (5)it follows: 

(6) 
ðC 

ða^ 
= 1 ; 

ðC _ 1 ðC 

ða2 p ðaъ 

p; 

(see also Fig. lb). 

From Fig. 1 we see that the complete adaptive control system is not too complicated 
if the plant model is known. (Otherwise it is not worth while- there exist simpler 



methods, for example [ l ] , [2]). As mentioned above there, are some special cases, 
v/hen the identification is not necessary even if the plant model is not known. In 
this cases, the control system can be divided into two identical parts in a cascade, the 
second part performing the desirable function of the model besides the normal con
trol action. 

Fig. la . 
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Fig. lb . 



3. THE CASCADE CONTROL 

In practice, the cascade control — if applicable at all — is often the only effective 
method to overcome poor dynamic properties of a plant. For instance in the chemical 
industry, there are many cases, such as concentration or temperature control of fluids, 
where this way is available. As a further example can serve the steam superheater 
control in any power station; the superheater is divided into two or more sections 
in series, each of them being controlled separately. 

First stage Second stage 

Fig. 2. 

For utilizing the cascade in the adaptive circuit the following conditions must be 
fulfilled: 

Two stages of the cascade must be identical (the second stage being model of the 
first one). 

The plant and the controller must be linear, the incidental changes of the plant 
parameters being sufficiently slow. 

To prevent the instability, the selfadjustment of the controller parameters must 
be slow, too. 

Inner disturbances of the second stage must be either negligible or uncorrelated 
with those of the first stage. 

The general view of such an adaptive system, is shown in Fig. 2. It is easy to see 
that this system differs only slightly from that shown in Fig. 1. 

If the reference values Wx and W2 were zero then Fig. 2 and Fig. 1 were identical. 
Nevertheless, the identity can also be achieved if those values are constant, the con
troller having an integrating component. Thus, the mean value of both control 
deviations is zero too as if W^ and W2 were zero. 



It must be stated here that only the parameters of the first stage are adjusted to 
optimal values according to the given performance criterion. 

Due to the fact that the input signal of the second stage has another character 
than that of the first one, the parameters of the second stage ought to be somewhat 
different. 

Nevertheless, it does not matter — the adaptability is conserved even though not 
optimal for both stages. 

*+l 

Fig. 3. 

Generally, the cascade could be extended to three or more stages, the scheme being 

analogous. One additional stage only for modelling the gradient is necessary. 

For (k + 1) stages we have (see Fig. 3) 

DPk 

(?) 

(8) 

Ф = 

ÔФ 

(1 + PCf' 

Pk+1 ÕC 
= - Dk 

дai (1 + PCf+1 õai 

Using (7) and (8) we may write 

(9) 
ÕФ , ^ P д C 
— = - kФ 
ð«j 1 + PC 5a; 

what corresponds, in fact, to Eq. (4) (the difference consisting in the constant k only); 
k stages are optimized, the (k + l) s t stage working as the "model". 

As mentioned above, the adjustment of the parameters must be relatively slow 
otherwise the adaptive loops become unstable (as consequence of the incorrect 
gradient). 



340 4. CONCLUSION 

It has been shown that the cascade control is convenient for utilizing in a simple 
adaptive circuit. Neither special test signals nor plant identification are necessary. 

The basic condition of realizability is the division of the plant into two identical 
stages, (or more), each of them being controlled by an identical controller. The last 
stage represents the additional model which is necessary for simulation of the per
formance-criterion gradient (merely one stage for an arbitrary number of preceding 
stages is sufficient). It must be pointed out that the gradient of the performance 
criterion is not valid in a rigorous mathematical sense, because the optimized con
troller parameters cannot be constant. 

Therefore the adjustment speed of these parameters ought to be low (the more 
stages - the lower) for the sake of stability. It is evident that the adjustment equa
tions are nonlinear (because of the adjusted parameters <x, in the denominator of the 
function d$/3a ; see Eqs. (4) and (5)). For that reason, the occurrence of ambiguous 
adjustments cannot be excluded and stability cannot be solved generally. As for noise 
influence, it has been said that the noise in the last stage must be either negligible or 
uncorrelated with the noise in the preceding stages. 

This condition follows from Eq. (l): 

da ; Sep 
! = — 2/l;<j0 . 

dr da, 

Integration of this equation yields 

W^dt 

and analogous for the mean values: 

«.= _ 2A, L ^ d t . 
J 8a, 

The noise of the last stage is comprised in dq>jdai only so that the mean product 

3a;) does not depend on this noise (see also Fig. 3). Consequently, the steady-
state values of the parameters at are independent of the noise in the last stage. 

(Received January 2nd, 1968.) 
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Adaptivní regulace některých speciálních soustav pomocí modelu 
gradientu — bez identifikace soustavy 

JAROSLAV MARŠÍK 

V některých speciálních případech, kdy můžeme použít kaskádové regulace, lze 
navrhnout adaptivní regulační obvod s modelem gradientu, a to bez zvláštního 
zkušebního signálu a bez identifikace soustavy. Místo modelu soustavy můžeme 
použít přímo části soustavy samé. 

Tento způsob je možno aplikovat u soustav, které lze rozdělit na dva nebo více 
stejných článků zapojených za sebou, přičemž každý článek má i vlastní stejný 
regulátor. 

Ing. Jaroslav Maršík, CSc, Ústav teorie informace a automatizace ČSAV, Vyšehradská 49, 
Praha 2. 
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