
Kybernetika

Jan Mareš
Conditional programmed automata

Kybernetika, Vol. 14 (1978), No. 4, (227)--244

Persistent URL: http://dml.cz/dmlcz/124440

Terms of use:
© Institute of Information Theory and Automation AS CR, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124440
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 14 (1978), N U M B E R 4

Conditional Programmed Automata

JAN MAREŠ

A conditional programmed automaton and functions computable on it are defined and,
utilizing certain graphs, connections between those automata and functions are studied.

DENOTATIONS

N denotes the set of all positive integers,

N0 = / V u { 0 } ;

for n e N0 denote

fi = {1,2,..., n} (thus, 6 = 0).

If A, B, C are sets, write

C = A u £ if (C = AuBet/4nB = 0) .

Let f : A -* B denote that / is a mapping of A into B. A mapping g of a nonempty
set A0 c A into a set B is called a mapping from A into B and denoted by g : A +-> B.
D o m / and R a n / denote the domain and the range of/, respectively.

Let n e N, let Au ..., A„ be nonempty sets and let

A = A! x ... x A„ ;

then for i e M define projections nf : A -» A; by a prescription

Tc^ax, ..., a„) = a ; .

(The superscript A will be deleted, if possible.)

1. INTRODUCTION

Mathematical systems aspiring after to model real computers are frequently
investigated in the literature. We have in mind e.g. Pawlak's machines [9], called
also iterative systems in [l] and examined by many other authors. Further, Culik's
notions of sequential and jumping machines (see [2], [3], [4], [5]) ought to be
mentioned here. In fact, the notion of a conditional programmed automaton, dealt
with in this article, took its origin in [2].

Our approach is nearer to the latter conception than to the former one. Some our
notions correspond to some extent to certain concepts e.g. in [8] or in [10], some
other (e.g. a piece-wise computability, an operational tree) seem to be new. Never
theless, all these concepts proved to be useful for our purposes.

A conditional programmed automaton (CPA) is a system

s4 = (7, S, L, 5),

where I is a nonempty set — the set of instructions of srf,

i = / s u / L u { / } ;

here it is J- # 0 and finite, / is a stop-instruction; S is a nonempty set — the set
of internal states of srf, L is a set - the set of labels of stf, S n L = 0 and 8 is
a mapping from the set I x S into the set S u L such that

5 = 8S u 6L ,

where

ds : (Is x S) H-> S, dL:(lLx S)++L.

A CPA is a model of a computer in the following sense:
The set S represents the set of all possible occupations of the memory of the

computer in question by data only; programs are understood as "external". This
distinguishes our approach from the one of [9].

The set I is a set of instructions; there are distinguished operational from jumping
ones — cf. the notions: "a jumping machine", "a pure jump" and "a pure command"
in [3] in this connection. Operational instructions correspond to elementary actions,
jumping instructions represent elementary tests and next-command decisions of the
computer. The set of labels L serves to labelling instructions and the mapping 5
specifies the activity of instructions.

Note that our approach is purely abstract, i.e. we have in mind abstract automata
and operational instructions and hence the computed functions are simply mappings
from S into S without any further structure.

The instructions from the set Is or IL are called operational or jumping, respec
tively. Each element c e (L x L) u I is called a command (cf. [4]). A command

c 6 L x 1 or c e (L x Is) u J s or c e (L x JL) u IL is called labelled or operational
or jumping, respectively.

Denote C_. = (L x J) u L
Let c e C„. be a command. If it is c = <z, x>, where ze L,xel, set

A(c) = z , t(c) = x ;
for c = x set

i(c) = x (A(c) is undefined).

A program is a finite sequence of commands from C_-, _? = [c 1 , . . . , cp] such that
the following conditions hold:

(1) Vf,je^(A(c') = A(c-0=>i«j).
(2) _ i e p « c O = !).

The set of all programs is denoted by C_.. Cf. [2], [4], [10].
If for some CPA s4 = (I, S, L, 3) a program 0> e C%, 0> = [c \ ..., cp] and a state

s e S are given, then the CPA si provides the computation (by the program 3P from
the state s) by the following prescription (cf. [4]): Set s0 = s, cx = c1, ay = 1.

Let i = 1 and let the state $._.., the integer a; and the command cf = ca' be de
termined. Then sd proceeds as follows.

If it is i(c,) = /, the computation finishes at the i-th step.
If i(c,-) + /, the computation finishes at the i-th step provided that (t(c(), -,_<)£

£ Dom 5; otherwise two possibilities are to be distinguished:

(1) i(c,)els; then for a(= p the computation finishes at the i-th step; whether
<xt < p, set

s; = <5(t(c,), s , . ^ , a i + 1 = a, + 1 , c i + 1 = c"+1 .

(2) i(c,) e IL; then set

z = d(i(ct), s;_!) ;

if there is no ; e p such that z = X(cJ), the computation finishes at the i-th step;
whether such a (uniquely determined) j exists, set

Si = S;_j , a , + 1 = ; , c i + 1 = cJ.

A finite or infinite (just now defined) sequence cx,c2, ••• (which is finite and has m
members if and only if the computation finishes at the m-th step) is called a branch
of 9 from s and is denoted by p(0>, s). Cf. [3], [4].

Dsnote %s the set of all mappings from S into S.
We say that a program 3P eC^ computes on the CPA sd a function fe g s defined

as follows: if P(0>, s) = c 1 ; . . . , cm and i(cm) = !, then s e D o m / and f(s) = sm_ t ;
otherwise s $ Dom/ .

A function/e 5 S is called computable on the CPA s4 if there is a program 9> e C^
computing / on si.

230 Let &> e C%, s e S and let a sequence ch> ch,... arise from the (finite or infinite)
sequence fi(SP, s) by deleting all the commands which are not operational. Then the
sequence of operational instructions

co{0>, s) = t(c(l), i(ch)

is called an operational branch of 3P from s.

Thus co(3P, s) is the sequence of operational instructions which are applied to s;
e.g. if o(0>, s) = xl ... xm, then for the functionjcomputed by 0> the equality

j(s)=jm(jm-,-.(L(s))...)

holds, where j,- = S(-, Xj) for / e m.

Example 1. Let $f0 = (/0, S0, L0, S0) be a CPA such that

h = {*i> x2, yu y2} w {ya> | i e At0} ,

S0 e N0 , S0 = {0, 1, 2, 3, 4, 5, 8, 10, 16} , L0 = N0 ,

Xj, x2 and y l s y2, y (" are operational and jumping instructions, respectively and

<50(Xf., s) = 3s + 1 for s e S0 and s odd, undefined else ,

<50(x2, s) = i s for s 6 S0 and s even, undefined else ,

v. / x / 1 for s odd ,
80(yu s) = /

^•2 lor s even ,

c , s / 3 for s = 1 ,
M>2. S) = < , .

^ 4 else

and finally for each i e L0

50(y«>. s) = i for all s e S 0 .
Let ^ 0 e C^0 be a program,

5*0 = [<0, y2y, <3, />, <4, P l > , <1, X l>, <2, x2>, <5, /°>>] .

It is easy to see that the program 3P0 computes on the CPA s40 the function j 0 e gSo

defined as follows:

j0(s) = 1 for s =t= 0, j0(0) undefined .

Further, e.g.

P(&0, 2) = <0, y2y, <4, yty, <2, x2>, <5, y<°>>, <0, y2y, <3, /> ,

(a(3P0, 3) = x1x2xlx2x2x2x2 ,

w(3P0, 2) = X 2 .

2. SEQUENTIAL PROGRAMMED AUTOMATA

A sequential programmed automaton (SPA) (cf. [2]) is a system A = (I, S, 8),
where I is a finite nonempty set — the set of instructions of A, Sis a nonempty set —
the set of internal states of A and <5 is a mapping from the set I x S into the set S.

Denote <5* the well known extension of the function <5 to the mapping from I* x S
into S. (1* denotes the set of all strings over /.) An arbitrary string P e 1* is called
a sequential program.

We say that a sequential program Pel* computes on the SPA A a function
jegs defined by / = 5*(P, •).

A function/e g s is called computable on the SPA A if there is a sequential program
Pel* comput ing/on A.

The SPA and functions computable on them are dealt with in [7].

3. THE SEQUENTIAL KERNEL OF A CPA

Let j / = (/, S, L, 8) be a CPA. Then the SPA Ker s4 = (ls, S, Ss) is called a se
quential kernel of s4. Cf. [3].

L e t / e g s . If the function/is computed on the SPA Ker stf by a sequential program
P = * ! . . . xm, then/ is computed on the CPA ^ by the program 0> = [x . , . . . , xm, /] .

The opposite statement in general does not hold: the function /„ (see Example l)
is obviously not computable on the SPA Ker stf0.

Denote

JJ°T = {yeIL\ Dom 8(y,-) = S et card Ran 5(y, •) e N) .

A program 2P e C^, 3P = [c1, ..., cp] is called regular if the following conditions
hold:

(1) V/ep«cOe/ L =><c ;)E/r) .

(2) If Tis the set of all 5 e S for which the branch \i(0>, s) is finite, then

V s e T(i(cs) = / vel (<o(3P, s), s) $ D o m <5*) ,

where cs denotes the last command of the branch /?(^, s).

Thus, by condition (l), in regular programs only "total" jumping instructions may
be used; moreover, each of them only finitely many jumps can realize. The condition
(2) is purely technical — it prevents obvious syntactic errors in the program.

It is easy to prove the following lemma.

Lemma. A function fe g s is computable on the SPA Ker s4 if and only if there
is a regular program SP e C^ computing/ on the CPA s4 such that the following two
conditions are valid:

232 (l) For each s e S the branch p(0>, s) is finite.

(2) Vsl,s2eS(co(0>,sl) = oi(0>, s2)).

4. THE PIECE-WISE COMPUTABILITY

In this section we essentially generalize the notion of computability on a SPA in
order to simulate computation on a CPA. Being a function f: S ++ S given, it is
possible that j is computed on a SPA "piece-wise", i.e.: to different states correspond
generally also different sequential programs, which, being applied to the states, yield
the required results. This informal idea is made more precise in the following defini
tion. Note that the defined notion is slightly more general because an auxiliary set
S' is introduced such that the states from the set S — S' are "neglected". Cf. [3]
in this connection.

Let A = (/, S, 8) be a SPA.
Let M c S be a nonempty set and let A be a partition of the set M, i.e.

A ={Mj\jeJ},

where J + 0 is a (finite or infinite) index set,

M = U Mj
jzJ

and Mj 4= 0 for each j e J.

We shall write A = | M^, too. The sets Mj are called classes of d̂.
J V

Denote ^3M the set of all partitions of M.
If the index set J is finite, we call the partition A finite. The set of all finite partitions

of M d e n o t e ^ .
A function j e g s is said to be piece-wise computable on the SPA A if there are

a set S' such that Dom j <= S' cz S and a partition A = | S ; of the set S' such that

for each i e / a function / ; e g s is on A computable such that

Dom j , nSt = Dom j n S ;

and

L(s) = j(s) for s e Dom j n S,- .

If the function j , is on A computed by a sequential program P, e /*, then the set

o = {(P;, S;) \ieJ}

is said to be a partition of the function f regarding the SPA A (and the set S').

Example 2. The function j 0 has regarding the SPA Ker si0 and the set S0 =

= S0 — {0} the partition

Q0 = {(P„ {i} | i e S'0} ,

where e.g.

PY = A (the empty string), P2 = x2 ,

* 3 = = -^1-^2-^ 1-^2^2-^2-^2 5 * 4 ™ -^2-^2 >

thus , / 0 is piece-wise computable on Ker ^ 0 .

If a function/e 5s is computed on a CPA .a/ = (/, S, L, <5) by a regular program
^ , then / is piece-wise computable on the SPA Ker stf. Really, set

S' = {s e S | P(0, s) is finite} ,

Ps = co(0, s) for s e S'; then D o m / c S' and the set {(Ps, {s}) | s £ S'} is a partition
of/ regarding $0 and S'. (It is namely s e D o m / if and only if (Ps, s) 6 Dom (5*;
this need not be true for 0 non-regular.)

The opposite implication in general does not hold. Its validity for a given CPA s4
depends clearly on "partition possibilities" of jumping instructions in the set ITOT.

5. THE REALIZATION OF FINITE PARTITIONS

Let s4 = (I, S, L, d) be a CPA. We say that a jumping instruction y elJ°T realizes
a finite partition A = S,| ... | S4 of the set S if there are pair-wise different labels
zit ..., zqe L such that for each i e %

«50>, •)(*.) = {- .}•

Let T c S be a nonempty set. We say that a partition A e ty*1 N, A = T.J . . . | T,
is realizable on si if there is a regular program 0 e c £ such that the following two
conditions hold:

(1) For each t e Tthe sequence co(0, t) is empty.

(2) For each t e T the branch fi(0, t) is finite and if the last command of fi(0, t) is
c,, then c, e Dom A and there are pair-wise different labels zx, ..., zqe L such
that the implication

t 6 Tf =* %) = Z,

holds for each »' e #•

Then we also say that the program 0 realizes the partition A on jaf. Note that
i(ct) = ! for each t e Tand that the function computed by 0 is identical on the set T.

Thus, the program 0 makes it possible to distinguish two states of Tif and only
if they belong to different classes of the partition A. It is important that 0 uses no

234 operational instructions — see (l); in fact it would be possible to assume that 9
consists of jumping and stop instructions only.

Example 3. The jumping instruction y\ el0 realizes the partition

{1,3,5} | {0,2, 4, 8, 10,16}

of the set S0. Further, the program

-*i - [<0, J'i>. <L)>i>, <2, />, <3, />, <4, />]

realizes the partition

Al = {1} |{3,"5} |{0, 2, 4, 8, 10, 16}

of the set S0 on si 0.

A partition A e tys
lt< is said to be an elementary partition of the CPA si if there

is a jumping instruction yel]m realizing A.
The aim of this paper is to find some connections between a given CPA si and

the functions computable on si'. Here elementary partitions of $t play a similar role
as elementary functions of si (i.e. functions d(x, •) for x e Is) for investigation of the
question for SPA. Some results dealing with composition of elementary functions are
mentioned in [7]. Furthermore, in [7] it is defined a notion of composition of finite
partitions and it is proved, that a partition A e ^\m is realizable on si if and only
if A is a composition of some elementary partitions of si.

In what follows we shall not investigate the questions of composition (either
functions or partitions), but rather the following problem: If the functions piece-wise
computable on Ker si and the partitions realizable on si are known, what functions
are then computable on si 1

The essential role in the investigation play special graphs — program graphs.
A program graph of a given partition Q of a function / describes a possible structure
of the operational part of a program which computes f and corresponds in a sense
defined below to the partition Q.

6. ORIENTED MULTIGRAPHS

A quadruple ^ = (V E, b, e) is said to be an oriented multigraph if Vis a set —
the set of vertices of ^ , E is a set - the set of edges of'S and

b :E -» V, e : E -> V.

The vertex b(e) or e(e) is called the begin or the end of the edge e e E, respectively.
For each v e V define

Ei(v) = [e e E | e(e) = v} , i(v) = card Ei(v) ,

E0(v) = {e e E | b(e) = v} , o(v) = card E0(v) .

By a path in ^ is understood each finite or infinite sequence p = v0etvle2v2 ••• 2 3 5

such that for each i it is

v, e V, e, eE , b(e,) = vi_1 , e(e,) = v-,

and if a is the last member of p, then a e V.
We shall sometimes briefly write

p = i.'0iv>2 ••• or p = e,e2

Set

VF1N = {v e V | o(v) = 0} , EFIN = {e e E | e(e) e VF1N) ,

^CON = {v 6 V | o(v) £ 2} , ECON = {e e £ | b(e) e VCON} .

The sets VnN, EFiN, FCON, ECON are called the set of final vertices, final edges, con
ditional vertices and conditional edges of (S, respectively.

7. PROGRAM GRAPHS

Let s4 = (I, S, L, d) be a CPA.
By a program graph (cf. [10]) is understood a sixtuple _? = (V E, b, e, </.> i/<) such

that (V E, b, e) is an oriented multigraph and the following conditions hold:

(1) V v e V(t(t>) e W0 et o(t>) e _V0).

(2) There is exactly one ve Vsuch that x(v) = 0. This v is called the initial vertex

(3) cp : £ -» 7S u {/, ?} such that

<K£FIN) C {!' ?) a n d <K£ - £FIN) C is •

(4) i// : £CON -» exp S such that

VueV C O N , V e , , e2 e E0(v) (e, 4= e2 => <Kci) n "M^) = 0) •

For t> e VCON denote __„ = | \]/(e) and say that the vertex v realizes the partition

Av of the set IJ He)- """^
. -£„(.)

Thus, the graph ^ describes a branching of some operational sequences. The
mapping cp assignes operational instructions to the edges of ^ , ip serves for describing
a dependence of the branching on the "initial states".

Now a dependence of ^ on a partition Q off will be specified. First we shall define
such a path in ^ one moves on if begins in the initial vertex of _? with a given state
se S and proceeds in the direction of oriented edges, respecting branching in the
conditional vertices in such a way that as the next edge is always the one labelled by s
chosen.

Let <S be a program graph. For each se S define a path ps as follows. Let ps =
— v0elvle2v2 ••• be a finite or infinite path in <S such that the following conditions
hold:

(1) \(v0) = 0 .

(2) For each n e At0, if vn e VC0N is not the last vertex of ps, then s e ^(en+ j).

(3) If for some n e N0 is vn the last vertex of ps, then either v„ e VF1N or

v* £ V:oN e t V e e E0(vn) (s $ \p(e)) .

Clearly, the path ps is by the state s uniquely determined. Note that if ps is finite,
then

Vi 4= Vj , et =t= e} for ;' + j .

For v e VCON denote

Sv = {s e S I v is a vertex of ps} .

Let je g s and let g = {(Pj, Sy) | j e J} be a partition of j regarding Ker s4 and
S' c S.

A program graph <S = (V E, b, e, cp, if/) is said to be a program graph of the
partition Q if the following conditions hold:

(1) Vi;eVC 0 N(S„= U 4>(e))-
eeE„(v)

(2) For each s e S the path ps is finite, ps = v0e1v1 ... e„v„ and either it is s e S — S'
and then n — 1 and q>(en) = ? or it is s e Sj for some / e J,Pj = xl ... xm(me N0)
and then n = m + 1 and <p(e,-) = x ; for ;' e m, <p(en) = .'.

Note that the condition (l) and the finiteness of ps imply v„ e VFIN. Note further
that the partition Q can possess more than one various program graphs.

Example 4. Let <S0 be a graph possessing the diagram presented in Fig. 1. <S0

x ,
—*T9

. k

{0.2A8.10.16}

{Q35.8.10.16} UQ3.5.10.16} {3,5,10,16}

{4}\! íA i

Fig. 1.

has 6 final vertices (and edges): b, k, m, n, o, p, 6 conditional vertices: a, c, e, h, i,j
and 14 conditional edges.

Further, <g0 is a program graph with the initial vertex a. E.g. <p(a, c) = x2,
<p(j, k) = ?, ijj(c, h) = {0, 4, 8, 16}, p0 = achijk,Se = {3, 5, 10}.

Finally, it would be clear that <§0 is a program graph of the partition Q0 of the
function/0.

8. PROGRAMABLE PROGRAM GRAPHS

The aim of this section is to formulate conditions that enable us to realize the
partitions required in conditional vertices.

Let Tc S, T* 0 be a set. We say that a partition A e g$£,N, A = T,| ... | Tq

separates sets Mt, ...,Mr c: Tif

V i, j e f(Mh Mj, * 0 => 3 m, n e <?(M, <= Tm

et A/,- c Tn et (i # 7 => m # «))).

L e t / e g s , let Q be a partition of / (regarding Ker s/) and let <8 be a program graph
of g. Further, let u be an arbitrary conditional vertex of <S and let v realize a partition
A = V,| ... | V, of the set S„.

Let s e S„; if ps = t ^ e , ^ ... env„, denote Ps = <p(e,)... <p(em), where m e h u {0}
is a (uniquely determined) integer such that vm = v. Set

L = 5*(P„.).
Finally, for j e q denote

TJ = (L(s) | s 6 V,- n Dom/,} .

Thus, the sets TJ are just the ones that ought to be distinguished in the conditional
vertex v; the states s for which s <£ Dom/ s holds may be (and in fact are) neglected.

The conditional vertex v is said to be programable on s/ if there are a set T 4= 0
such that U TB C T C S a n d a partition A e F j , N separating the sets Tl

v, ...,T
q

v and

realizable on si'.
Say that a program graph is programable on ja/ if each its conditional vertex is.

Example 5. Consider the conditional vertices c, h of <S0. Here

Sc = {0, 2, 4, 8, 10, 16} , S„ = (0, 3, 4, 5, 8, 10, 16}

and e.g.

Ps = x2 for s e Sc, fs(s) = i s for se Sc,

P0 = x2x2 , P3 = x ,x 2 x 1 x 2 x 2 , r 1 0 = X2X,X2X2 ,

Further, for the conditional vertex c,

cj = 3 , P . - . {10}, V2 = {0, 4, 8, 16} , V3 = {2} ;

hence

T} = jUVx) = {5} , Tc
2 = {0, 2, 4, 8} , T? = {1} ;

thus the sets Tc, Tc, Tc are separated by the partition Au which is realized by the
program 0t on stf0 (see Example 3). Thus, the vertex c is programable on saf0.

9. THE OPERATIONAL TREE

In this section for a given regular program 0 a special graph describing the opera
tional branches of 0 and their branching will be defined. On this purpose some further
notions are necessary.

Let j?/ = (/, S, L, 8) be a CPA and let 0 e C^ be a regular program. Assume
(without any loss of generality) that each command of 0 is labelled.

For s e S let co(s) be the sequence arising from the branch fi(0, s) by deleting all
jumping commands.

Suppose that 0 has the following property: If s e S is such a state that the sequence
P(0, s) is finite and if co(s) = cu ..., cm, then X(ct) 4= X(cj) for i 4= j , i,j e m. Pro
grams, possessing the just mentioned property, will be called acyclic.

Note that the program 0O is regular but not acyclic.
Now we want to define certain sequences Xs for s e S. Distinguish two cases:
Let firstly s e S b e such that the branch p(0, s) is infinite ((o(s) may be finite),

(o(s) = cu c2,... • Then we are going to cut off the sequence a>(s) in order to make
it finite. Let p e N0 be the largest integer such that there is t e S for which the branch
f}(0>, t) is finite (if no finite \3(0>, t) exists, set p = 0) and the sequence co(t) has the
first p members the same as the sequence (o(s). (Such a p exists, because 0 is supposed
to be acyclic and hence the set of lengths of all sequences co(t) for which [1(0, t)
is finite is bounded.) Set

(o'(s) = cu ..., cp, c , where c = <z, ?> , z e L .

The label z is the same for all s and is different from all labels used in 0.

If secondly s e S is such that p(0, s) is finite, set

co'(s) = w(s).

Now, let for s e S be (o'(s) = c\,..., cms. Note that ms S: 1.
Denote Xs = z\, ..., z„t, where z) = X(cj) (j = 1, ..., ms). Note that z\ =# zj for

i =t= j , /,7 e ms.
Define a set

W = {(-], s) | s e S et i e rfls}

and for (zs, s), (zj, t) e W write

(4-)-WO
if i = j , zs = z\ and either i = 1 or (zs__, s) = (z}__, f). It is clear that = is an
equivalence relation on W. It is not difficult to see that the index of = is finite.

Denote V0 the set of all =-classes of the set W, set V_ = V0 u {v0} and define

IS,. = {«(zs, s)>, <(z"+1, s)» | s 5 S et 1 _g j < m, - 1} u

u { (. 0 , < (z _ , S) » | s e S } ,

where <w> denotes the class containing w e W.

It is easy to see that the oriented multigraph

* , = (F_, Eu rtfS Ttf')

is a tree, i.e. t(t;0) = 0 and i(v) = 1 for each v e V0.

Furthermore, define a mapping

Vl : Et ^Is KJ {!,?}

as follows: let e e E_ and let we W be such that <w> = 7t2(e); then set cp_(e) =
= t(A_1(7t_(w))). (The definition is correct: w' = w implies 7t_(w') = TI_(W).)

Let u_, . . . , up be all vertices of .?_ such that O(MJ) = 0 and (p_(e,)e/_;, where e_
is the edge such that 7c2(e,) = M, (i e p). Define

K = K_ u {u_, ..., yp} , where u. 4= (;_,• for i =)= ;', i, j e p ,

E = Ei u {(M;, II_) | i e _5} ,

^ = (VE , Ttf, Ttf),

<p = <p_ u {(("_, u;), !) | iep} .

For each se S define ps as a path in ^ such that

pS = U0 , <(ZS
1, S)>, . . . , <(Z",_, S)> , U_, . . ., M_ ,

/c e .N0 and the last vertex of ps is a final vertex of _?. If more than one such paths
exist, choose one of them as ps.

Now we can define a mapping i/> : ECON -* e xP s b y t h e following way: for e e ECON

set
i//(e) = {s e S | e is an edge of ps} .

Finally, define the operational tree of the program SP as a labelled multigraph
9~» = (V, E, 7tf, rcf, cp, i/>). It is easy to verify, that F9 is really a tree and that it is
a program graph.

10. THE MAIN THEOREMS

Theorem 1. Let si = (I, S, L, <5) be a CPA and let a function /<= g s be on si
computed by an acyclic (regular) program 0*. Then there are a finite partition Q of /
(regarding Ker si) and a programable program graph ^ of Q, which, moreover,
is a tree.

Proof. For each seS denote es the last edge of the pathp* in the operational tree
ST9 of 0>. Set

S' = {s e S | (p(es) = /} ;

then D o m / _ S'.

For s,teS' define s = t if ps = /?'. Clearly, the relation = is an equivalence
relation on S' and its index is finite (because &"9 is finite).

Let _»x| - - -1 Sk be the partition of S' induced by = . Let jefc , s e Sj and let ps =
= e, . . . e„(n *£ 1); then set Pj = <p(ex)... <p(e„_1).

It is easy to see that Q = {(Px, S j) , . . . , (Pfc, St)} is a finite partition of/ regarding
Ker si and S'.

Prove further, that ZT9 is a programable program graph of Q. It is not difficult
to see that for each seS the equality ps = ps holds. Hence, the conditions (l), (2)
of the definition of a program graph of Q in Section 7 hold.

Let v be an arbitrary conditional vertex of ST'9 and let v realize a partition
^ i | • • • | Vq (fl = 2) of the set S„. In order to complete the proof we shall prove that
the vertex v is programable on si.

Remember the definition of the sets T3
V for j e %:

T{ = {fs(s)\seVj n D o m / , } .

Here, of course, the situation is simpler than in a general case of a program graph
because &~'9 is a tree: For s,teSvfs = / , holds; thus we can set /„ = / , for s e S„.
Now we have

T{ =fv(Vj n D o m / „)

and setting

Tv = U T{ and Uv = Sv n Dom/„
M

we gain T„ = fv(Uv).

Let s e U„ and let P(&>, s) = c*, Cj, Then there are integers is,jseN0 such
that

j . - i s = 2, <(A«), s)> = »

(where <w> denotes the class of the equivalence from the definition of ^ 9 which
contains w),

i(c\) e IL for is + 1 — i = js — 1 and i(cs
Js) e Is .

If v equals the initial vertex v0 of <9~9, we set formally

<(Kc'o)> s)> = *>Q;

thus is = 0.

Note that X(c)) = A(c"J if and only if t, u e Vj n Domj„ for some j e q. Denote

Zj = A(cJs) for s e K,- n Dom / „ .
Define

Cs = {c..+ 1,...,<rj,_i} .
Now let

^ = [C1,...,C",<21, /> , . . . ,<2 f , />]

be such a program that the following conditions hold:

(1) c1 = cs
is+l for s e U„ (r, u e Uv implies c | t + 1 = c"u+1),

(2) {c1,...,^} = U C ,
S E C „

As it is clear, the program 0'v realizes some partition A of the set Tv. We are going
to prove now that A separates the sets Tv,..., T*.

Let j e q and t e TJ
V. Then there is s e V,- n D o m L such that t = j„(s). If we again

have
P(&,s) = c i , c^ . . . , c s f > , . . . , c5 s , . . . ,

where A(c'J = Zj, then it is clear that the "branch" of the program 0* beginning
with the command c\s+1 and in the state t results from the branch fi(0>, s) by removing
the first !s members. Hence

P{?v, t) = cs
is+l, cs

is+2,..., €$.-» <Zj, !) . Q

Let <§ be a program graph. A path p — vx ... vm (m £: 2) in ^ is said to be a chain
in ^ if the following conditions hold:

(1) i(vj). o(Vj) + 1 for j = 1, m .

(2) i(Vj).o(vj)= 1 for i = 2 , . . . , m - 1 .

The vertices vt and vm are called the begin and the end of the chain p, respectively.
A chain in <3 is said to be final if its end is a final vertex of'S.
A CPA si = (I, S, L, 5) is said to be semi-complete if the condition

V z e L 3 yellOT V s e S (8(y, s) = z)

holds. Such a y will be denoted by w\z\ in what follows.

Theorem 2. Let j / = (/, S, L, <5) be a semi-complete CPA. Le t je g s be a function
such that there are a finite partition _ of j (regarding Ker s/) and a programable
program graph of Q. Then j is on si computed by an acyclic program.

-42 Proof .Le tg = {(/>,, Sj), ...,(Pk, Sk)} and let IS be a (finite) programable program
graph of g.

Let y be a conditional vertex of (S, let v realize a partition Vi| • • • | Vq of the set S„,
let T _ S and let _ e s.p™ be a partition separating the sets Tv,..., Tv', which is
realized on si by a regular program _*_, = [c1, . . . , c "] . Suppose Tj =t= 0 for re tj
(each empty Tj may be deleted).

For s e T denote cs the last command of $(2PA, s) and let for s e T„' be l(cs) = z ;

(/ - l , «) .
Set 0>v = [c1, ..., c _, where

c> = <z", <c1)> ,

__, _ ^ - <A(cJ'), w[z^\) if l(cJ) = z, for some i e q (j = 2, ..., p),

^ cJ else

where _ , _ l (. . . , _ , are pair-wise different and different from X(cJ) for y e p , too.
Denote

Zs(0>v) = z , ©Kj(-*«) = z, (/ = 1, .. „ q) .

Further, letp be a chain in <§ which is not final,p = et ... em. Set

9, = [<z, <?(<?,)>, <p(-2), -.., <p(em), w[z'J]

and denote 3(_*,) = z, £>(^) = z'.

Ifp is a final chain in ^ , p = e1 ... eme, set for m _ 1

where

for m = 0 set

SPp = [<z, (p(Єl)У, (p(e2),...,ę(em),c],

c _ / ! for <Ke) = •'
"- <z', w[z']> for <p(e) = ? ;

^ _ / <z' •'> f o r <K«) = '•
' ^ <z, w[z]> for 9(e) = ? .

Denote 3(5*,) = z.
Now, let /»!, .. .,p„ be all chains, _ j , ..., t>w all conditional vertices of _*. It follows

from the semi-completeness of stf that the labels of all commands in sequences
3?pt,.., SPpu, S?Vl, ..., _?

0>v can be chosen pair-wise different, unless by the following
conditions is required the contrary.

(1) If the end of a chain p is a vertex v such that o(v) + 0, then

, \ _ y 3(0*4), if °(v) = 1 and u is the begin of a chain q ,
["' ~ ^ 3(^„) else .

(2) If the begin of a chain p is a conditional vertex v and if the first edge of p is e, 243
then

W = ©«.,(-*.) •
Set ^ = [c1, ..., c r], where the sequence c1, ..., cr is a juxtaposition of the se

quences 3Ppx,-.., 2Pp„, 3PVl,..., SPV„ in an arbitrary order, but such that if the initial
vertex v0 of ^ is conditional, then the leftmost sequence is 3PVQ and if it is not the case
and if v0 is the begin of a chain p, then the leftmost sequence is £P .

Now it is not difficult to prove formally that the program SP computes the function
/ on s4. Furthermore, it follows from the choice of labels in SP that 0> is acyclic. Q

Theorem 1 provides a necessary condition for a function to be computed on a CPA
s4 by an acyclic program. By Theorem 2 the condition is even sufficient provided that
the CPA s4 is semi-complete. Note that the semi-completeness is a quite natural and
reasonable demand; it realizes the first step to the label-independence: not labels
attainable by jumping instructions are important for the computational capacity
of s4 but only realizable partitions are. This independence is achieved in [7] by
means of the notion of completeness, mainly in connection with compositions of
partitions mentioned above.

Both theorems show that the concepts of a partition of a function as well as of
(programable) program graph are adequate tools for describing relations between
the set of instructions (i.e. elementary functions and partitions) on the one hand and
the set of computable functions on the other.

Perhaps the most interesting corollary of both the theorems (for semi-complete
CPA) is the following one: I f / has a finite partition with a programable program
graph <$, then ^ can be "transformed" into a tree which remains to be a programable
program graph of some finite partition of / . Or in other words: For each acyclic
program there is an equivalent (i.e. computing the same function) program the
operational structure of which has a form of a tree.

It is clear that further generalization of the concepts defined in this article is
possible and desirable. For example non-acyclic and even non-regular programs and
corresponding compositions and graphs are to be studied in more details.

(Received December 31, 1976.)

REFERENCES ._

[1] A. Blikle, A. Mazurkiewicz: An Algebraic Approach to the Theory of Programs, Algorithms,
Languages and Recursiveness. Proc. Symp. on Math. Found, of Computer Sci., Jablonna
1972.

[2] K. Culik: On Sequential and Non-Sequential Machines and their Relation to the Com
putation in Computers. Mimeographed in IFIP WG 2.2 Bulletin, No. 6, February 1970.

[3] K. Culik, M. A. Arbib: Sequential and Jumping Machines and their Relation to Computers.
Acta Informatica 2 (1973), 162-171.

[4] K. Culík: Algorithmic Algebras of Computers. Czechoslovak Math. Journal 23 (1973),
670-689.

[5] K. Culík: Some Notes on Logical Analysis of Programming Languages. Teorie a metoda 3
(1971), 101-111.

[6] K). H. .SHOB: O jiorn<iecKHx cxeMax ajiropHTMOB. IIpo6jieMbi KH6epneTHKH 1 (1958), 75 — 127.
[7] J. Mareš: Programmed Automata. (In Czech.) CSc. — thesis, Prague 1973 (not published).
[8] R. Milner: Equivalences on Program Schemes. Jour. Comp. and Syst. Sciences 4 (1970),

205-219.
[9] Z. Pawlak: Stored Program Computers. (In Polish.) Algorytmy Vol. 5, No. 10 (1969),

5-19 .
[10] H. Rossner: Formalization of the Notion of the Program. (In Polish.) Algorytmy Vol. 5,

No. 10(1969), 2 5 - 4 3 .

RNDr. Jan Mareš, CSc, fakulta jaderná a fyzikálně inženvrská ČVUT (Faculty of Nuclear and
Physical Engineering — Czech Technical University), Břehová 7, 115 19 Praha 1. Czechoslovakia.

		webmaster@dml.cz
	2012-06-05T05:16:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

