Kybernetika

Jan Mare$
Conditional programmed automata

Kybernetika, Vol. 14 (1978), No. 4, (227)--244

Persistent URL: http://dml.cz/dmlcz/124440

Terms of use:

© Institute of Information Theory and Automation AS CR, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124440
http://project.dml.cz

KYBERNETIKA — VOLUME 4 (1978), NUMBER 4

Conditional Programmed Automata

JAN MARES

A conditional programmed automaton and functions computable on it are defined and,
utilizing certain graphs, connections between those automata and functions are studied.

DENOTATIONS

N denotes the set of all positive integers,
Ny = Nu{0};
for n e N, denote
f={1,2,..,n} (thus, 0= 9).

If A, B, C are sets, write
C=A4AwB if (C=AUBet AnB=90).

Let f: A —» B denote that fis a mapping of 4 into B. A mapping g of a nonempty
set A, = A into a set B is called a mapping from A into B and denoted by g : 4 +» B.
Dom f and Ran f denote the domain and the range of f, respectively.

Letne N, let Ay, ..., A, be nonempty sets and let
A=A x ... X A4,;
then for i € i define projections nf : A — A; by a prescription
miay, .. a,) = a;.

(The superscript 4 will be deleted, if possible.)

228

1. INTRODUCTION

Mathematical systems aspiring after to model real computers are frequently
investigated in the literaturc, We have in mind e.g. Pawlak’s machines [9], called
also iterative systems in [1] and examined by many other authors. Further, Culik’s
notions of sequential and jumping machines (see [2], [3], [4], [5]) ought to be
mentioned here. In fact, the notion of a conditional programmed automaton, dealt
with in this article, took its origin in [2].

Our approach is nearer to the latter conception than to the former one. Some our
notions correspond to some extent to certain concepts e.g. in [8] or in [10], some
other (e.g. a piece-wise computability, an operational trec) seem to be new. Never-
theless, all these concepts proved to be useful for our purposes.

A conditional programmed automaton (CPA) is a system
o =(1,5,L,5),
where [is a nonempty set — the set of instructions of o,
I=Igul, w{l};

here it is Iy + 0 and finite, / is a stop-instruction; S is a nonempty set — the set
of internal states of &, L is a set — the set of labels of &/, S L = and 6 is
a mapping from the set I x S into the set S U L such that

6 =208506.,
where
Os:(lg x 8)+ S, 6,:(I, x S)+ L.

A CPA is a model of a computer in the following sense:

The set S represents the set of all possible occupations of the memory of the
computer in question by data only; programs are understood as “external”. This
distinguishes our approach from the one of [9].

The set I is a set of instructions; there are distinguished operational from jumping
ones — cf. the notions: “a jumping machine”, “a pure jump” and “a pure command”
in [3] in this connection. Operational instructions correspond to elementary actions,
jumping instructions represent elementary tests and next-command decisions of the
computer. The set of labels L serves to labelling instructions and the mapping &
specifies the activity of instructions.

Note that our approach is purely abstract, i.e. we have in mind abstract automata
and operational instructions and hence the computed functions are simply mappings
from S into S without any further structure.

The instructions from the set Iy or I, are called operational or jumping, respec-
tively. Each element ce(L x I) U1 is called a command (cf. [4]). A command

ceLxTorce(LxIgyulgorce(L x I)uly is called labelled or operational
or jumping, respectively.

Denote Cyy = (L x I) U 1.

Let ce C, be a command. If itis ¢ = {z, x), where ze L, x e I, set

M=z, c)=x;
for ¢ = x set
e) = x (A(c) is undefined) .

A program is a finite sequence of commands from C, # = [c‘, . c”] such that
the following conditions hold:

(1) Vijep(d)=UN=i=)),
(2) die ﬁ(t(ci) = !) .

The set of all programs is denoted by CJ. Cf. [2], [4], [10].

If for some CPA o/ = (I, S, L, §) a program # € C}, # = [c!, ..., ¢”] and a state
se S are given, then the CPA o/ provides the computation (by the program £ from
the state s) by the following prescription (cf. [4]): Set 5o = s, ¢; = ¢!, 0 = 1.

Let i = 1 and let the state s;_,, the integer o; and the command ¢; = ¢** be de-
termined. Then &/ proceeds as follows.

If it is L() = /, the computation finishes at the i-th step.

If (c,) * /, the computation finishes at the i-th step provided that (de)), si-1) ¢
¢ Dom d; otherwise two possibilities are to be distinguished:

(1) dc;)els; then for «; = p the computation finishes at the i-th step; whether
o; < p,set

Sy = 5(‘(Ci)a 5;‘—1), Gipg =0 + 1, ¢y = it
(2) c;)eIL; then set
= 5(‘(Ci), Si‘l) 3

if there is no je p such that z = A(c/), the computation finishes at the i-th step;
whether such a (uniquely determined) j exists, set

= =7 = ¢
S; = 8;-1, Uip1 =J, Cpeg = O

A finite or infinite (just now defined) sequence ¢y, ¢z, ... (which is finite and has m
members if and only if the computation finishes at the m-th step) is called a branch
of # from s and is denoted by B(#, s). Cf. [3], [4].

Dznote s the set of all mappings from S into S.

We say that a program & € CJ; computes on the CPA o/ a function f e F; defined
as follows: if f(2,s) = ¢y, ..., ¢y .and dc,) = /, then se Dom f and f(s) = s
otherwise s ¢ Dom f.

m—15

A function f & § is called computable on the CPA o if there is a program 2 € C},

computing f on &.

229

230

i2?
sequence (2, s) by deleting all the commands which are not operational. Then the
sequence of operational instructions

W@, 5) = dei) des) s o

is called an operational branch of 2 from s.

Let e Cy, se S and let a sequence c;, c,,, ... arise from the (finite or infinite)

Thus (2, s) is the sequence of operational instructions which are applied to s;
e.g. if (2, s) = x; ... X, then for the function f computed by & the equality

J6) = Fulfm- - (f5(5)))
holds, where f; = (-, x;) for j e rir.
Example 1. Let o7, = (Io, S, Lo, 8,) be a CPA such that
Io = {1, %3, y1, y2} w {¥P] i e Ny},
Se =Ny, So=1{0,1,2,3,4,58,10,16}, Ly =N,,
X1, %, and y,, y,, ¥ are operational and jumping instructions, respectively and
So(x1,8) = 3s + 1 for se S and s odd, undefined else ,

(50(x2, s) =1s for se S, and s even, undefined else,

‘50(}’1,5) =\/1 for s odd ,
~2 for seven,

3 fors=1
d, V8) = ’
o(}’z) N4 else
and finally for each ie L,
8oy, 5) =i forallsesS,.
Let 2, € C}, be a program,
Po = [0, 725, <3, 1, <4, y1), {1, %D, €2, %20, <5, Y] .
It is easy to see that the program 2, computes on the CPA &, the function f; € Fs,
defined as follows:
fols) =1 for s + 0, fo(0) undefined .

Further, e.g.

B(P0,2) = <0, 320, <4, 7105 €2, %20, <5, ¥, €0, 323, 3, 1)

w(@o, 3) = X XX XpXX2Xp s

(P, 2) = x, -

2. SEQUENTIAL PROGRAMMED AUTOMATA

A sequential programmed automaton (SPA) (cf. [2]) is a system 4 = (I, S,),
where I is a finite nonempty set — the set of instructions of A, S is a nonempty set —
the set of internal states of A and 6 is a mapping from the set I x S into the set S.

Denote 6* the well known extension of the function J to the mapping from I* x §
into S. (I* denotes the set of all strings over L) An arbitrary string P e I* is called
a sequential program.

We say that a sequential program Pel* computes on the SPA 4 a function
S e Fs defined by f = 6%(P,-).

A function f € Jgis called computable on the SPA A if there is a sequential program
Pel* computing f on 4.

The SPA and functions computable on them are dealt with in [7].

3. THE SEQUENTIAL KERNEL OF A CPA h

Let o/ = (I, S, L, 3) be a CPA. Then the SPA Ker &/ = (I, S, d5) is called a se-
quential kernel of o. Cf. [3].

Let f € . If the function fis computed on the SPA Ker & by a sequential program
P = X ... X, then fis computed on the CPA o by the program 2 = [x,, ..., x,,, /].

The opposite statement in general does not hold: the function f;, (see Example 1)
is obviously not computable on the SPA Ker .

Deznote

I1°" = {yel, | Domé(y,") =S et card Rand(y,")e N}.

A program P e CJ, # = [c', ..., c’] is called regular if the following conditions
hold:

(1) Viepc)el, = c)ell®). '
(2) If Tis the set of all s € S for which the branch (2, s) is finite, then

VseT(de,) =/ vel {(w(2,s),s)¢ Dom &%),

where ¢, denotes the last command of the branch (2, s).

Thus, by condition (1), in regular programs only “total” jumping instructions may
be used; moreover, each of them only finitely many jumps can realize. The condition
(2) is purely technical — it prevents obvious syntactic errors in the program. »

It is easy to prove the following lemma.

Lemma. A function f € &g is computable on the SPA Ker « if and only if there
is a regular program % € C? computing f on the CPA & such that the following two
conditions are valid:

23

232

(1) For each s e S the branch B(#, s) is finite.
(2) Vs, 5,82, s)) = o2, s,)) .

4. THE PIECE-WISE COMPUTABILITY

In this section we essentially generalize the notion of computability on a SPA in
order to simulate computation on a CPA. Being a function f: S+ S given, it is
possible that fis computed on a SPA “piece-wise”, i.e.: to different states correspond
generally also different sequential programs, which, being applied to the states, yield
the required results. This informal idea is made more precise in the following defini-
tion. Note that the defined notion is slightly more general because an auxiliary set
S’ is introduced such that the states from the set S — S’ are “neglected”. Cf. [3]
in this connection.

Let 4 = (I, S, 5) be a SPA.

Let M < S be a nonempty set and let 4 be a partition of the set M, i.c.

4={M;|jelt},
where J + 0 is a (finite or infinite) index set,
M={JM;
Jjed
and M; + @ foreach je J.
We shall write 4 =] M;, too. The sets M are called classes of 4.
jeJ

Je&.
Denote B, the set of all partitions of M.

If the index set J is finite, we call the partition 4 finite. The set of all finite partitions
of M denote BEN.

A function f e §s is said to be piece-wise computable on the SPA A if there are
a set §' such that Dom f = §' < S and a partition 4 = | S, of the set S’ such that
ieJ

for each i € J a function f; € & is on 4 computable such that

Domf;nS;=DomfnS;
and

fi(s) =f(s) for seDomfnS;.
If the function f; is on 4 computed by a sequential program P;eI*, then the set
¢ ={{P.S)|ieJ}
is said to be a partition of the function f regarding the SPA A (and the set S').

Example 2. The function f, has regarding the SPA Ker &/, and the set Sy =

= S, — {0} the partition
00 = {(Pu (i} | 1€ 50}
where e.g.

P,

I

A (the empty string), P, = x,,

Py = x1X5X1X3%2%5%; P, = x;%;;

thus, f, is piece-wise computable on Ker s/,

If a function f € Fs is computed on a CPA & = (I, S, L, §) by a regular program
2, then f is piece-wise computable on the SPA Ker «. Really, set

S' = {seS|B(2,s) is finite}

P, = (2, s)for se S'; then Dom f = S” and the set {(P;, {s})| s € $'} is a partition
of f regarding ./ and S'. (It is namely se Domf if and only if (P,, s)e Dom 6*;
this need not be true for # non-regular.)

The opposite implication in general does not hold. Its validity for a given CPA &/
depends clearly on “partition possibilities” of jumping instructions in the set IT°T.

5. THE REALIZATION OF FINITE PARTITIONS

Let o« = (I, S, L, §) be a CPA. We say that a jumping instruction y € IT°T realizes
a finite partition 4 = S1I I S, of the set S if there are pair-wise different labels
Zy, ..., 2, € Lsuch that for each ie g

8y, +) (S = {z:} .

Let T < S be a nonempty set. We say that a partition 4 5™, 4 = T,| ...| T,
is realizable on o if there is a regular program 2 e C}, such that the following two
conditions hold:

(1) For each t € T the sequence w(2, t) is empty.

(2) For cach t e T the branch B(,) is finite and if the last command of §(2,) is
¢,, then ¢,e Dom A and there are pair-wise different labels zy, ..., z, € L such
that the implication

te T; = l(c,) =z

holds for each i€ 4.

Then we also say that the program # realizes the partition 4 on /. Note that

«(c,) = ! for each t e Tand that the function computed by £ is identical on the set T.

Thus, the program 2 makes it possible to distinguish two states of Tif and only
if they belong to different classes of the partition 4. It is important that £ uses no

233

234

operational instructions — see (1); in fact it would be possible to assume that 2
consists of jumping and stop instructions only.

Example 3. The jumping instruction y; € [, realizes the partition
{1,3,5}]{0,2,4,8, 10, 16}
of the set S,. Further, the program

Py = [0, 0, <1, ¥2), (2, 1, <3, 13, <4, 1]
realizes the partition
4, = {1} |{3,5} | {0, 2, 4,8, 10, 16}
of the set S, on .

A partition 4 € 5™ is said to be an elementary partition of the CPA & if there
is a jumping instruction y e I7°7 realizing 4.

The aim of this paper is to find some connections between a given CPA & and
the functions computable on . Here elementary partitions of & play a similar role
as elementary functions of & (i.e. functions (x, -) for x € I) for investigation of the
question for SPA. Some results dealing with composition of elementary functions are
mentioned in [7]. Furthermore, in [7] it is defined a notion of composition of finite
partitions and it is proved, that a partition 4 € B5™ is realizable on & if and only
if 4 is a composition of some elementary partitions of /.

In what follows we shall not investigate the questions of composition (either
functions or partitions), but rather the following problem: If the functions piece-wise
computable on Ker o/ and the partitions realizable on & are known, what functions
are then computable on 2/?

The essential role in the investigation play special graphs — program graphs.
A program graph of a given partition ¢ of a function f describes a possible structure
of the operational part of a program which computes f and corresponds in a sense
defined below to the partition g.

6. ORIENTED MULTIGRAPHS
A quadruple 4 = (V, E, b, e) is said to be an oriented multigraph if Vis a set —
the set of vertices of 4, E is a set — the set of edges of 4 and
b:E>V, e:E-V.

The vertex b(e) or e(e) is called the begin or the end of the edge e € E, respectively.
For each v e V define

Ev) = {ecE|e(e) = v}, iv card E(v),
E(v) = {ee E|b(e) = v}, o(v) = card E,v).

i

|

By a path in ¢ is understood each finite or infinite sequence p = vye v e,0, ...
such that for each i it is

vieV, eeE, ble)=uv,_,. ele)=v

and if a is the last member of p, then a e V.
We shall sometimes briefly write
P = Uyl ... OF p=ee,...
Set

{ee E|e(e)e Vi) »

1

Vew = {veV]o(v) =0}, Epn
=
=1

Veon veV]o(v) 22}, Econ={eeE|b(e)e Veon}-

The sets Ve, Epmns Veons Econ are called the set of final vertices, final edges, con-
ditional vertices and conditional edges of ¥, respectively.

7. PROGRAM GRAPHS

Let o7 = (], S, L, 5) be a CPA.
By a program graph (cf. [10]) is understood a sixtuple ¢ = (V, E, b, e, @; /) such
that (¥, E, b, e) is an oriented multigraph and the following conditions hold:
(1) Voe V(i(v)e Ny, et ofv)e N,).
(2) There is exactly one ve V such that i(v) = 0. This v is called the initial vertex
of 4.

(3) @ : E - Is w {!, ?} such that
o(Epp) = {47} and @(E — Epy) < Is.
(4) ¥ : Econ — exp S such that
VoeVeons Ve, e;eEy(v)(eg + ey =yle,)n yle) =9).

For ve Veoy denote 4, = | y(e) and say that the vertex v realizes the partition
4, of the set U ¥(e). eebulo)

ecEo(v)
Thus, the graph % describes a branching of some operational sequences. The

mapping ¢ assignes operational instructions to the edges of ¢, serves for describing
a dependence of the branching on the “initial states”.

Now a dependence of ¢ on a partition g of f will be specified. First we shall define
such a path in ¢ one moves on if begins in the initial vertex of ¢ with a given state
se S and proceeds in the direction of oriented edges, respecting branching in the
conditional vertices in such a way that as the next edge is always the one labelled by s
chosen.

236

Let ¢ be a program graph. For each se S define a path p, as follows. Let p, =
= vye b e,b, ... be a finite or infinite path in ¢ such that the following conditions
hold:

(1) i(e0) = 0.
(2) For each n e Ny, if v, € Vo is not the last vertex of p,, then s € (e, ,)-

(3) If for some n e NN, is v, the last vertex of p;, then either v, & Vg or

v,€Veon €t VeeEyv,) (s¢ gb(e)) .
Clearly, the path p, is by the state s uniquely determined. Note that if p, is finite,
then
v, ¥v;, e, Fe for i#Fj.
For v e Veoy denote

S, ={seS|visavertex of p,} .
{

Let fe §s and let ¢ = {(P;,S;)|je J} be a partition of f regarding Ker s/ and

S =S

A program graph ¢ = (V, E, b, e, ¢,) is said to be a program graph of the
partition g if the following conditions hold:

(1) Vve VCON(Su = U ‘/’(")) .

eeEq(v)

(2) For each s € S the path p, is finite, p; = voe v, ... e,v, and eitheritis se § — S’
andthenn 2 1and ¢(e,) = ?oritisse S;forsomeje J, P; = x, ... X, (me Ny)
and then n = m + [and ¢(e;) = x; for i e M, ¢fe,) = /.

Note that the condition (1) and the finiteness of p, imply v, € Vgn. Note further
that the partition g can possess more than one various program graphs.

Example 4. Let %, be a graph possessing the diagram presented in Fig. 1. &,

X

f 2 o
K
x, |(3) Xy
el X, h X%, i X, ! om
. b0 {035810/6} \(03510,16] {3.5.10.16}
2
04816))\ @\ !

Fig. 1.

has 6 final vertices (and edges): b, k, m, n, o, p, 6 conditional vertices: a, c, e, h, i, j
and 14 conditional edges.

Further, %, is a program graph with the initial vertex a. E.g. ¢(a,¢) = x,,
o(j, k) = 2, ylc, h) = {0,4,8,16}, po = achijk, S, = {3,5,10}.

Finally, it would be clear that %, is a program graph of the partition ¢, of the
function fj.

8. PROGRAMABLE PROGRAM GRAPHS

The aim of this section is to formulate conditions that enable us to realize the
partitions required in conditional vertices.

Let T< S, T+ @ be a set. We say that a partition 4e P, 4 = Ty|...| T,
separates sets My, ..., M, < Tif

Vi, je(MuM; +0=3m,neg(M; < T,
et M;cT, et (i+j=m=*n)).

Let f e &s, let ¢ be a partition of f (regarding Ker o/) and let & be a program graph
of g. Further, let v be an arbitrary conditional vertex of 4 and let v realize a partition
4 = Vi ...| V, of the set S,,.

Let se S, if p, = vge,vy ... €,v,, denote P; = ¢(e,) ... ¢(e,), where me # U {0}
is a (uniquely determined) integer such that v,, = v. Set

fs = o%(P,,").
Finally, for j € § denote
T = {/{s)[se ¥, n Dom f}.

Thus, the sets T7 are just the ones that ought to be distinguished in the conditional

vertex v; the states s for which s ¢ Dom f; holds may be (and in fact are) neglected.

The conditional vertex v is said to be programable on & if there are a set T =+ @
such that U T¢ = T < S and a partition 4 € P§™ separating the sets T, ..., T? and

. Jed
realizable on 7.

Say that a program graph is programable on s if each its conditional vertex is.

Example 5. Consider the conditional vertices ¢, h of 4,. Here

S, =1{0,2,4,8,10,16}, S, ={0,3,4,5,8,10, 16}
and e.g.
PS=x, for seS., fis)=14s for seS,,
Pl = x,x,, Ph=x;x0%%, Plo = x%,%,%,,

fi5) =4, fi®=1.

237

Further, for the conditional vertex c,

g=3, V,={10}, V,=1{0,4,816}, V,={2};
hence

c

T =fio(v) = {3}, T2=1{0,248}, T'={1};

thus the sets T, T2, T. are separated by the partition 4,, which is realized by the
program 2, on &7, (sec Example 3). Thus, the vertex ¢ is programable on 2Z,.

9. THE OPERATIONAL TREE

In this section for a given regular program 2 a special graph describing the opera-
tional branches of # and their branching will be defined. On this purpose some further
notions are necessary.

Let o =(I,S,L,8) be a CPA and let ¢ CL be a regular program. Assume
(without any loss of generality) that each command of is labelled.

For se S let w(s) be the sequence arising from the branch B(2, 5) by deleting all
Jjumping commands.

Suppose that 2 has the following property: If s € S is such a state that the sequence
B(2, s) is finite and if w(s) = ¢y, ..., ¢,, then Ac;) + Ac;) for i * j, i,je . Pro-
grams, possessing the just mentioned property, will be called acyclic.

Note that the program 2, is regular but not acyclic.

Now we want to define certain sequences A° for s € S. Distinguish two cases:

Let firstly se S be such that the branch (2, s) is infinite (w(s) may be finite),
o(s) = ¢y, c3, Then we are going to cut off the sequence w(s) in order to make
it finite. Let p e N, be the largest integer such that there is ¢ € S for which the branch
B(2, 1) is finite (if no finite (2, 1) exists, set p = 0) and the sequence w(t) has the
first p members the same as the sequence co(s). (Such a p exists, because 2 is supposed
to be acyclic and hence the set of lengths of all sequences w(f) for which B(2, 1)
is finite is bounded.) Set

'(s)=cy,...,cpc, where ¢=<(z,?)y, zelL.

The label z is the same for all s and is different from all labels used in 2.
If secondly se S is such that B(2, s) is finite, set

w'(s) = w(s).
Now, let for se S be w'(s) = ¢}, ..., ¢},. Note that m, 2 1.
Denote 4* = z3, ..., z,,,, where z5 = A(¢5) (j = 1,..., my). Note that z} % zj for
P jem,
Define a set
W={(z},s)|seS et iem}

and for (2}, s), (z}, 1) € W write 239
(zj, 5) = (z}, 1)

if i =j, 2} = z} and either i = I or (z}_,,s) = (z}_y, #). It is clear that = is an
equivalence relation on W. It is not difficult to see that the index of = is finite.

Denote V, the set of all =-classes of the set W, set V; = ¥, w {1,} and define

Ep = {25)0 (s N) | 558 et 1 Sjsm -1}y
U {(v5, <25, 5)Y) | se S},

where {(w) denotes the class containing w e W.

It is easy to see that the oriented multigraph

4, = (Vy, E;, nf', n§Y)

is a tree, i.e. i(vy) = 0 and i(v) = 1 for each v e V.

Furthermore, define a mapping
@ Ey o Igu{l,?}
as follows: let ee E; and let we W be such that {w) = m,(e); then set ¢,(e) =
= 2" (my(w))). (The definition is correct: w’' = w implies m,(w’) = n,(w).)
Let uy, ..., u, be all vertices of ¥, such that o(u;) = 0 and ¢,(e;) € I5, where ¢;
is the edge such that m,(e;) = u; (i € p). Define
V=V wlv,..,v,}, where v, +0v, for i%j,i,jep,
E=E u{(u,v)|iep},
¢ = (V, E, o}, m5),
¢ = {((unv))|iep}.

For each s € S define p° as a path in such that

PP=1, <(Zsl’5)>v e <(ernx’ S)> s Ugy e Uy,

ke N, and the last vertex of p® is a final vertex of 4. If more than one such paths
exist, choose one of them as p°.
Now we can define a mapping ¥ : Econ — €xp S by the following way: for e € Ecoy
set
¥(e) = {s& S| eis an edge of p*} .

Finally, define the operational tree of the program 2 as a labelled multigraph
T = (V, E,nf, nk, @,). Tt is easy to verify, that 74 is really a tree and that it is
a program graph.

1240

10. THE MAIN THEOREMS

Theorem 1. Let o = (I, S,L,5) be a CPA and let a function fe Fs be on o
computed by an acyclic (regular) program #. Then there are a finite partition ¢ of f
(regarding Ker &) and a programable program graph ¢ of o, which, moreover,
is a tree.

Proof. For each s € S denote ¢° the last edge of the path p* in the operational tree

T 5 of 2. Set
S ={seS|o(e) = 1}
then Dom f <= §'.

For s,t€ S define s =t if p* = p'. Clearly, the relation = is an equivalence
relation on §’ and its index is finite (because 7 is finite).

Let Sy|...| S, be the partition of S’ induced by =. Let jek, se S; and let p* =
=e,...e,(n 2 1); then set P; = o(e) ... p(es—1)-

It is easy to see that ¢ = {(Py, S,), ..., (P, S)} is a finite partition of f regarding
Ker o and S'.

Prove further, that J 5 is a programable program graph of g. It is not difficult
to see that for each se S the equality p* = p, holds. Hence, the conditions (1),)
of the definition of a program graph of g in Section 7 hold.

Let v be an arbitrary conditional vertex of J 5 and let v realize a partition
V‘|..‘[V, (g 2 2) of the set S,. In order to complete the proof we shall prove that
the vertex v is programable on &7,

Remember the definition of the sets T¢ for j e 4:

1) = {f{s)| sV, o Dom £}

Here, of course, the situation is simpler than in a general case of a program graph
because J 4 is a tree: For s, 1€ S, f; = f, holds; thus we can set f, = f; for se S,.
Now we have
T) = f(V; n Domf,)
and setting
T,=UT/ and U,=S,nDomf,

jea
we gain T, = f,(U,).

Let se U, and let §(2,s) = ¢}, c5, Then there are integers iy, j,€ N, such
that

S iz 2, (He) s =0
(where (w) denotes the class of the equivalence from the definition of I, which
contains w),

(el for i, +15i<j,—1 and oc)els.

If v equals the initial vertex v, of 7 5, we set formally
(Mco), sy = vo 5
thus i; = 0.
Note that (¢})} = A(c},) if and only if 1, u € V; & Dom f, for some j € 4. Denote

z; = A¢§) for seV; nDomf,.
Define
Com {Ehnr e i}
Now let

Py=[e e (g Dy 2 D]
be such a program that the following conditions hold:
1) ' =¢},, for seU, (t,ue U, implies ¢4, = ch1y),
@) {c'....c"} = U Cs.
sely
As it is clear, the program 2, realizes some partition 4 of the set T,. We are going
to prove now that 4 separates the sets T2, ..., T4

Let je g and 1€ TJ. Then there is s € ¥; n Dom f, such that 1 = £,(s). If we again
have

BB, s) = c5, 5oy €l or iy s

where A(c},) = z;, then it is clear that the “branch” of the program & beginning
with the command ¢j_; (and in the state ¢ results from the branch B(ﬂ, 5) by removing
the first i; members. Hence

ﬁ(g’u: 3) = Clats Clorzy oo Ch=15 <250 1) [}

Let 4 be a program graph. A pathp = v, ... v, (m 2 2)in ¢ is said to be a chain
in ¢ if the following conditions hold:
(1) i(v;).o(v)*1 for j=1,m.
(@) i(v;).ov) =1 for j=2,..,m—1.
The vertices v, and v,, are called the begin and the end of the chain p, respectively.

A chain in ¢ is said to be final if its end is a final vertex of ¢.
A CPA o = (I, S, L,5)is said to be semi-complete if the condition

VzeL3yell”T VseS (8(y,s) = z)
holds. Such a y will be denoted by w[z] in what follows.
Theorem 2. Let 7 = (I, S, L, 8) be a semi-complete CPA. Let f € s be a function

such that there are a finite partition ¢ of f (regarding Ker w‘) and a programable
program graph of ¢. Then f is on &/ computed by an acyclic program.

242

Proof. Letg = {(Py, Sy), ..., (Py, S,)} and let 4 be a (finite) programable program
graph of g.

Let v be a conditional vertex of %, let v realize a partition V;|...| ¥, of the set S,,
let T< S and let 4 e PF™ be a partition separating the sets T, ..., T¢, which is
realized on &/ by a regular program £, = [c*, ..., c?]. Suppose T, # 0 for i€ g
(cach empty T, may be deleted).

For s e T denote c, the last command of (2, s) and let for se T; be Ac,) = z;
(i =1,..., q).

Set 2, = [¢', ..., é], where

=g),
G Gy, wlz]> if M) =z, forsome ieq (j=2,...p),

el else
where Z,Z,,..., Z, are pair-wise different and different from A(c/) for je p, too.
Denote
I2)=2, O (2)=Z% (i=1..49).
Further, let p be a chain in ¢ which is not final, p = ¢, ... ¢,,. Set
2, = [(z, ole), 9les), .- olen) w[=']]

and denote 3(2,) = z, O(2,) = z".
Ifpisafinalchainin 4, p = ¢, ... e,e, setform = 1

2, = [z, p(e,)), @ley), ..., plen), c],
where
e 1! for oe) =/
REEA W[Z/]> for (p(e) =7,
for m = 0 set
P o= £z, > for q;(e) =/
Pz w[z]) for gle) = 7.
Denote I(2,) = z.
Now, let py, ..., p, be all chains, v, ..., v, all conditional vertices of 4. It follows

from the semi-completeness of o/ that the labels of all commands in sequences

Prrs s Pos Poys -+» P, €an be chosen pair-wise different, unless by the following

conditions is required the contrary.
(1) If the end of a chain p is a vertex v such that o(v) = 0, then

_3(#,),if o(v) = 1 and v is the begin of a chain ¢,

o(2,) = ¢
@) =< 3(2,) else .

(2) If the begin of a chain p is a conditional vertex v and if the first edge of p is e,
then

3@%) = D,,/(‘,,(ﬁ’u) .

Set 2 = [c',...,c"], where the sequence ¢!, ..., ¢ is a juxtaposition of the se-
quences 2, , ..., #, P, ..., P, in an arbitrary order, but such that if the initial
vertex v, of ¢ is conditional, then the leftmost sequence is 2, and if it is not the case
and if vy is the begin of a chain p, then the leftmost sequence is 2,.

Now it is not difficult to prove formally that the program 2 computes the function
fon . Fu;thermore, it follows from the choice of labels in & that & is acyclic. [

Theorem 1 provides a necessary condition for a function to be computed on a CPA
o by an acyclic program. By Theorem 2 the condition is even sufficient provided that
the CPA & is semi-complete. Note that the semi-completeness is a quite natural and
reasonable demand; it realizes the first step to the label-independence: not labels
attainable by jumping instructions are important for the computational capacity
of & but only realizable partitions are. This independence is achieved in [7] by
means of the notion of completeness, mainly in connection with compositions of
partitions mentioned above.

Both theorems show that the concepts of a partition of a function as well as of
(programable) program graph are adequate tools for describing relations between
the set of instructions (i.e. elementary functions and pattitions) on the one hand and
the set of computable functions on the other.

Perhaps the most interesting corollary of both the theorems (for semi-complete
CPA) is the following one: If f has a finite partition with a programable program
graph ¢, then % can be “transformed” into a tree which remains to be a programable
program graph of some finite partition of f. Or in other words: For each acyclic
program there is an equivalent (i.e. computing the same function) program the
operational structure of which has a form of a tree.

It is clear that further generalization of the concepts defined in this article is
possible and desirable. For example non-acyclic and even non-regular programs and
corresponding compositions and graphs are to be studied in more details.

(Received December 31, 1976.)

REFERENCES

{11 A. Blikle, A. Mazurkiewicz: An Algebraic Approach to the Theory of Programs, Algorithms,
Languages and Recursiveness. Proc. Symp. on Math. Found. of Computer Sci., Jablonna
1972,

[2] K. Culik: On Sequential and Non-Sequential Machines and their Relation to the Com-
putation in Computers. Mimeographed in IFIP WG 2.2 Bulletin, No. 6, February 1970.

[3] K. Culik, M. A. Arbib: Sequential and Jumping Machines and their Relation to Computers.
Acta Informatica 2 (1973), 162—171.

243

244 [4] K. Culik: Algorithmic Algebras of Computers. Czechoslovak Math. Journal 23 (1973),
670—689.
[5] K. Culik: Some Notes on Logical Analysis of Programming Languages. Teorie a metoda 3
(1971), 101—111.
[6] ¥O. W. SxoB: O nornyecknx cxemax anroputmos. [Ipobnemst kuGepreruxu 7 (1958), 75— 127,
[7]1 J. Mare§: Programmed Automata. (In Czech.) CSc. — thesis, Prague 1973 (not published).
[8] R. Milner: Equivalences on Program Schemes. Jour. Comp. and Syst. Sciences 4 (1970),
205—219.
{91 Z. Pawlak: Stored Program Computers. (In Polish.) Algorytmy Vol. 5, No. 10 (1969),
5—19.
[10] H. Rossner: Formalization of the Notion of the Program. (In Polish.) Algorytmy Vol. 5,
No. 10 (1969), 25—43.

RNDr. Jan Mares, CSc., fakulta jadernd a fyzikdlné inZenvrskaé CVUT (Faculty of Nuclear and
Physical Engineering — Czech Technical University), BFehovd 7, 115 19 Praha 1. Czechoslovakia.

		webmaster@dml.cz
	2012-06-05T05:16:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

